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Abstract—Interactive real-time communication between people
and machine enables innovations in transportation, health care,
etc. Using voice or gesture commands improves usability and
broad public appeal of such systems. In this paper we exper-
imentally evaluate Google speech recognition and Apple Siri –
two of the most popular cloud-based speech recognition systems.
Our goal is to evaluate the performance of these systems under
different network conditions in terms of command recognition ac-
curacy and round trip delay – two metrics that affect interactive
application usability. Our results show that speech recognition
systems are affected by loss and jitter, commonly present in
cellular and WiFi networks. Finally, we propose and evaluate
a network coding transport solution to improve the quality of
voice transmission to cloud-based speech recognition systems.
Experiments show that our approach improves the accuracy and
delay of cloud speech recognizers under different loss and jitter
values.

Index Terms—Cloud speech recognition, Quality of Experience,
Network coding, Streaming media, Real-time systems.

I. INTRODUCTION

The assessment of the performance of cloud speech recog-
nition applications under different network conditions has
received much less attention than development of new systems.
Although Apple Siri and Google Speech Recognition (GSR)
are widely used to recognize spoken commands given to
mobile devices, a solution robust to poor network performance
is still missing. The result is user frustration in existence of
network traffic problems.

The quality of user experience with applications that rely on
cloud-based speech recognition depends upon the accuracy and
delay of speech transcription. Therefore, voice transmission
over a network and its conversion into commands are crucial
building blocks of real-time interactive applications. In such
applications, clients send voice, which need to be accurately
converted to machine commands at the server. The perfor-
mance of the speech recognition system should be consistent
across different network conditions and robust to variation
in network performance in terms of jitter, packet loss, and
varying available bandwidth. To date, there has not been a
systematic study of how speech recognition systems perform
under different network conditions.

In this paper, we study cloud speech recognition systems
under different network conditions. Specifically, we analyze
popular interactive streaming systems – GSR, and Apple Siri
under different network conditions. We then focus on behavior
of standard UDP and TCP streaming methods to find solutions

to improve streaming voice transmission to Dragon, on which
Siri is based[3]. We evaluate each system under a range of
jitter, and packet loss values, and consider the accuracy and
delay of the recognized speech.

Results of our study show that packet loss and jitter have
a considerable effect on the accuracy and round trip delay of
cloud speech recognition. Using fountain codes with standard
UDP we demonstrate a real-time interactive streaming system
that improves Dragon’s accuracy and delay under various
traffic conditions [14]. Our results show that network coding
over UDP improves the delay of speech recognition by much
as 30% under packet loss. We also show that our solution
improves the delay under jitter values. We argue that, future
systems can offer better quality of service compared to current
cloud speech recognition systems and offer better quality of
experience in a wide range of interactive applications.

The reminder of this paper is organized as follows. In
section II we describe our experimental testbeds. We evaluate
our testbeds through extensive experiments in section III. In
section IV we review the state of the art on Fountain codes in
streaming systems and describe our solution using Fountain
codes over UDP connection and evaluate the solution through
the same experiments as experimental testbeds. In section V
we review some related works and finally in section VI we
conclude the paper.

II. EXPERIMENTAL TESTBEDS

We create an evaluation testbed to study the performance of
several speech recognition systems. Clients transmit voice data
through a netem Linux box which introduces delay, jitter, and
packet loss in the network. We set bandwidth to 2Mbps typical
on 3G connections [12]. The server receives voice packets,
translates the voice into text, and sends the text back to the
client. Client receives the text and calculates the accuracy and
delay of the received text. Levenshtein distance is used to
calculate the transcription accuracy, or the match percentage
of the original string and the string that is created by the speech
recognizer [18]. The client runs Wireshark Version 1.12.4 to
timestamp the traffic of voice transmission and reply packets
from server [6]. Another application on the client time stamps
the voice playback. All experiments were performed on a
Windows 7 for GSR, TCP and UDP testbeds, and on iOS 7.0
for Siri. The netem box runs Fedora Linux operating system.
After each round of streaming, the text editor compares the



Figure 1: Experimental testbed for GSR.

translated string to the original we use and calculates a match
percentage.

