
ON IMPROVING THE ADOPTION, USABILITY, AND RETENTION OF STATIC

APPLICATION SECURITY TESTING (SAST) TOOLS

by

Zachary Douglas Wadhams

A thesis submitted in partial fulfillment
of the requirements for the degree

of

Master of Science

in

Cybersecurity

MONTANA STATE UNIVERSITY
Bozeman, Montana

December 2024

©COPYRIGHT

by

Zachary Douglas Wadhams

2025

All Rights Reserved

ii

ACKNOWLEDGEMENTS

I would like acknowledge and thank my advisor and committee chair, Dr. Clemente

Izurieta for his unwavering support throughout my program. I would also thank committee

members Dr. Ann Marie Reinhold and Dr. Matthew Revelle and the entirety of the MSU

Software Engineering and Cybsersecurity Lab (SECL) for always being on my side.

This research was supported by TechLink (TechLink PIA FA8650-23-3-9553). Any

opinions contained herein are those of the author and do not necessarily reflect those of

TechLink.

iii

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. RESEARCH GOALS .. 5

Goal Question Metric.. 5

3. BARRIERS TO USING STATIC APPLICATION SECURITY TESTING
(SAST) TOOLS: A LITERATURE REVIEW... 7

Contribution of Authors and Co-Authors ... 7
Manuscript Information .. 8
Abstract .. 9
Introduction ... 10
Related Work ... 11
Methodology .. 11
Results and Discussion.. 13

False Positives... 14
Poor Output ... 15
Time-Consuming Setup ... 16
Manual Effort ... 16
Workflow Disruption.. 17
Other Problems... 17
What’s Next? Is It All Worth It? ... 18

Threats to Validity ... 19
Conclusion and Future Work ... 20
Acknowledgements.. 21

4. AUTOMATING STATIC CODE ANALYSIS THROUGH CI/CD PIPELINE
INTEGRATION ... 22

Contribution of Authors and Co-Authors ... 22
Manuscript Information .. 23
Abstract .. 24
Introduction ... 25
Motivation ... 28
Related Work ... 29
Process .. 30

Tool Identification and Data Assessment... 31
Development Environment Exploration... 32
Controller Script ... 33

iv

TABLE OF CONTENTS – CONTINUED

Use Case .. 35
Discussion .. 39
Threats to Validity ... 40
Conclusion and Future Work ... 41
Acknowledgements.. 42

5. CONCLUSION... 43

REFERENCES CITED.. 45

v

LIST OF FIGURES

Figure Page

2.1 Hierarchical Goal-Question-Metric(GQM) structure based
on Basili’s Goal-Question-Metric methodology [5]. Each of
the research questions is addressed by a specific manuscript.
Research questions 1 and 2 correspond to the manuscript
on the left while questions 3 and 4 correspond to the
manuscript on the right. .. 5

3.1 Study Method Diagram. Search strings were devised and
refined. Following refinement of strings, all 240 papers from
the ACM Digital Library and all 108 papers from IEEE
Xplore were examined for relevancy and either discarded or
kept in accordance with our inclusion criteria. All relevant
papers were read from cover-to-cover, thoroughly examined,
and the issues developers encountered were cataloged. We
then examined these issues systematically. .. 12

3.2 Search String Refinement. This figure shows our search
strings, refinement process, and the number of papers
returned at each step of the process. We denote each refined
string with “. . . +” to indicate that all the string everything
after the + was concatenated to the string(s) indicated in
the boxes to the left. ... 13

3.3 Temporal Publication Trends in SAST Conference Proceed-
ings. The ACM Digital Library is depicted in purple and
IEEE Xplore in blue. An increasing trend over time can be
seen, with the highest number of papers published in 2023........................... 14

3.4 Number of papers in which SAST related problems are
mentioned. This figure shows the number of papers each
issue was found in. False positives have nearly twice as
many occurrences as the next highest complaint: poor
output. Time consuming setup and manual effort to fix
have a similar amount of instances. Workflow disruption
(other) is a grouping of other workflow disruption issues.
The final category, other, contains less frequently mentioned
issues that were encountered. ... 15

vi

LIST OF FIGURES – CONTINUED

Figure Page

4.1 Process flow diagram. The boxes represent important
concepts or technologies while the arrows depict the flow
of the process. In step 0, some external factor, such
as a nightly timer or a developer-initiated merge request,
triggers the build pipeline. The pipeline then initiates
the analysis of each SAST tool in step 1. Once all
static analyses are completed, the build pipeline starts the
controller script in step 2. The controller script reaches out
to each SAST tool and gathers the relevant issue data in
step 3. The issue data is then formatted by the controller
script and assembled into payloads in step 4. In step 5, each
payload is sent to the issue tracking software, and individual
issues are created. ... 31

4.2 Implementation of Approach to an Example Organization
(Organization X). The boxes represent important concepts
or technologies while the arrows depict the flow of the
process. The implementation begins with either a nightly
timer or merge request in step 0. The pipeline then initiates
the analysis SonarQube in step 1. Once SonarQube’s
analysis is complete, the build pipeline starts the controller
script in step 2. The controller script reaches out to
SonarQube and gathers the relevant issue data in step 3.
The issue data is then formatted by the controller script and
assembled into payloads in step 4. In step 5, each payload
is sent to GitLab’s issue tracking software, and individual
issues are created therein. .. 36

4.3 Example of a Generated Issue .. 37

vii

ABSTRACT

As the internet connects our world ever closer and propels human progress toward
new frontiers, it also exposes us to new and unforeseen dangers. Now that the majority of
humanity is connected to the internet, bad actors can potentially reach millions of people
with the press of a button. With software being the primary medium on which the internet
is used, and with many internet security breaches resulting from code vulnerabilities, a level
of security is necessitated. The responsibility of securing these applications falls on the
software developers. Fortunately, a variety of tools and techniques exist to assist developers
in identifying and resolving software vulnerabilities. Static Application Security Testing
(SAST), one of these tools, employs automated analysis techniques to meticulously examine
an application’s source code. This examination occurs early in the development process, even
before the code is functional. SAST tools pinpoint potential security weaknesses within the
code’s structure, highlighting areas where malicious actors might exploit vulnerabilities. By
identifying these risks early on, SAST tools allow developers to proactively address security
concerns and build more robust applications. Despite these benefits, SAST tools are far
from perfect. Our research focuses on challenges developers encounter when using these
tools, with the overarching goal being to improve its usability. We first present a literature
review that examines 89 works of research relating to the implementation and continued
usage of SAST. Through this review, we uncovered various problems developers had with
SAST. Some of these, such as false positives, which are security warnings that identify a
potential vulnerability that doesn’t actually exist in the code, were mentioned in a majority
of the 89 papers we reviewed. The second manuscript details a process for automating
the execution SAST tool output with a focus on presenting the data in a format that is
meaningful and actionable to developers. This includes a real world use case example that
provided feedback on an implementation of our process. Developers indicated satisfaction
with many aspects of the process and conveyed that it made them more willing to use the
SAST tool.

1

INTRODUCTION

Humanity has crossed a threshold, and there is no going back. We have allowed software

to infiltrate nearly all aspects of our professional and personal lives, to great benefit of

productivity, accelerating innovation, and connecting people across the globe. However, in

doing so we have exposed all which that software touches. Be it our personal intimate

moments or our professional careers, malicious actors have the potential to access and

expose it all. The only thing standing between cybercriminals and users is the security

and robustness of software.

In 2023, there were a staggering 3,205 reported data compromises, affecting over 350

million individuals. 73% of these compromises resulted from cyberattacks. Compared to the

all-time high reported in 2021, the number of compromises has surged by 72% [8]. The cost

of these attacks in 2023 has been estimates to cost over 8 trillion USD globally [29]. These

data points paint a clear picture: cybercrime is a lucrative and persistent threat that will

only grow over time.

The responsibility to defend against these threats ultimately falls on the organizations

that develop software. Fortunately, software developers have several tools and techniques

to secure applications. Penetration testing or pen testing involves a cybersecurity expert

probing around in your system to attempt to exploit vulnerabilities and gain unwanted

access [11]. Essentially, they play the role of a bad actor to simulate potential ways of

entry or disruption. Dynamic Analysis or Dynamic Application Security Testing (DAST)

simulates an application’s runtime behavior against attack scenarios [4]. Both penetration

testing and DAST require a functional software application to effectively uncover security

vulnerabilities. This presents a challenge for applications in their infancy that may not be

2

fully fleshed out or executable. In the absence of a running application, however, source code

remains a valuable asset.

The work of this thesis focuses on another method, Static Application Security Testing

(SAST), also known as static analysis. SAST is a method for analyzing source code to

identify potential security vulnerabilities without requiring a fully functional application [39].

By inspecting the codebase early in development, SAST assists developers in proactively

addressing security risks, preventing them from becoming more complex and harder to

mitigate later in the development process.

Prior research in the field has shown the benefits of SAST. Chess et al. [10] demonstrates

how static analyzers save developer time in reviewing code for bugs and vulnerabilities when

compared to a manual review. Additionally, these tools also cover a broader scope that a

human ever could. Yang et al. [44] conducted a study showing that when taking the advice

of a SAST tool, Priv, versus the advice of a security expert, the suggested fix was identical

75.3% of the time. The SAST tool was also able to provide a complete and correct fix for

75.6% of the warnings.