A. Experimental testbed for the GSR

We choose to use the GSR service that is embedded in
Google Chrome. There is another alternative for using GSR.
Google offers a web service for application developers. This
service has limitations on length of voice and also number
of queries a program can run during a certain time but the
GSR service that is embedded in Google Chrome does not
have these limitations. Figure 1 shows the architecture of our
testbed. Client receives the voice and transmits voice packets
to the Google server. This transmission goes through the netem
box that manipulates network traffic performance. Google
starts to translate voice packets as soon as it receives the first
voice packet and sends recognized text back to the client.
The client records the timestamp of each reply packet and
also start and end time of the voice transmission to calculate
transcription delay. The client also compares the returned text
to the original one to calculate the accuracy of transmission.
Levenshtein distance is used to calculate the match percentage
of the original string and the string that is created by the GSR.
Levenshtein distance is the algorithm we used for finding the
match percentage of strings. Levenshtein distance between
two words or strings is defined as the minimum number of
insertions, deletions, or substitutions needed to convert a word
or string to another one [18].

B. Experimental testbed for Apple Siri

We used the similar testbed configurations for Siri. The
client is an iPhone connected to Internet through a WiFi
router to a netem box. We used Wireshark to timestamp the
transmission of voice packets and reception of replies from
Siri server. Figure 2 shows this setup.

C. Experimental testbed for Nuance Dragon

We consider key characteristics of Siri and GSR to design
a basic testbed that shows the same behavior. Siri and GSR
both use TCP transport protocol [7], [11]. To replicate speech
recognition algorithms we used Nuance technology which
uses the same algorithms to convert the voice to the text
as Siri [1], [3]. Nuance technology is available as Dragon
Naturally Speaking software [2].

Our testbed consists of a client that is connected to a speech
recognition server through netem. Client streams the voice

Figure 2: Experimental testbed for Siri.

over a TCP connection that goes through the netem box. Server
starts to convert voice to the text as soon as it receives the first
voice packet. The server sends the resulting text back to the
client. We record accuracy of the returning text and the round
trip time of the process to evaluate the performance of the
system. We repeat the experience 30 times for each traffic
setup. Figure 3 shows the architecture of the TCP streaming
testbed.

The program timestamps when the voice playback starts
and finishes. We call these timestamps fct and lct (stands
for first client transfer and last client transfer), respectively.
Network traffic conditions are controlled by netem. A program
on the server is responsible to keep the timestamp of packets
and store the first and last timestamp in a file. We call these
timestamps fsr and lsr(stand for first server packet received and
last server packet received), respectively. In order to timestamp
the transcription delay, we developed a text editor to collect
the Dragon’s output and timestamp the time the first and last
character created by Dragon. We call these timestamps ffr and
lfr (stand for first text file character received and last text file
character received), respectively. Every time a new character
is created by dragon, our text editor sends that character to
the sender and a program on the sender collects the received
characters and stamp the time of the first and the last received
character, we call these timestamps fcr, and lcr (stand for first
client received and last client received), respectively. Figure 4
shows the data flow from the client to the server and also the
data flow from Dragon’s output to the client. This Figure also
shows the relative order of the timestamp variables used for
our evaluation.

The recorded timestamps for each round of experiment, we
monitor the behavior of different parts of the testbed. (ffr - fsr)
shows response time of the Dragon, (lfr - fsr) shows the total
time of the speech recognition on the server, (lcr - fct) shows
the total time of each round of experiment. We used (lcr - lct)
as the delay of the remote speech recognition system.

D. Experimental testbed for UDP

TCP waits for each packet to be received and retransmits
lost packets. Reliable transmission is not necessarily a good
choice for real-time communications, in which transmission
delay reduces the feeling of interactivity. UDP is a good
alternative when the application tolerate moderate packet loss.
We changed our TCP testbed to send UDP packets to observe
the effect of packet loss and jitter on delay and accuracy of the
speech recognition software. The UDP testbed has the same



Figure 3: Experimental testbed for TCP.

Figure 4: Timestamp Variables.

architecture as TCP, but streaming part of the testbed has been
changed to UDP packets. We ran the UDP testbed with the
same conditions as the TCP.

III. EVALUATION

In this section we present results of experimental evalua-
tion on each testbed. The metrics reported are transcription
accuracy and delay under different values of packet loss and
jitter. We ran our experiment under jitter in range of [0, 200]
ms, and packet loss in range of [0, 5] percent and 30 times
of experiment for each setting. We ran all experiments of
each testbed under the same configuration. For measurement
consistency, we used a recorded audio file 26.6 seconds long
which belongs to a male with a North American accent.
We also eliminated the effect of environmental noise by
using virtual audio cables [4]. Here we analyze effect of our
variables on each configuration.

A. Effect of packet loss

Figure 5 shows boxplots of the delay resulting by different
values of packet loss in each setup. As we mentioned before
GSR and Siri both use TCP. With the TCP connection sender
retransmits lost packets and receiver waits to deliver packets
after reordering. That means if we increase the packet loss rate,
round trip time of the process increases due to retransmission
delays. We observe this behavior in GSR, Siri, and TCP setups.
There is a noticeable difference between Siri and two other
TCP setups because of the different operation of Siri, as it does
not start the translation before it receives the last voice packet.
GSR and our TCP testbed, on the other hand, start to translate
as soon as they receive the first voice packet. Generally we
can say that delay of all three setups increases under packet
loss. As we can see in Figure 5(d), UDP has relatively lower

delay under packet loss in this measurement, because UDP
does not tolerate lost packets.

Packet loss does not affect the accuracy of GSR and Siri and
the accuracy was always 100% with all values of loss due to
TCP retransmissions. We expect to get the same accuracy with
our TCP testbed but, Figure 7(a) shows this is not the case
with bigger loss values. As we mentioned before TCP does
not lose any packet, but server waits to receive lost packets
and this delay can affect on the speech recognizer output. This
problem has been solved in GSR and Siri. Siri does not start
to translate voice until it receives the last packet, and so packet
loss and retransmission just increases the delay and without
affecting accuracy. GSR has also solved this problem by full
interaction between the speech recognizer and receiver.

Figure 7(b) shows that the accuracy decreases rapidly by
increasing the packet loss in UDP, as we anticipated. Losing
voice packets has direct impact on the quality of voice
playback on receiver. As the result, we can say that packet loss
affects the accuracy of UDP and delay of TCP connection.

B. Effect of jitter

Jitter is a variation in the delay of arrived packets. This vari-
ation causes packets be received out of order. TCP connection
does packet reordering at the receiver in this case. UDP, on
the other hand delivers packets with the same order it receives
them.

We ran our testbeds under different jitter values to see
how does it affect the performance. Figure 6 shows boxplots
of the effect of jitter on delay of each system. GSR and
Siri show more stability with increasing jitter, but the overall
delay value is higher compared to TCP and UDP testbeds.
Figures 7(c) and 7(d) show that TCP accuracy does not change
under jitter, until high values of jitter. Delay of transcription
does not change on the average, based on results for TCP.
Jitter increases the delay of UDP, because of the additional
processing time of the speech recognizer with the missing
audio data. Figure 7(c) shows the effect of jitter on the
accuracy of TCP and UDP testbeds. Again, jitter does not
affect on accuracy of GSR and Siri. As we can see, UDP
performs poorly in this case. Jitter on UDP voice stream
results noisy output and we can see this fact in the graph
for UDP. With jitter of 200 milliseconds accuracy goes less
than 50%. Jitter also affects TCP. We expect TCP performs
better with jitter by packet reordering. The fact is that TCP
delivers voice packets in order, but the time spent for packet
reordering increases with higher amount of jitter and this delay
affects the performance of the speech recognizer. This is why
we see voice transmission in the TCP system is less accurate
with jitter values higher than 140 milliseconds.

IV. IMPROVING THE PERFORMANCE OF THE UDP
CONNECTION WITH NETWORK CODING

Our experiments show that using UDP can solve the prob-
lem of the transcription delay under packet loss, but packet
loss and jitter affect the accuracy in this case. In order to
increase the accuracy we propose to use network coding over
UDP.



(a) Delay of GSR under
packet loss.

(b) Delay of Siri under
packet loss.