Notwithstanding these benefits, some development teams either have chosen not to

use SAST or have used it at some point and then either partially or wholly abandoned it.

There are some studies that have taken different approaches in trying to identify the reason

behind this conundrum. In 2013, Johnson et al. [20] interviewed 20 software developers

whose years of development experience ranged from 3 to 25 years. The average experience of

these developers was 10 years. Johnson’s study suggested that false positives were a major

issue when it came to a development team considered using SAST. A false positive in SAST

occurs when the tool erroneously identifies code as containing a vulnerability. A developer

will investigate this issue, only to find that it doesn’t apply to their project. This wastes

developer work time and can cause frustration at the tool. Johnson additionally identified

lack of comprehensive integration into workflow and insufficient explanation of defects as

3

problems developers cited. Nachtigall et al.’s [30] study presents a novel approach to SAST

usability evaluation. Employing a comprehensive set of 36 criteria, the research assessed

46 SAST tools across various dimensions, including warning messages, fix support, false

positives, and workflow integration to name a few. This substantial undertaking involved

the setup, execution, and analysis of each tool. Nachtigall’s methodology allowed them to

gain a personal understanding of the types of problems developers may encounter when

using these tools. Specifically, they showed that over half the tools had warning messages

with insufficient detail and over three-quarters had poor fix suggestions. Also, many tools

completely ignored incorporating user knowledge. For example, a prime technique to cut

down on the rate of false positives is to allow users to flag an issue as such. The next time

the tool is run, it will see that flag and then not present that reported false positive to the

developer. They also identified issues with cohesive workflow integration and various other

problems. While both of these studies are eye opening and greatly beneficial to the field

of SAST, they stop at identifying the issues and don’t provide any detailed solutions or

improvements.

By comprehensively examining existing research and conducting practical experimenta-

tion, this thesis aims to bridge the gap between the identification of SAST usability challenges

and the implementation of effective solutions. This will be achieved through two primary

steps. First, we will confirm previously identified SAST usability challenges, identify new

issues, and develop potential solutions for each. Second, we will implement one of these

proposed solutions in a real-world setting to evaluate its efficiency and effectiveness. To

accomplish this, we leveraged Basili’s Goal-Question-Metric (GQM) [5] approach, outlined

in Figure 2.1. This framework guided the development of four research questions, two for

each manuscript. Each research question is linked to one or more metrics, as shown in Figure

2.1.

The first manuscript presented, ’Barriers to Using Static Application Security Testing

4

(SAST) Tools: A Literature Review’, is an in depth analysis of 89 papers in the SAST

space published in the last 5 years. The specific target of this literature review was usability

challenges and problems related to its implementation and continued usage. The results

from this manuscript directly informed research question 1 (What specific problems do

developers encounter when implementing SAST?) and research question 2 (Which problems

are mentioned in the most papers?), as seen in Figure 2.1. research question 1 is answered

by metrics 1 and 3, while research question 2 is answered by metrics 1 and 2.

The next and final manuscript, ’Automating Static Code Analysis Through CI/CD

Pipeline Integration’, presents a novel, generalized, and automated process for integrating

SAST tools into a developer’s familiar issue tracking software. Crucially, this paper involves

a real-world use case in an active development environment. The feedback provided by

developers who used this process informed us of its effectiveness and whether it encouraged

developers to consistently use SAST. This manuscript asks research questions 1 and 2.

Research question 1 is answered by metrics 3 and 4, and research question 4 is addressed by

metric 4.

The following sections will present our findings from a rigorous literature review and a

real-world implementation of a SAST integration solution.

5

RESEARCH GOALS

Goal: Improve the overall
usability of SAST tools

RQ1: What specific
problems do

developers encounter
when implementing

SAST?

RQ2: Which
problems are

mentioned in the
most papers?

RQ4: Does placing
SAST tool output in a

familiar place help
developers secure

their code?

Barriers To Using Static Application
Security Testing (SAST) Tools: A

Literature Review
Published in: 2024 Workshop on

Human Centric Software Engineering
and Cyber Security at 39th IEEE/ACM

International Conference on
Automated Software Engineering (ASE

2024)

Automating Static Code Analysis
Through CI/CD Pipeline Integration

Published in: 2nd International
Workshop on Mining Software

Repositories for Privacy and Security
at IEEE 2024 International Conference

on Software Analysis, Evolution,
Reengineering (SANER)

Metric 1: List of
uncovered problems

Metric 2: How many
papers discuss each

problem

Metric 3: Analysis of
existing usability

evaluations

RQ3: Does
automating SAST

tools incite their use?

Metric 4: Developer
feedback on our

proposed process

Figure 2.1: Hierarchical Goal-Question-Metric(GQM) structure based on Basili’s Goal-
Question-Metric methodology [5]. Each of the research questions is addressed by a specific
manuscript. Research questions 1 and 2 correspond to the manuscript on the left while
questions 3 and 4 correspond to the manuscript on the right.

Goal Question Metric

To ensure a well-structured research plan, we employed Basili’s Goal-Question-Metric

approach for defining our overarching research goal; improve the overall usability of SAST

tools [5]. To address this goal, we created four research questions, each answered by one or

more metrics. The structure of this plan is detailed in Figure 2.1 and in the following text.

Goal: Improve the overall usability of SAST tools.

• Research Question 1: What specific problems do developers encounter when

implementing SAST?

– Metric 1: List of uncovered problems

6

– Metric 3: Analysis of existing usability evaluations

• Research Question 2: Which problems are mentioned in the most papers?

– Metric 1: List of uncovered problems

– Metric 2: How many papers discuss each problem

• Research Question 3: Does automating SAST tools incite their use?

– Metric 3: Analysis of existing usability evaluations

– Metric 4: Developer feedback on our proposed process

• Research Question 4: Does placing SAST tool output in a familiar place help

developers secure their code?

– Metric 4: Developer feedback on our proposed process

7

BARRIERS TO USING STATIC APPLICATION SECURITY TESTING (SAST)

TOOLS: A LITERATURE REVIEW

Contribution of Authors and Co-Authors

Manuscript in following chapter

Author: Zachary Wadhams

Contributions: Developed study concept and design, data collection and analysis,
interpretation of results, and wrote the manuscript.

Co-Author: Clemente Izurieta

Contributions: Obtained funding, provided feedback and editing.

Co-Author: Ann Marie Reinhold

Contributions: Obtained funding, provided feedback and editing.

8

Manuscript Information

Zachary Wadhams, Ann Marie Reinhold, Clemente Izurieta

2024Workshop on Human Centric Software Engineering and Cyber Security, HCSE&CS-
2024 (ASE 2024)

Status of Manuscript:
Prepared for submission to a peer-reviewed journal
Officially submitted to a peer-reviewed journal
Accepted by a peer-reviewed journal

X Published in a peer-reviewed journal

9

Abstract

Developers face a challenging problem with no clear solution. Modern software breaches

can wreak havoc on businesses and individuals alike. With code vulnerabilities being a

leading cause, securing applications must be a priority for developers. Static Application

Security Testing (SAST) has the potential to harden applications by assisting in the

identification and resolution of security vulnerabilities. Despite this, many development

teams have not adopted SAST tools into their environment. In this paper, we survey

the recent literature to uncover why some developers are apprehensive towards SAST and

identify what specific problems they encounter when using it. We found a variety of usability

problems developers face when using SAST. Some are inherent of the tool and ultimately

require some level of developer investment while others are tool shortcomings that SAST tool

creators must address. Ultimately, we argue that in order to drive widespread adoption and

consistent SAST usage, developers will need to embrace that some investment is required.

Simultaneously, developers will be more likely to integrate SAST tools into their workflows

if the creators of SAST tools simplify many aspects related to tool usage. Surmounting the

primary obstacles preventing the adoption of SAST requires full consideration of both the

technical and human factors.

10

Introduction

Recent years have witnessed a surge in critical software security issues, impacting

millions of people and causing billions of dollars in damages [1]. In July of 2024, a faulty

CrowdStrike update unintentionally crippled Windows systems globally, highlighting the

far-reaching consequences of software defects [12]. The 2020 SolarWinds attack stands as a

well known example, where a code vulnerability allowed attackers to inject malicious code

into software updates. This breach exposed sensitive data, disrupted critical infrastructure,

and is estimated to have cost $100 billion to recover, impacting countless individuals and

businesses [40]. These incidents underscore the critical need for robust secure coding practices

throughout the software development lifecycle.

Fortunately, there are myriad of tools and techniques developers can take advantage

of to secure their codebases. These include Dependency Scanning, Penetration Testing,

Dynamic Code Analysis and Static Application Security Testing (SAST), among others[7,

23, 33]. Static Application Security Testing, in particular, is unique as it can be implemented

at any time in the development lifecycle to identify and help to resolve vulnerabilities. It

can achieve this because of how it works–by scanning source code without it needing to

run or compile [44]. Such benefits have been recognized by Ayewah et al., who showed that

many overlooked vulnerabilities were resolved after developers were alerted by warnings from

SAST tools [3].

While implementing SAST is relatively easy and has shown benefits, some development

teams still choose not to use it, opting for limited code analysis, focusing on security-critical

components only, or relying mostly on manual code reviews [20, 25, 43]. This study aims to

identify the root causes of developer apprehension regarding full SAST adoption. We focus

on specific issues that discourage developers from initiating or abandoning SAST use. By

understanding these challenges, we hope to shed light on areas for improvement in SAST

11

usability and encourage further research directed at enhancing the developer experience.