(c) Delay of Dragon with
TCP under packet loss.

(d) Delay of Dragon with
UDP under packet loss.

Figure 5: Effect of packet loss on round-trip delay

(a) Delay of GSR under jit-
ter.

(b) Delay of Siri under jit-
ter.

(c) Delay of Dragon with
TCP under jitter.

(d) Delay of Dragon with
UDP under jitter.

Figure 6: Effect of jitter on round-trip delay

(a) Accuracy of Dragon
with TCP under packet
loss.

(b) Accuracy of Dragon
with UDP under packet
loss.

(c) Accuracy of Dragon
with TCP under jitter.

(d) Accuracy of Dragon
with UDP under jitter.

Figure 7: Accuracy of Dragon on TCP and UDP

A. Fountain Codes

Fountain codes are used in erasure channels such as the
Internet. Channels with erasure transmit files in multiple small
packets and each packet is either received without error or is
lost [14]. Coded packets sent to the receiver are combinations
of original packets. Once receiver receives enough coded
packets it is able to decode and extract the original packets.
Figure 8 illustrates the mechanism behind the fountain codec
that is used in our solution [16]. Sender takes a group of
packets, creates a number of coded packets, and send them
to receiver along with information needed for their decoding.
Receiver extract the original packets after receiving enough
coded packets by solving a linear equation created by the
received information.

B. Fountain Encoder

The Fountain encoder generates unlimited number of en-
coded packets using original ones. In order to decode packets
of a stream , we group every X consecutive original packets
together. Fountain encoder generates enough number of coded
packets using original packets of group, we will find this
number later in this section. Each encoded packet is a bit-
wise sum of packets of group:

EPn =
∑X

x=1 PxGxn, (1)

where Gxn is a random binary number consisting of X bits
and P’s are original packets. The sum operation is done by
XOR-ing packets. The resulting packet is sent to the receiver
and Gxn is also put in the header for decoder to be able
to extract original packets after receiving enough number of
coded packets. Figure 9 demonstrates the process of coding



Figure 8: Coding and sending packets over a lossy network

Figure 9: The generator matrix of the linear code

and sending packets over a lossy network. Grey shaded packets
are not received. Sender creates and sends n coded packets
from each group. In order to have enough information to
extract the original packets, n should be greater than X. The
number of coded packets required to be received by receiver to
have probability 1-δ of decoding success is ≈ X+log2 1/δ [14].

C. Fountain Decoder

With enough number of received packets, receiver is able to
extract original packets. Lets say there are X original packets
and receiver has received K packets. The binary numbers that
we used in our encoder make a K-by-X matrix. If K<X,
the decoder does not have enough information to extract the
original packets. If k=X, it is possible to recover packets. If
the resulted K-by-K matrix is invertible, the decoder is able
to calculate the inverse of G−1 by Gaussian elimination and
recover

tx =
∑K

k=1 tkG
−1
kx . (2)

The probability that a random K-by-K matrix is invertible
is 0.289 for any K greater than 10 [14]. Decoder should
receive extra packets to increase the probability of having
an inversible matrix. The time complexity of encoding and
decoding of linear Fountain codes are quadratic and cubic in
number of encoded packets but this is not important when
working with packets less than thousand [14]. Using faster
versions of fountain codes, like the LT code or Raptor codes
offers less complexity[10].

(a) Delay of Dragon with
Fountain codec under
packet loss.

(b) Accuracy of Dragon
with Fountain codec under
packet loss.

Figure 10: Effect of packet loss on the network coding
streaming.

(a) Delay of Dragon with
Fountain codec under jitter.

(b) Accuracy of Dragon
with Fountain codec under
jitter.

Figure 11: Effect of jitter on the network coding streaming

D. Evaluation of Network Coding Over UDP

We implemented P2P streaming system using linear foun-
tain and replaced it with the standard UDP stream, other parts
of the testbed are the same.