Related Work

Previous surveys and studies have explored usability challenges associated with SAST

tools. For instance, Johnson et al. [20] interviewed 20 software developers to understand

their perspectives on usability issues. Charoenwet et al. [9] examined SAST tools for

their effectiveness in security code reviews. In contrast, our study aims to gain a broad

understanding of the current state of SAST usability through a comprehensive literature

review.

Methodology

An overview of our study methodology can be found in Figure 1 and we will reference

it throughout this section. The initial phase of our study involved choosing the databases

from which to gather papers. We chose the ACM Digital Library and IEEE Xplore due to

their extensive collections of peer-reviewed research articles and conference proceedings in

the field of software security and development.

Next, we devised initial search strings as shown in the first step in Figure 3.1. These

strings provided an estimate of the number of papers relating to our topic. Figure 3.2 displays

these strings and the results of searching on them. The initial strings returned thousands of

papers from each database. Consequently, we refined the strings, as detailed in Figure 3.2,

until we reached a manageable number of papers. This is represented by the looping section

from the clipboard to the check mark in Figure 3.1.

Our final search strings returned 240 papers from the ACM Digital Library and 108

papers from IEEE Xplore. Upon further examination of the results from the ACM Digital

Library, we noted that the Brazilian Symposium of Systematic and Automated Software

12

Figure 3.1: Study Method Diagram. Search strings were devised and refined. Following
refinement of strings, all 240 papers from the ACM Digital Library and all 108 papers
from IEEE Xplore were examined for relevancy and either discarded or kept in accordance
with our inclusion criteria. All relevant papers were read from cover-to-cover, thoroughly
examined, and the issues developers encountered were cataloged. We then examined these
issues systematically.

Testing 1 introduced 118 non-relevant papers into the 240 that were sourced. This inflation

occurred because the acronym “SAST” was used in all publications from this conference,

despite these papers not covering SAST. Removal of these conference papers reduced the

number of ACM sources to 122 papers.

We then manually reviewed each of these 230 papers (108 from IEEE Xplore and 122

from ACM Digital Library sans the Brazilian Symposium of Systematic and Automated

Software Testing papers) for their relevance. For the first pass, we specifically looked for

papers that mentioned an implementation of SAST. We then realized that many papers

mention static analysis or SAST in a general sense without any relation to the actual usage

of these techniques. These papers were discarded. After the initial review, we identified a

total of 89 relevant papers.

After identifying these papers, we analyzed them to identify key points related to SAST

and developer usage, particularly the challenges encountered, shown at the star in Figure

3.1. We documented these problems and noted the number of papers in which they occurred.

1https://dl.acm.org/conference/sast

13

Figure 3.2: Search String Refinement. This figure shows our search strings, refinement
process, and the number of papers returned at each step of the process. We denote each
refined string with “. . . +” to indicate that all the string everything after the + was
concatenated to the string(s) indicated in the boxes to the left.

Results and Discussion

In general, the number of publications increased annually from 2019 - 2023 (Figure

3). Except for a slight drop in 2022, there is a year-by-year increase in research on SAST

implementation. This trend suggests that research interest in the use of SAST is increasing.

Many papers shared the following pattern. First, a tool would be selected and set up

according to an organization’s environment. These tools then require some level of attention

to maintain which increases the effort needed from developers. As a result, SAST tools

become cumbersome to use and thereby less attractive to those developers. Some papers

suggest that these developers gradually reduced their use of the tools until they no longer

14

Number of Papers

Y
ea

r
2019

2020

2021

2022

2023

0 5 10 15 20 25

ACM Digital Library IEEE Xplore

Figure 3.3: Temporal Publication Trends in SAST Conference Proceedings. The ACM
Digital Library is depicted in purple and IEEE Xplore in blue. An increasing trend over
time can be seen, with the highest number of papers published in 2023.

served their original purpose and became defunct. Within organizations, the decline in usage

can be attributed to several usability challenges (Figure 3.4), discussed in the following

subsections.

False Positives

In the context of SAST tools, a false positive refers to a situation where the tool

incorrectly flags a piece of code as containing a security vulnerability or issue when, in fact,

there is no real vulnerability present. Over two-thirds of papers cited false positives as a

recurring pain point for developers (Figure 3.4).

These false positives can negatively impact developers in a variety of ways. A primary

way this can manifest is by wasting the developer’s time [35]. When a developer has to

spend hours tracking down a reported issue only to find that it wasn’t an issue, it can have

a cascading result. This wasted time can lead to a decreased trust in the tool, general

frustration, and overall reduced productivity [30].

15

Number of Papers Mentioned

P
ro

bl
em

 M
en

tio
ne

d

False Positives

Poor Output

Time Consuming
Setup

Manual Effort to Fix

Workflow
Disruption (Other)

Other

0 20 40 60 80

Figure 3.4: Number of papers in which SAST related problems are mentioned. This figure
shows the number of papers each issue was found in. False positives have nearly twice
as many occurrences as the next highest complaint: poor output. Time consuming setup
and manual effort to fix have a similar amount of instances. Workflow disruption (other)
is a grouping of other workflow disruption issues. The final category, other, contains less
frequently mentioned issues that were encountered.

The pervasiveness of false positives necessitates methods to mitigate them. Guo et

al. states that it is imperative to implement strategies that minimize their occurrence and

impact on the development process [16]. Such strategies are an open area of research.

The most common of these strategies is manual review, which requires a developer to

investigate each reported issue to determine its validity [2]. If an issue is found to be a false

positive, its identifier is added to an ignore list, and the SAST tool will no longer flag it.

Poor Output

Many SAST tools convey their results in a consistent format, either XML or JSON [20].

While this is useful for compatibility, developers are seldom interested in the sparse output

and minimally formatted text that XML or JSON provides [30]. Depending on the size of

the analysis files can contain thousands of lines and can be cumbersome and overwhelming

16

[38].

A potential strategy to enhance the readability of outputs would involve constructing

a parser that formats the issues. While a small number of tools have a built-in parser, the

vast majority do not [41]. Adding a parser to facilitate consistent and familiar presentation

has been shown to capture developer attention and potentially promote more consistent tool

usage [41]. This additional effort could be regarded as addressing the next issue developers

may encounter: time-consuming setup.

Time-Consuming Setup

While some SAST tools may be relatively simple to run-—e.g., just point them at a file

structure—-others require an intensive setup that demands hours of investment [28]. This

time investment may not be perceived as worthwhile, resulting in a lower adoption rate. A

developer might spend hours attempting to configure a tool to run correctly within their

environment, only to give up or deem it unworthy of the effort. Thus, time-consuming setup

discourages uptake. We encourage the creators of these SAST to address this issue and–to

the extent possible–provide clear, comprehensive instructions.

Manual Effort

When a developer uses a SAST tool, automatic code-fix suggestions may be appealing

and encourage continued usage of the tool [32]. In contrast, when a tool alerts a developer

without providing suggested fixes or a button for automatic correction, they can become

frustrated by the manual effort required. This overall lack of guidance was a recurring

theme relating to the manual effort required when using SAST tools.

A potential solution for the lack of guidance is offered by Linters, a static analysis

tool that typically integrates into a developer’s IDEs and provides real-time feedback [26].

Additionally, and as a bonus, many Linters have the auto-fix functionality that developers

desire [17]. Thus, Linters have the potential to reduce the manual effort required.

17

Workflow Disruption

Static Application Security Testing can add time to a developer’s workflow [30],

potentially disrupting it. Disrupting a developer’s workflow can have significant drawbacks,

including decreased productivity, increased frustration, and potential resistance to adopting

security practices [30]. When developers are interrupted by cumbersome tools, it can hinder

their workflow and impede their progress on projects [30]. Additionally, disruptions may lead

to context switching, where developers must shift their focus away from coding to address

security issues, resulting in loss of momentum and increased cognitive load [15]. This can

ultimately impact the quality and timeliness of software delivery. Therefore, minimizing

disruptions to a developer’s workflow is essential for maintaining productivity.

In order to achieve this, it is important for tools to operate swiftly, ideally to provide

timely feedback on a developer’s work without prolonged delays. Maintaining rapid software

deployment speed is paramount in the implementation of SAST [36]. Any delay in these

deployments, no matter how brief, may lead to skepticism regarding a tool’s effectiveness,

should the slowness of a tool be identified as the cause.

Other Problems

Various other one-off problems were mentioned in the corpus of papers we evaluated.

The first of these is the lack of customizability of many tools [14]. This lack of customizability

can manifest as a barrier in a few ways, with one being difficulty integrating smoothly with

a development environment. With each environment being different and custom-tailored to

the organization, these tools should strive to easily integrate with as wide of an audience as

possible. The other way a lack of customizability can show up is in the actual running of

the tool. Some may support a limited number of languages, scale poorly, or not allow users

to customize their rules.

Another mentioned issue is unvalidated metrics [42]. Ideally, the results of a tool should

18

be transparent and trustworthy, yet in many SAST tools, there is no level of proof to support

them. Through the phenomena of “new version new answer”, even something as simple as an

updated tool version can give wildly different and unexpected results [37]. Because changes

based on SAST results can have a significant impact, ensuring their accuracy would build

trust in the tool and likely increase usage.

What’s Next? Is It All Worth It?

Implementing SAST into a development environment helps secure code bases, and

fosters more security-conscious developers [3]. Moreover, SAST tools can be efficient in

finding and helping resolve security vulnerabilities [21, 24]. SAST tools can be viewed as

investments, with the payout being a more robust and secure code base in a shorter time

period than a manual review could provide. For instance, consider false positives. In the

previously mentioned approach, detected false positives are reported to prevent them from

appearing in future scans. With repeated implementation over time, a balance may be

attained, with improved handling of false positives (e.g., databases containing known false

positives). User investment in this effort ameliorates this problem.

Similarly, writing a parser to convert poor tool output to a better format can enhance

a tool’s usability [41]. While there was certainly a significant engineering effort involved, the

firsthand developer feedback we received indicated a level of satisfaction with the tool that

they did not have before the parser was implemented.

Some barriers to SAST implementation can be overcome through SAST creators

developing auto-fix capabilities. Marcilio et al. [27] and Odermatt et al. [32] mentioned that

auto-fix capabilities improved the overall usability and integration of tools into workflows

and pipelines.

These observations suggest that both developers and SAST tool creators play inde-

pendent but equally important roles in driving SAST adoption. This paper highlights the

19

substantial advantages for developers who implement SAST proactively. In parallel, SAST

tool creators must be responsive to user feedback to ensure continuous improvement in

usability.

The successful implementation of SAST tools into development workflows incorporates

technological advancements and is also heavily reliant on human factors. We know that

the development community must invest significant time and effort to understand the tool’s

capabilities, interpret results, and address identified vulnerabilities. To further drive SAST

adoption, a deeper understanding of the human element is needed. Further research should

focus on identifying the institutional, social, and cognitive barriers that hinder SAST usage,

such as skepticism about tool accuracy, or resistance to change. We assert that the future of

the SAST field hinges on our ability to enumerate and address the human factors impacting

developers.

Threats to Validity

This study offers valuable insights that contribute to the field of SAST and, by

extension, secure software development. This section discusses potential threats to the

validity of our study. By identifying these threats, our goal is to enhance the study’s

reliability and reduce the risk of bias.

Firstly, we followed a structured process for identifying relevant papers (Figure 1).

Developing this process was the first action we took, therefore ensuring consistency through

out each step of the literature review. Although we opted for a structured search strategy

tailored to our research questions rather than a predefined protocol like Kitchenham’s [22],

this systematic approach ensured a rigorous selection of relevant literature. While our

stringent search strings might have excluded some publications, we believe the resulting

sample of 89 papers provides a sufficient window into the current state of the SAST field.

Finally, we opted to manually review all 89 selected papers instead of using automated

20

approaches like Natural Language Processing (NLP). Some may claim that the lack of an

automated aspect can limit the scalability of our approach. We argue, however, that this

deliberate choice allowed us to gain a deeper understanding of the breadth of the problems

by directly engaging with the authors’ ideas. Our focus was on comprehending the range

of issues, rather than the granular details explored in each paper. The manual review also

facilitated our discussion of potential solutions. By directly encountering the developers’

words, we were better equipped to formulate our thoughts on addressing the challenges they

faced.

Conclusion and Future Work

This paper delivers a unique two-fold contribution to the Software Engineering and

Cyber Human Factors communities. It dives deep into SAST usability challenges, offering

valuable insights directly relevant to both SAST tool creators and development teams

currently using or considering these tools.

Tool creators can take our results to better inform their development of new and

improved SAST tools. Specifically, our findings on developer needs and challenges related to

SAST usability can guide the design of more user-friendly interfaces and output display,

improved false positive reporting mechanisms, simplified setup, and automatic fixing

features.

Development teams can also leverage our findings to gain insights into potential

challenges during SAST implementation. This knowledge can inform their SAST planning

process when it comes to false positives, improving tool output and accounting for workflow

disruption, ultimately empowering them to use these tools more effectively.

While this study focuses solely on the breadth of how these problems are mentioned,

examining the depth at which specific papers discuss them could be valuable future work.

This could involve investigating the depth of discussion for each problem and potentially

21

inferring the severity or overall impact it poses for developers. A study of this kind could

benefit from some form of NLP to assist in identifying key details in text that signal severity.

Our review may also be expanded upon by extending the search back another 5 or 10 years.

This could potentially help to gain a broader understanding of the uncovered issues and also

identify how their prevalence has changed over time.

Acknowledgements

This research is supported by TechLink (TechLink PIA FA8650-23-3-9553). The

ChatGPT Large Language Model was used in this paper for spell-checking and grammatical

enhancements. A full list of our 89 papers this review was sourced from can be found by

following this link.

https://tinyurl.com/bddmj9h8

22

AUTOMATING STATIC CODE ANALYSIS THROUGH CI/CD PIPELINE

INTEGRATION

Contribution of Authors and Co-Authors

Manuscript in following chapter

Author: Zachary Wadhams

Contributions: Developed study concept and design, data collection and analysis,
interpretation of results, and wrote the manuscript.

Co-Author: Ann Marie Reinhold

Contributions: Obtained funding, provided feedback and editing.

Co-Author: Clemente Izurieta

Contributions: Obtained funding, provided feedback and editing.

23

Manuscript Information

Zachary Wadhams, Ann Marie Reinhold, Clemente Izurieta

2nd International Workshop on Mining Software Repositories for Privacy and Security,
MSR4P&S, (SANER 2024)

Status of Manuscript:
Prepared for submission to a peer-reviewed journal
Officially submitted to a peer-reviewed journal
Accepted by a peer-reviewed journal

X Published in a peer-reviewed journal

Publisher: IEEE
In-press

24

Abstract

In the contemporary landscape of software development, securing sensitive data

is paramount to safeguarding organizational reputation, preventing financial losses, and

protecting individuals from identity theft. This paper addresses the pervasive challenge

of identifying and rectifying security vulnerabilities early in the development process,

emphasizing the role of Static Application Security Testing (SAST) tools. While SAST

tools play a crucial role in detecting vulnerabilities, widespread adoption has been hindered

by usability issues, including high false positive rates and a lack of native pipeline support.

This paper proposes a novel, generalized, and automated process for aggregating SAST

tool outputs and integrating them into developers’ familiar issue-tracking software. The

process streamlines the identification and communication of security vulnerabilities during

the development lifecycle, facilitating more efficient remediation efforts. We demonstrate

the successful implementation of the proposed process with the SonarQube SAST tool in a

GitLab-based development environment. Developers were positive about the structured

implementation, real-time feedback, and proactive vulnerability management. However,

despite some challenges such as a potential learning curve and trade-offs between secure

coding and workflow disruption, the overall positive impact on security awareness and

responsiveness suggests that the proposed process holds promise in enhancing the security

posture of software development practices

25

Introduction

Now, more than ever, software applications must make a concerted effort to effectively

secure the data they store. A single breach of security can wreak havoc on the reputation of

the organization, trigger massive financial loss, and even disrupt individuals’ lives through

identity theft or other means. Many instances of security breaches can be traced back to

security vulnerabilities [40]. A security vulnerability is a weakness or flaw in a software

application’s source code or design that can be exploited by malicious actors to compromise

the security of the system or the data it processes. It is vital that vulnerabilities are identified

and corrected as early as possible in the development process. A key tool that development

teams can use to identify vulnerabilities is Static Application Security Testing (SAST), or

Static Code Analysis.

These tools aim to help ensure the security, reliability, and compliance of software

applications. SAST tools work by analyzing the source code during the development phase,

enabling early detection of security vulnerabilities. By identifying security flaws at an early

stage, developers can address them promptly and minimize the risk of such vulnerabilities

making their way into the final product.

SAST tools not only focus on security vulnerabilities but also help improve code

quality by identifying design flaws [21] [24]. By detecting and addressing these issues

early in the development cycle, teams can enhance the overall quality and maintainability

of the codebase. Using these tools, development teams can gain insights into common

security pitfalls and improve their understanding of secure coding principles. SAST tools

simultaneously serve as educational resources, helping to foster a security-conscious culture

among developers who utilize these tools and empowering them to produce code that is more

secure and reliable [30].

A small number of such tools are specifically designed to be implemented within Con-

26

tinuous Integration/Continuous Delivery(CI/CD) pipelines on major Git-based repository

hosting services. CI/CD pipeline integration allows these tools to run on each new code

addition, creating a record (typically stored within the tool GUI or as a .json file) of which

changes introduced vulnerabilities or design flaws. The near-immediate feedback given allows

for faster remediation of critical vulnerabilities while the historical record can be instrumental

in ensuring compliance with a variety of security standards and best practices [18] [31].

However, the vast majority of tools have little to no support for automation or pipeline

integration.

While manual code reviews and standalone static analyses are essential for identifying

some design flaws and guiding a project’s direction, the complexity, and size of modern

software applications make it unfeasible to manually review an entire codebase [34]. This

necessity calls for automation, which is provided by pipeline integration.

Despite these apparent benefits, many development teams have not deployed SAST

tools. Reasons for this vary but many agree that there are still widespread usability issues

that hinder their adoption and consistent use. Most of these reasons are commonly identified

as high rates of false positives, unhelpful warning messages, lack of fix suggestions, and

insufficient native pipeline support [3]. Developers often delegate security-related concerns

to colleagues within their organization or, in some cases, they may lack access to these reports

due to security configurations [25] [43]. As those possessing the most profound understanding

of the code, developers often overlook security issues, which can lead to the “out of sight,

out of mind” problem [25] [30].