Results show that by using the linear fountain increasing the
packet loss does not affect the accuracy and delay comparing
to our experimental testbeds. Figure 10(a) shows the resulting
delay under the packet loss. We removed the effect of retrans-
mission delay on the accuracy and delay by using network
coding. This property makes network coding on UDP transport
a very good alternative for streaming over lossy networks.
Accuracy of our soloution is also high. Figure 10(b) shows
that the accuracy is 93% at the worst case scenario, i.e. packet
loss of the 5%. Comparing these graphs with TCP, we can
see using network coding with UDP connection on a lossy
network improves the delay and also keeps the accuracy in
an acceptable range. We also ran our proposed system under
different jitter values. Figure 11(a) shows improvement of
delay by about 16% comparing to TCP. Figure 11(b) shows the
accuracy of result under different jitter values. Our proposed
solution is not perfect with jitter in this case but as we can
see in Figure 11(a) delay is much lower compared to TCP,
GSR, and Siri. So we can still argue that Fountain codec voice
transmission improves accuracy and delay under jitter.

V. RELATED WORK

In this paper, we focused on effect of the network traffic
conditions on performance of cloud speech recognition.



An experimental evaluation of rate adaption algorithms
streaming over HTTP has been done by Akhshabi et al [5].
They evaluated three popular video streaming applications
under different bandwidth values. They argue that TCP’s
congestion control and reliability requirement does not nec-
essarily hurt the performance of streaming. Understanding the
interaction between rate-adaption logic and TCP congestion
control is left as future work.

A measurement-based study of multipath TCP performance
over wireless networks has been done by Chen et al [8].
They have measured the latency over different cellular data
providers and shown that MPTCP offers a data transport that
is robust under various traffic conditions. Although, studying
on energy cost and performance trade-off has not been con-
sidered.

An study of Skype’s voice rate adaption under different
network conditions is also done by Te-Yuan Huang et al. [13].
They also argue that Skype’s technique of using public domain
codecs is not ideal for user satisfaction. Based on the results
of their experiments on quality of users’ experience under
different levels of packet loss, they propose a model for
redundancy control based on the level and burstiness of packet
loss.

Cicco et al. have done an experimental investigation on the
Google Congestion Control (GCC) proposed in the RTCWeb
IETF WG [9]. They set up a controlled testbed for their
evaluation. Results of this study shows that the proposed
algorithm works as expected but it does not provide a fair
bandwidth utilization when bandwidth is shared by GCC flow
and another GCC or a TCP flow.

Oh et al. demonstrate a mesh-pull-based P2P video stream-
ing by using Fountain codes [15]. The proposed system
provides fast and smooth streaming with minimum compu-
tational complexity. Evaluations on this system shows that the
proposed system outperforms existing buffer-map-based video
streaming systems under different packet loss values. Studying
on the behavior of this system under different jitter values is
missing.

Smith et al. have focused on the practical utility of us-
ing Fountain Multiple Description Coding (MDC) in video
streaming over a heterogeneous P2P network. They show that
although using Fountain MDC codes is favorable in this case,
benefits are restricted in real P2P streaming systems.

A novel multicast streaming system based on Expanding
Window Fountain (EWF) codes for real-time multicast is
proposed by Vukobratovic et al [17].

VI. CONCLUSION

We showed that using fountain codes with UDP connection
is a good alternative for cloud speech recognition systems and
using this configuration has a considerable effect on accuracy
and delay under packet loss and it also improves the delay
under jitter.

TCP connection is currently used by cloud speech recog-
nition applications to provide the maximum accuracy. Our
experimental evaluation shows that these applications offer the
accurate result in cost of delay. Quality of users’ experience

can be improved by applying network coding on UDP connec-
tion. Using this novel solution applications improve the delay
while maintaining the accuracy. Future cloud speech recogni-
tion systems can provide more interactivity by improving the
delay using this technique.

We did not consider the effect of available bandwidth
and transmission delay on the performance of cloud speech
recognition. Cellular network configuration is not considered
in our study and we used WiFi connection to evaluate Apple
Siri. Evaluation of Siri under cellular connection should be
considered in future studies. Implementing more sophisticated
streaming systems using advanced rateless codes and com-
paring the overhead of the solution with streaming systems
that use packet loss classification (PLC) algorithm and For-
ward Error Correction (FEC), and also considering the effect
of available bandwidth and transmission delay are potential
extensions of this research.
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