Instead of merely investigating this issue, we have chosen to design a solution that

involves presenting SAST reports to developers in a familiar and consistent manner using

automated methods. While many have touched upon this issue, we have identified no papers

that discuss a generalized process applicable to all static analysis tools. By offering a

standardized process that is easy to integrate and demonstrating the tangible benefits of

27

doing so, we aspire to promote the widespread adoption and integration of static analysis

tools within the software development community. This, in turn, enhances software privacy

and security across a broad spectrum of domains and applications.

Our first key contribution is a generalized and automated process for aggregating

SAST tool outputs and integrating them into developers’ familiar issue-tracking software.

This process streamlines the identification and communication of security vulnerabilities

during the development lifecycle, facilitating more efficient remediation efforts.

In addition, we provide a detailed examination of a practical implementation of the

proposed process. By illustrating its application in a real-world scenario, we offer insights

into the feasibility and effectiveness of the process. The practical implementation serves

as a valuable case study, shedding light on the challenges encountered and the practical

considerations that arise when implementing such a process within software development

teams.

Our work contributes to the security vulnerability management field by thoroughly

exploring the potential benefits and drawbacks of the explored process. By addressing

advantages such as improved collaboration between security and development teams, which

in many cases are separated by technology and/or organizational constraints, our aids in

understanding the implications and trade-offs associated with adopting our process.

Importantly, these contributions hold direct relevance to the Mining Software Repos-

itories (MSR) community. The proposed process aligns with the objectives of MSR by

leveraging data from software repositories, issue-tracking systems, and security testing

tools to better inform software developers of potential security vulnerabilities and foster

proactive measures for secure software development practices, ergo the ability to mine

software repositories to make information available to potentially separate engineering groups

(i.e., security and development) in a CI/CD environment is critical. The insights gained

from this research can inform and enhance the broader understanding of how security

28

practices intersect with the larger software development ecosystem, thereby contributing

to the ongoing advancements in the MSR field.

This paper is structured as follows: Section 4 explains the motivation for our work in

the field of static analysis. Section 4 discusses related work and its impact on our research.

Section 4 describes our process and its core components in detail. Section 4 presents a

practical example of an implementation of our process. Section 4 provides a discussion on

the greater consequences of our work. Section 4 addresses potential threats to the validity of

our work and our attempts to mitigate them. Section 4 concludes the paper and outlines our

plans for future work on refining and extending the proposed SAST tool integration process.

Motivation

It is the moral and now legal obligation of organizations to ensure that any and all

software they release is as safe and secure as possible and respects the privacy of its users.

The EU’s General Data Protection Regulation (GDPR) is just one example of legislation

which requires that organizations ensure privacy and security are built into their applications

by design [13].

SAST tools excel in this area where other methods, such as dynamic analysis, fall

behind. Dynamic analysis is performed later in the development process, typically when an

application is executed. Static analysis strictly looks at source code and can be implemented

as soon as the first line of code is written. This reinforces SAST’s use as a proactive step that

can be used early in the development process when an application’s design is still flexible,

bringing it in line with the core tenet of privacy and security by design. Although static

analysis procures many benefits, it is often utilized inconsistently.

Issues with organizational security configurations can make the consistent use of SAST

difficult for some. Occasionally, organizations restrict the execution of tools, requiring them

to be behind a firewall and rendering them inaccessible to certain developers. This becomes a

29

problem when those with access are senior developers who do not have time to sift through the

reports generated by tools, leading to slow turnaround times on fixes or even vulnerabilities

being missed completely. Thus, a disconnect exists between the development teams and

security experts or senior developers who are directly responsible for ensuring code security.

This disconnect demands a better way to bring more average developers into the sphere

of security and subsequently motivated our team to design a process that does just that.

Leveraging the familiarity of bug and issue-tracking features within popular repository

hosting services, the goal is to increase the visibility of SAST tool outputs, ultimately

providing a consistent and accessible space for identifying, managing, and resolving design

flaws and vulnerabilities within software repositories.

Related Work

Interest in SAST has been steadily growing over the past two decades, while interest

in security and privacy by design has burgeoned since the publication of the GDPR in 2016

[13]. The combination of SAST tools and the concept of privacy and security by design, and

how one can drive the usage of the other, inspired our work on the topic.

Johnson et al. [20] carried out interviews to investigate why static analysis tools were

not being used by developers. During their research, they uncovered many underlying

issues with these tools, such as poor output presentation and slow feedback. In other work

performed by Izurieta et al. [19], the uncertainty of scoring and error propagation from

SAST tools is also addressed.

Haug et al. [18] showed that when developers are provided with immediate or near-

immediate feedback on code, they are more likely to consider it.

Xie et al. [43] found that most software security vulnerabilities are caused by errors

introduced by developers. Their results led them to discover a striking divide between

developers’ security knowledge and their practices. They concluded that static analysis

30

tools do play an important role in assisting developers in producing secure software and

overcoming their apprehension towards security.

Ayewah et al. [3] observed that when developers are present with security-related

messages, they generally make the correct decisions to address them even with little to no

formal security experience.

Nachtigall et al. [30] conducted a comprehensive study focused on specific criteria

for static analysis tools. They analyzed 36 criteria across 46 different tools from a user’s

perspective. The study revealed significant shortcomings in many SAST tools, particularly

concerning their integration into developers’ workflows. It was identified that the locations

where tool outputs are stored is unfamiliar to many developers and accessing them often

requires them to change their habits. In some cases, these tools have their data stored behind

firewalls that only senior developers or cybersecurity officers can access. Whether intentional

or not, this leaves other developers in the dark about the potential vulnerabilities they may

introduce, thereby compromising the security culture of the organization. Many tools also

provide these outputs in unformatted text that doesn’t grab a developer’s attention. As

a result, they found that if a tool disrupts a developer’s workflow or lacks sufficient visual

guidance, many will quickly abandon it. This underscores a critical and recurring usability

challenge.

Our process not only addresses these previously identified issues but also establishes a

way for delivering static analysis tool outputs to developers in a non-disruptive and visually

appealing format, ultimately ensuring that a broader range of developers can easily access

these reports, thereby enhancing, rather than impeding, their productivity and workflow.

Process

We implement our process in three steps First, we identify the SAST tools preferred by

the organization and assess the types of data they provide. Two, we explore the development

31

Figure 4.1: Process flow diagram.

The boxes represent important concepts or technologies while the arrows depict the
flow of the process. In step 0, some external factor, such as a nightly timer or a developer-
initiated merge request, triggers the build pipeline. The pipeline then initiates the analysis
of each SAST tool in step 1. Once all static analyses are completed, the build pipeline
starts the controller script in step 2. The controller script reaches out to each SAST tool
and gathers the relevant issue data in step 3. The issue data is then formatted by the
controller script and assembled into payloads in step 4. In step 5, each payload is sent to
the issue tracking software, and individual issues are created.

environment of the target organization, taking into account aspects such as issue-tracking

software, repositories, pipeline configuration, and network security configurations. Three,

we implement a controller script that ties the SAST tools and issue tracking together. The

sub-sections below provide a detailed explanation of each of these steps.

Tool Identification and Data Assessment

Diverse organizations have unique analytical requirements, prompting the need for

discussions on preferred static analysis tools. These tools can be categorized into two groups:

32

those with a Graphical User Interface (GUI) and those with a Command Line Interface (CLI).

Our process focuses on GUI tools. They typically have the most customizability and often

offer an Application Programming Interface (API). The API simplifies data retrieval by

returning it seamlessly in commonly formatted structures such as XML, JSON, or HTML.

Our API-driven process enhances the efficiency of data extraction, making it easier to

integrate the data into our controller script.

In our context, we treat GUI tools without APIs the equivalently to CLI tools. CLI

tools are executed exclusively from the command line and do not provide the additional

functionality and ease of use offered by an API. After completion, these tools generate a file

formatted as either XML or JSON containing the report data. While CLI tools can provide

valuable information, our process does not focus on them.

After identifying which tools the organization desires, we conducted an investigation of

the organization’s familiar development environment.

Development Environment Exploration

The development environment of the target organization is taken into account when

custom tailoring the implementation of our process. We considered what software most

organizations use to manage their codebase and found that the vast majority use one of

three Git-based systems; GitHub, GitLab, and BitBucket. Many development teams either

utilize the built-in repository issue tracking or rely on connected software adjacent to the

repository for issue management [6]. Each of these services provides a robust API to assist

with automating aspects such as bug and issue tracking. These APIs allow for calls to be

made that create, edit, or resolve issues. An “issue” or sometimes “ticket” is a digital record

used to track tasks, bugs, and feature requests related to a software project. They help

teams collaborate by providing a place to discuss, assign, and monitor the progress of these

work items. APIs are ubiquitous in issue tracking, enabling this process to be applied to any

33

service through the controller script.

The build pipeline of the repository is a predefined and automated sequence of tasks and

actions that transform source code into a deployable application or software artifact. This

pipeline is where the code is compiled and also the stage at which SAST tools are executed.

The CI/CD pipelines of the aforementioned repository hosting services are standardized

through the use of a common file type used to choreograph the execution steps of the pipeline.

The controller script is placed after the SAST tool execution in the pipeline order to ensure

that each analysis is completed before any data is retrieved.

As previously mentioned in section II (i.e., Motivation), some organizations may have

security configurations that restrict the execution of tools or the CI/CD pipeline behind a

firewall, rendering them inaccessible to certain developers. Our process accommodates such

security controls while allowing for developer access, as long as the machines running the tools

and the pipeline can be configured to communicate with each other and bypass firewall rules.

Some organizations may cite vulnerability data as a potential security concern that should

not be shared widely. However, the developers who would be fixing security vulnerabilities

must already have access to the project’s source code. This source code access, combined

with the fact that many SAST tools are open source and free to use, means that anyone

with source code access could run an analysis of their own and obtain these reports if they

wished to, making the reasoning behind this security concern unsound.

After collecting the necessary tools and information about the development environ-

ment, the controller script can take shape.

Controller Script

The controller script serves as the keystone that seamlessly connects the previously

disjoint processes of SAST report generation and issue management. Any scripting language

is acceptable as long as it is supported by the hosting pipeline. Its primary role is to

34

orchestrate the flow of data between the SAST tools and the issue tracking system, ensuring

a smooth and automated transition. This bridge is established through a series of well-defined

steps.

The controller script begins by collecting the SAST report data generated by whatever

tools the target organization chooses to use (Figure 4.1, step 3). Through the tool’s API, raw

SAST data is obtained, and the controller script transforms it into a standardized format

that aligns with the requirements of the issue tracking system (Figure 4.1, step 4). At

a minimum, the format includes a title that identifies the issue type and severity, a one-

sentence description of the problem, an identifier indicating the specific line of code and

file where the issue resides, and either a problem description if provided by the tool or a

unique reference number such as Common Vulnerabilities and Exposures (CVE) or Common

Weakness Enumeration (CWE). This transformation ensures that data from diverse tools

is uniform and can be consistently integrated into the tracking system. Before sending

the data as an issue to the tracking software, it must be converted to markdown, ensuring

compatibility and consistency with the tracking system’s formatting and requirements.

Leveraging the issue tracking system’s API the controller script automates the creation

(Figure 4.1, step 5) of issues or tickets to report vulnerabilities, weaknesses, or other code-

related concerns identified by the SAST tools. It establishes near real-time synchronization

through the pipeline, updating the issue tracking system with the latest analysis results

whenever the pipeline runs due to developers committing code. (Figure 4.1, step 0)

To prevent the creation of duplicate issues within the issue tracking software, issues

within the SAST tool must be marked. One straightforward process is to update the status

of all issues that the script has identified and ’moved’ within the tool. This ensures that

upon each new analysis, issues that have already been seen by the script are ignored and

only new issues are considered (Figure 4.1, step 3).

In many cases, it may be valuable for the script to include a quality gate. Quality

35

gates play a crucial role in maintaining the integrity of the software development process.

They function by continuously monitoring the code changes as they pass through the CI/CD

pipeline. If the gate detects the introduction of major vulnerabilities or other high-risk issues,

it will immediately halt the pipeline’s progress after generating the issues, alerting developers

of a potential problem. This preventive measure ensures that no changes with severe flaws

are allowed to proceed further into the development or deployment stages.

In practice, a quality gate serves as an additional layer of defense, reinforcing the

security and quality of the software. It ensures that any code changes are thoroughly

examined for major vulnerabilities before they can proceed, thereby contributing to a more

robust and reliable software development process.

The versatility of the controller script is a fundamental strength of our process, as it

can be tailored to collect diverse types of issues such as vulnerabilities, bugs, or design issues

while filtering them by potential severity or impact. The script can be configured to recognize

and process different issue categories by adjusting the data collection and transformation

steps, thereby accommodating the specific needs and priorities of the development team.

By integrating these functions, the controller script effectively bridges the gap between the

security-focused static analysis and the broader software development process, fostering an

efficient and proactive process to addressing code vulnerabilities and design concerns.

Use Case

To test the practical application of our process we worked with an organization whose

goal was to implement a static analysis tool to enhance the security of their in-development

application. To protect this organization’s identity, we refer to them as Organization X.

Figure 4.2 depicts Organization X’s implementation of our process, following the same

steps outlined in Figure 4.1.

Being the first static analysis to be used on their repository, a tool that is simple to

36

Figure 4.2: Implementation of Approach to an Example Organization (Organization X).

The boxes represent important concepts or technologies while the arrows depict the
flow of the process. The implementation begins with either a nightly timer or merge request
in step 0. The pipeline then initiates the analysis SonarQube in step 1. Once SonarQube’s
analysis is complete, the build pipeline starts the controller script in step 2. The controller
script reaches out to SonarQube and gathers the relevant issue data in step 3. The issue
data is then formatted by the controller script and assembled into payloads in step 4. In
step 5, each payload is sent to GitLab’s issue tracking software, and individual issues are
created therein.

configure but still offers customizability and scales well with a rapidly growing codebase was

deemed necessary. Following our outlined process, Organization X selected SonarQube as

their preferred tool after evaluating its features and usability.

The development environment of Organization X consisted of a GitLab repository where

code is hosted, the pipeline is managed, and issues are tracked (Figure 4.2, steps 0, 5). A

key facet to note is that the repository build pipeline as well as all execution of external

tools were required to be placed behind a firewall to comply with the organization’s security

requirements. This was a hard requirement that, as a consequence, restricted who could

work with SonarQube to two senior developers out of more than twenty total developers.

37

Figure 4.3: Example of a Generated Issue

As SonarQube stores outputs within its GUI, this issue exemplifies the problem discussed

in section II (i.e., Motivation) where some developers are segregated due to accessibility of

sensitive data. In the absence of a structured process, only two developers would be able

to configure, maintain, and then be responsible for the potentially very large number of

vulnerabilities and design flaws that could be uncovered.

Organization X used our process, implementing the controller as a Python script (Figure

4.2, step 2). This script utilized the Requests package to make HTTPS requests to the

SonarQube and GitLab instances. SonarQube has the capability to uncover three different

types of issues in projects: bugs, vulnerabilities, and code smells. Organization X was

38

interested only in vulnerabilities and bugs, so these requests were targeted to endpoints

within SonarQube’s Web API to retrieve data related to those types of issues (Figure 4.2,

step 3). SonarQube also attaches a severity to each issue it finds. Organization X decided to

consider only bugs and vulnerabilities with a severity of critical, major, or high in an effort

to triage issues that have a larger potential to cause problems.

After retrieving the data, the script extracted the essential information from the JSON

objects. Subsequently, a payload was assembled and sent to GitLab’s issue-tracking software

(Figure 4.2, step 4). Organization X decided on the data that would be most relevant and

useful to their developers, choosing to include selected information in generated issues. The

one-sentence description of the created GitLab issue comprised the SonarQube issue type,

title, and severity. The body of the issue is generated with a disclaimer, stating that this

issue was automatically created using data from SonarQube. Organization X considered

this necessary to help their developers differentiate between automatically generated and

manually created issues. The rest of the issue body contained a code snippet that showed

the problem line of code along with the surrounding 10 lines for context, an explanation

of why the issue should be addressed, and a link to the corresponding CWE or CVE for

further reading. Each payload was then sent to GitLab’s API as a create issue request and

would appear alongside developer-created issues within GitLab’s issue tracking software for

developers to pick up and address (Figure 4.2, step 5).

As this process was tested, starting with Organization X’s nightly pipeline runs, they

found it to be helpful as it didn’t disrupt their established pipeline and did not add a

significant amount of runtime. Developers also reacted positively to the formatting and

location of the issues, commenting that the problems in the code were easily identifiable,

and the additional information provided aided them in engineering fixes. Figure 4.3 depicts

an example issue that Organization X generated in GitLab using data from SonarQube.

After testing for a few months and being satisfied with the results, Organization X

39

decided to develop a secondary controller script designed to run on their merge request

pipeline with every developer code change. The aim of this was to prevent developers

from introducing vulnerabilities and bugs through the addition of a quality gate. When a

developer attempts to merge their code with the main code branch, the quality gate checks

whether the code changes would introduce bugs or vulnerabilities. If they do, the changes

are rejected, and the developer is notified to fix the issues before merging their code. If

the changes do not introduce bugs, the merge proceeds as normal. Organization X chose to

reject changes if they introduce more than one blocker vulnerability or bug or more than

two critical vulnerabilities or bugs.

Discussion

The developer feedback provided us with insights into how they viewed different aspects

of the implementation of SAST tools into their workflow using our process. For example,

when the quality gate was implemented, a few violations were noted on the first day of

use. The gate functioned as expected, rejecting the changes. Feedback on the gate from

developers was conflicting; while all understood its necessity, opinions varied on its rigidity.

Some opposed the aggressive process, suggesting issues be noted for later resolution to allow

focused coding. Others appreciated it, foreseeing time saved in the long run. This pinpointed

the quality gate as a potential challenge in terms of the developer’s workflow and productivity.

Developers appreciated the structured implementation of the process, expressing

satisfaction with the automation of vulnerability and bug identification while positive

sentiments were shared about the seamless integration with GitLab’s API and the existing

pipelines. Perhaps the most commonly identified upside to the automated generation of

issues was the real-time feedback, which either helped developers immediately fix the issues

or begin planning to address them at a future date. Developers acknowledged the significant

enhancement in code security through systematic vulnerability identification and positively

40

recognized the proactive process of the quality gate in effectively managing vulnerabilities.

Over a short period, numerous previously unknown issues were uncovered. While some of

these turned out to be false positives, others were genuine and had been lurking within the

codebase for months. Organization X’s developers stated that without the implementation of

static analysis, these issues might have gone undetected. As developers are exposed to more

vulnerabilities, there is potential for a relief of tension between development and security

teams through increased collaboration.

However, our process was not without complications. A potential problem developers

identified was that due to the formatting, identifying false positives required more effort.

Developers had to delve deeper into an issue before realizing that it was a non-issue. This

could be argued as a trade off for having issues formatted in a detailed way. The introduction

of the new process faced initial resistance as it presented a learning curve to developers who

were already comfortable with existing practices.

The developer feedback we received illuminates important questions to the MSR

community. What is the value of the trade-off between having secure code and the potential

disruption to a developer’s workflow? How can a balance between those two important

aspects be achieved? It is evident that while the benefits of the automated generation of

issues are substantial, addressing the initial resistance and facilitating a seamless adaptation

process are key aspects to consider in the ongoing refinement of the process.

Threats to Validity

Our study contributes valuable insights to the fields of SAST, vulnerability manage-

ment, and MSR. Here we address potential threats to the validity in our study. By identifying

and acknowledging these limitations, we aim to provide a transparent assessment of the scope

and generalizability of our work. This section outlines key threats to the validity of our study,

offering a comprehensive view of the factors that may impact the reliability and applicability

41

of our results.

First, while we attempted to make our process as generalized as possible, Organization

X may have unique characteristics that limit the generalizability of findings to other

organizations. To address this, we thoroughly explored their development environment

and compared it to other known development environments. While hardly exhaustive, we

identified no known out-of-the-ordinary development practices. Second, the definition and

identification of vulnerabilities and bugs may vary among different SAST and their versions

[37]. Since SonarQube was the sole tool utilized by Organization X, we lack a practical

implementation of other tools to compare our results. Addressing this limitation is part of

our future work, as detailed in the following section, where we plan to test with additional

tools to confirm the generalizability of our process.

Conclusion and Future Work

In this paper, we have addressed the critical issue of effectively integrating SAST tools

into the software development lifecycle. This work’s noteworthiness to the MSR community

cannot be understated due to its direct alignment with the overarching goals of deriving

actionable information relating to privacy and security. The increasing importance of

securing data and the potential consequences of security breaches highlight the necessity

for proactive measures in identifying and addressing security vulnerabilities. Our process

focuses on automating the aggregation and integration of SAST tool outputs into developers’

familiar issue-tracking software, thereby enhancing the visibility and accessibility of security-

related issues. Our results from the use case suggest that developers are mostly satisfied with

the way these issues are presented and that the addition of them to their workflow has not

been overly intrusive.

While our results are encouraging, there is still much work to be done on the our

procedure, such as adding additional functionality and conducting use cases with other

42

tools. For instance, many SAST tools are CLI-only and lack an API for data retrieval. In

the future, we will address these tools as well by incorporating them into our process, rather

than solely focusing on large web-based tools. Some of these CLI tools provide little to no

detail on the issues they uncover, except for a reference to their corresponding CWE or CVE.

We will investigate whether retrieving data from the CWE/CVE databases to fill out more

information in these issues would be valuable. Additionally, we plan to conduct other use

cases that follow our process with different SAST tools, potentially incorporating more than

one tool at once.

Acknowledgements

This research is supported by TechLink (TechLink PIA FA8650-23-3-9553). The

ChatGPT Large Language Model was used in this paper for spell-checking and grammatical

enhancements.

© 2024 IEEE. Reprinted, with permission, from Z. Wadhams, A. Reinhold, C.

Izurieta., ”Automating Static Code Analysis Through CI/CD Pipeline Integration,” in

2024 IEEE International Conference on Software Analysis, Evolution and Reengineering

2nd International Workshop on Mining Software Repositories for Privacy and Security,

Rovaniemi, Finland: IEEE, March 2024. [In-press].

43

CONCLUSION

This research has presented two interconnected manuscripts that collectively contribute

to a deeper understanding of the challenges developers face when utilizing SAST tools and

potential solutions to enhance their usability.

The first manuscript explores the ever-expanding field of SAST tools and implemen-

tations. This in-depth study analyzed 89 research papers (Metric 3) to identify common

challenges faced by software developers when using SAST tools. The list of problems (Metric

1), accompanied by the frequency of their mention in the literature (Metric 2), provides

valuable insights to readers. As mentioned in the manuscript, this research is dual-purpose,

benefiting both software development teams and tool creators. It informs developers who

may be considering adopting SAST about what they can expect. Simultaneously, it outlines

problems that SAST tool creators can work towards improving with new tools or updates

to old ones.

The manuscript also looks deeply into the human factors that influence SAST

utilization. A very wise person once said to me, no matter how effective a seatbelt is,

it’s useless if no one chooses to wear it. This is precisely the issue with SAST. We know

that these tools can have a positive impact on the development process, but if the perceived

drawbacks outweigh the perceived benefits, they will be quickly abandoned.

The second manuscript, ultimately, is an attempt to challenge and change this balance

of perceived drawbacks and perceived benefits. The process shown in Figure 4.1 was designed

with generalizability in mind. No two development environments are the same; they all have

their own unique niceties. These niceties are often what developers cling to and have come

into existence to solve problems specific to their team. Perhaps your team has been using

GitHub Issues to track your bugs and vulnerabilities for years. You are not going to want

to change your issue tracking software for the sake of adopting a SAST tool. Trying to

44

change these features and forcing conformity was specifically avoided, as I believed that a

non-generalized process would be doomed to fail.

To evaluate how this process performed, only a real world implementation would provide

the feedback I sought. The Organization X use case discussed in the manuscript provided

this feedback (Metric 4). As noted in the manuscript, the feedback included some criticisms

but overall there was a positive shift in the perceived benefits of the implemented SAST tool.

Hopefully, this work can motivate others to challenge that balance in a more aggressive way.

Some may push developers too far and fail, but others may eventually change the status quo

in a larger and more meaningful way.

Software security is paramount to the integrity and functionality of our modern society.

In today’s interconnected world, we can no longer afford to neglect software security and

quality. It must be a top priority for everyone involved in the development process, from

initial design to final testing and deployment to long term maintenance.

This thesis, through the two manuscripts within, provides valuable insights to the field of

SAST for software security. It shows that there is an issue with the adoption and continued

use of these tools and that developers can be apprehensive to use something that may

disrupt their workflow or that hasn’t had the chance to earn their trust. Then, the thesis

goes further by proposing a process to directly address some of these uncovered issues,

specifically workflow integration and tool automation improvements. This thesis contributes

to the advancement of SAST by providing a comprehensive analysis of its current adoption

landscape. The proposed recommendations offer practical guidance for organizations seeking

to optimize their use of SAST tools and mitigate associated risks. By addressing the identified

challenges, this research paves the way for a more secure and resilient software ecosystem.

45

REFERENCES CITED

[1] Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Mohammad.
Solar winds hack: In-depth analysis and countermeasures. pages 1–7. IEEE, 7 2021.
ISBN 978-1-7281-8595-8. doi: 10.1109/ICCCNT51525.2021.9579611.

[2] Bushra Aloraini, Meiyappan Nagappan, Daniel M. German, Shinpei Hayashi, and
Yoshiki Higo. An empirical study of security warnings from static application security
testing tools. Journal of Systems and Software, 158:110427, 12 2019. ISSN 01641212.
doi: 10.1016/j.jss.2019.110427.

[3] Nathaniel Ayewah and William Pugh. The google findbugs fixit. pages 241–252. ACM,
7 2010. ISBN 9781605588230. doi: 10.1145/1831708.1831738.

[4] Annie Badman and Amber Forrest. What is dast? IBM, Sep 2023. URL https:

//www.ibm.com/topics/dynamic-application-security-testing.

[5] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The goal question metric
approach. 1994. URL https://api.semanticscholar.org/CorpusID:13884048.

[6] Olga Baysal, Reid Holmes, and Michael W. Godfrey. No issue left behind: reducing
information overload in issue tracking. pages 666–677. ACM, 11 2014. ISBN
9781450330565. doi: 10.1145/2635868.2635887.

[7] Daniel Dalalana Bertoglio and Avelino Francisco Zorzo. Overview and open issues on
penetration test. Journal of the Brazilian Computer Society, 23:2, 12 2017. ISSN 0104-
6500. doi: 10.1186/s13173-017-0051-1.

[8] Identity Theft Resource Center. 2023 data breach report. ITRC, Jan 2024. URL
https://www.idtheftcenter.org/publication/2023-data-breach-report/.

[9] Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-Thuan Pham, and
Christoph Treude. An empirical study of static analysis tools for secure code review,
2024. URL https://arxiv.org/abs/2407.12241.

[10] B. Chess and G. McGraw. Static analysis for security. IEEE Security Privacy, 2(6):
76–79, 2004. doi: 10.1109/MSP.2004.111.

[11] Cloudflare. What is penetration testing? Cloudflare, 2024. URL https://www.

cloudflare.com/learning/security/glossary/what-is-penetration-testing/.

[12] CrowdStrike. Technical details: Falcon update for windows hosts:
Crowdstrike, Jul 2024. URL https://www.crowdstrike.com/blog/

falcon-update-for-windows-hosts-technical-details/.

https://www.ibm.com/topics/dynamic-application-security-testing
https://www.ibm.com/topics/dynamic-application-security-testing
https://api.semanticscholar.org/CorpusID:13884048
https://www.idtheftcenter.org/publication/2023-data-breach-report/
https://arxiv.org/abs/2407.12241
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.cloudflare.com/learning/security/glossary/what-is-penetration-testing/
https://www.crowdstrike.com/blog/falcon-update-for-windows-hosts-technical-details/
https://www.crowdstrike.com/blog/falcon-update-for-windows-hosts-technical-details/

46

[13] European Parliament and Council of the European Union. Regulation (EU) 2016/679
of the European Parliament and of the Council. URL https://data.europa.eu/eli/

reg/2016/679/oj.

[14] Daniele Granata, Massimiliano Rak, and Giovanni Salzillo. Metasend: A security
enabled development life cycle meta-model. pages 1–10. ACM, 8 2022. ISBN
9781450396707. doi: 10.1145/3538969.3544463.

[15] Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, and Pekka Abrahamsson. Conse-
quences of unhappiness while developing software. pages 42–47. IEEE, 5 2017. ISBN
978-1-5386-2793-8. doi: 10.1109/SEmotion.2017.5.

[16] Zhaoqiang Guo, Tingting Tan, Shiran Liu, Xutong Liu, Wei Lai, Yibiao Yang, Yanhui
Li, Lin Chen, Wei Dong, and Yuming Zhou. Mitigating false positive static analysis
warnings: Progress, challenges, and opportunities. IEEE Transactions on Software
Engineering, 49:5154–5188, 12 2023. ISSN 0098-5589. doi: 10.1109/TSE.2023.3329667.

[17] Sarra Habchi, Xavier Blanc, and Romain Rouvoy. On adopting linters to deal with
performance concerns in android apps. pages 6–16. ACM, 9 2018. ISBN 9781450359375.
doi: 10.1145/3238147.3238197.

[18] Markus Haug, Ana Cristina Franco da Silva, and Stefan Wagner. Towards Immediate
Feedback for Security Relevant Code in Development Environments, pages 68–75. 2022.
doi: 10.1007/978-3-031-18304-1 4.

[19] Clemente Izurieta, Isaac Griffith, Derek Reimanis, and Rachael Luhr. On the
uncertainty of technical debt measurements. pages 1–4. IEEE, 6 2013. ISBN 978-1-
4799-0604-8. doi: 10.1109/ICISA.2013.6579461.

[20] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. Why
don’t software developers use static analysis tools to find bugs? pages 672–681. IEEE,
5 2013. ISBN 978-1-4673-3076-3. doi: 10.1109/ICSE.2013.6606613.

[21] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static analysis tool for detecting web
application vulnerabilities. pages 6 pp.–263. IEEE, 2006. ISBN 0-7695-2574-1. doi:
10.1109/SP.2006.29.

[22] Barbara Kitchenham, Stuart Charters, et al. Guidelines for performing systematic
literature reviews in software engineering version 2.3. Engineering, 45(4ve):1051, 2007.

[23] K.A. Lindlan, J. Cuny, A.D. Malony, S. Shende, B. Mohr, R. Rivenburgh, and
C. Rasmussen. A tool framework for static and dynamic analysis of object-oriented
software with templates. pages 49–49. IEEE, 2000. ISBN 0-7803-9802-5. doi:
10.1109/SC.2000.10052.

[24] V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java
applications with static analysis. page 18. USENIX Association, 2005.

https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj

47

[25] Tamara Lopez, Helen Sharp, Arosha Bandara, Thein Tun, Mark Levine, and Bashar
Nuseibeh. Security responses in software development. ACM Transactions on Software
Engineering and Methodology, 32:1–29, 7 2023. ISSN 1049-331X. doi: 10.1145/3563211.

[26] Linghui Luo, Martin Schäf, Daniel Sanchez, and Eric Bodden. Ide support for cloud-
based static analyses. pages 1178–1189. ACM, 8 2021. ISBN 9781450385626. doi:
10.1145/3468264.3468535.

[27] Diego Marcilio, Carlo A. Furia, Rodrigo Bonifacio, and Gustavo Pinto. Automatically
generating fix suggestions in response to static code analysis warnings. pages 34–44.
IEEE, 9 2019. ISBN 978-1-7281-4937-0. doi: 10.1109/SCAM.2019.00013.

[28] Jose Andre Morales, Thomas P. Scanlon, Aaron Volkmann, Joseph Yankel, and Hasan
Yasar. Security impacts of sub-optimal devsecops implementations in a highly regulated
environment. pages 1–8. ACM, 8 2020. ISBN 9781450388337. doi: 10.1145/3407023.
3409186.

[29] Steve Morgan. Cybercrime to cost the world 8 trillion annually in 2023.
Cybercrime Magazine, Jan 2023. URL https://cybersecurityventures.com/

cybercrime-to-cost-the-world-8-trillion-annually-in-2023/.

[30] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. A large-scale study of usability
criteria addressed by static analysis tools. pages 532–543. ACM, 7 2022. ISBN
9781450393799. doi: 10.1145/3533767.3534374.

[31] Anh Nguyen-Duc, Manh Viet Do, Quan Luong Hong, Kiem Nguyen Khac, and
Anh Nguyen Quang. On the adoption of static analysis for software security
assessment–a case study of an open-source e-government project. Computers Security,
111:102470, 12 2021. ISSN 01674048. doi: 10.1016/j.cose.2021.102470.

[32] Martin Odermatt, Diego Marcilio, and Carlo A. Furia. Static analysis warnings and
automatic fixing: A replication for c projects. pages 805–816. IEEE, 3 2022. ISBN
978-1-6654-3786-8. doi: 10.1109/SANER53432.2022.00098.

[33] Eric O’Donoghue, Ann Marie Reinhold, and Clemente Izurieta. Assessing security risks
of software supply chains using software bill of materials. IEEE, 3 2024.

[34] Edward E. Ogheneovo. On the relationship between software complexity and mainte-
nance costs. Journal of Computer and Communications, 02:1–16, 2014. ISSN 2327-5219.
doi: 10.4236/jcc.2014.214001.

[35] Yuanyuan Pan. Interactive application security testing. pages 558–561. IEEE, 8 2019.
ISBN 978-1-7281-4463-4. doi: 10.1109/ICSGEA.2019.00131.

[36] Roshan Namal Rajapakse, Mansooreh Zahedi, and Muhammad Ali Babar. An empirical
analysis of practitioners’ perspectives on security tool integration into devops. pages
1–12. ACM, 10 2021. ISBN 9781450386654. doi: 10.1145/3475716.3475776.

https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/
https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/

48

[37] Ann Marie Reinhold, Travis Weber, Colleen Lemak, Derek Reimanis, and Clemente
Izurieta. New version, new answer: Investigating cybersecurity static-analysis tool
findings. pages 28–35. IEEE, 7 2023. ISBN 979-8-3503-1170-9. doi: 10.1109/CSR57506.
2023.10224930.

[38] Markus Schnappinger, Mohd Hafeez Osman, Alexander Pretschner, and Arnaud Fiet-
zke. Learning a classifier for prediction of maintainability based on static analysis tools.
pages 243–248. IEEE, 5 2019. ISBN 978-1-7281-1519-1. doi: 10.1109/ICPC.2019.00043.

[39] SonarSource. What is sast? SonarSource, Apr 2024. URL https://www.sonarsource.

com/learn/sast/.

[40] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and Heather Lipford. Security during
application development. pages 1–12. ACM, 4 2018. ISBN 9781450356206. doi: 10.
1145/3173574.3173836.

[41] Zachary Wadhams, Ann Marie Reinhold, and Clemente Izurieta. Automating static
analysis through ci/cd pipeline integration. IEEE, 3 2024.

[42] Marvin Wyrich, Andreas Preikschat, Daniel Graziotin, and Stefan Wagner. The
mind is a powerful place: How showing code comprehensibility metrics influences
code understanding. pages 512–523. IEEE, 5 2021. ISBN 978-1-6654-0296-5. doi:
10.1109/ICSE43902.2021.00055.

[43] Jing Xie, H. R. Lipford, and Bill Chu. Why do programmers make security errors? pages
161–164. IEEE, 9 2011. ISBN 978-1-4577-1246-3. doi: 10.1109/VLHCC.2011.6070393.

[44] Jinqiu Yang, Lin Tan, John Peyton, and Kristofer A Duer. Towards better utilizing
static application security testing. pages 51–60. IEEE, 5 2019. ISBN 978-1-7281-1760-7.
doi: 10.1109/ICSE-SEIP.2019.00014.

https://www.sonarsource.com/learn/sast/
https://www.sonarsource.com/learn/sast/

	Titlepage
	Copyright
	Acknowledgements

	Table of Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Chapter 1 — Introduction
	Chapter 2 — Research Goals
	Goal Question Metric

	Chapter 3 — Barriers to Using Static Application Security Testing (SAST) Tools: A Literature Review
	Contribution of Authors and Co-Authors
	Manuscript Information
	Abstract
	Introduction
	Related Work
	Methodology
	Results and Discussion
	Threats to Validity
	Conclusion and Future Work
	Acknowledgements

	Chapter 4 — Automating Static Code Analysis Through CI/CD Pipeline Integration
	Contribution of Authors and Co-Authors
	Manuscript Information
	Abstract
	Introduction
	Motivation
	Related Work
	Process
	Use Case
	Discussion
	Threats to Validity
	Conclusion and Future Work
	Acknowledgements

	Chapter 5 — Conclusion
	References Cited

