Efficient Multipath Flow Monitoring

Samuel Micka, Sean Yaw, Brittany Terese Fasy, Brendan Mumey, Mike Wittie
Department of Computer Science, Montana State University
Bozeman, Montana, USA
{samuel.micka, sean.yaw}@msu.montana.edu {brittany.fasy, brendan.mumey, mike.wittie}@montana.edu

Abstract—Network administrators and traffic management tools need up-to-date traffic metrics to monitor and balance network traffic. Recording and reporting flow information is costly in terms of control plane traffic and router memory. Prior work mitigates these costs by limiting the number of monitoring devices, sampling, or only reporting constraint violations. However, these techniques are limited to single-path routing, do not address multiple network flows, and do not guarantee network coverage. We propose strategies to minimize the cost of placing a sufficient number of logical monitors on edges (called turnstiles) so as to monitor all (possibly multipath) flows. Our main result is a \((\ln m + 1)(\ln k + 1)\)-approximation algorithm for the general Turnstile Placement problem, for a network with \(m\) edges and \(k\) flows (commodities). We also show it is NP-hard to achieve an \(o(\ln k)\) approximation ratio. We examine a simple heuristic algorithm for the problem as well as a method to adapt existing single path solutions. Simulations show that our approximation algorithm achieves near optimal performance and outperforms existing approaches. The proposed methods reduce monitoring costs in multipath networks, enabling more agile and more accurate load balancing of network flows.

I. INTRODUCTION

With the increasing prevalence of Internet-connected devices, delivering data promptly continues to be an important challenge. Software defined networks (SDNs) reduce network management complexity through a simple, yet powerful control model. A logically centralized controller with a global view of the network state installs forwarding rules on routers, which match and apply them to arriving packets. A crucial source of controller information are flow volumes collected by router hardware counters. Based on this information, the controller alters forwarding rules to balance network load.

As SDN controllers become integrated with application delivery controllers (ADCs) to meet application and even flow level quality of service (QoS) requirements, they require flow volume information of increasing spatial and temporal resolution [1], [12]. These flow-specific metrics can be collected from routers configured to monitor flow traffic, hereon simply referred to as monitors. Such detailed network state, if recorded and reported naïvely, creates control plane congestion and limits the scalability of the centralized control model in dynamic network scenarios.

Optimizing the placement of monitors is necessary to observe all flows in a network, and will help reduce the amount of control plane reporting overhead. This cost reduction will allow for up-to-date, low-cost, and complete reporting of flow volumes to the SDN centralized controller. Accurate reporting of flow specific metrics will help traffic management tools make load balancing decisions to improve network performance through congestion reduction. Perhaps most importantly, less costly monitoring will enable SDNs to take on more load balancing functions and assure the scalability of centralized network control in dynamic networks.

We update existing theoretical work on minimum monitor placement to include the multipath flows present in modern networks. We call the monitors we use turnstiles, and place them logically on edges in the network. Physically, these monitors are not additional hardware, but rather traffic recording on specific router interfaces. The Turnstile Placement (TP) problem looks for minimum cost turnstile placements to monitor multiple multipath flows in a network. The TP problem formulation supports general turnstile cost functions for customized performance metric optimization (e.g. minimize the number of turnstiles, minimize the distance to controller). We establish a polynomial time solution to the TP problem when there is only a single commodity by relating it to the cycle-transversal problem [18], [19]. We show the general TP problem is NP-hard to approximate within a bound of \(o(\ln k)\), and introduce a novel \((\ln m + 1)(\ln k + 1)\)-approximation algorithm for the TP problem, where \(m\) is the number of edges in the graph and \(k\) is the number of commodities. We also present a spanning tree based algorithm for the general TP problem that leverages the relationship between the single commodity TP problem and the cycle-transversal problem. Finally, we develop a method for adapting existing single path flow monitoring solutions to multipath TP instances.

To evaluate the efficacy of our approaches, we compare the monitor placement costs of our algorithms on real Internet topologies with realistic traffic patterns. The simulations show that the approximation algorithm placements are within 1% of optimal, on scenarios for which the optimal solution could be computed. On larger examples, the approximation algorithm outperforms the other methods proposed.

The rest of this paper is organized as follows. Section II discusses related work. Section III formalizes the TP problem, details its relationship to other fundamental graph problems, and discusses its complexity. Section IV presents an approximation algorithm, a maximum spanning tree approach, and a method to apply existing single path solutions to TP instances. Section V presents experimental results and we conclude in Section VI. The Appendix includes a proof of the complexity results reported in Section III.

\[k \leq m \leq n \]

\[\frac{\ln m + 1}{\ln k + 1} \]
II. RELATED WORK

We classify previous efforts to reduce the overhead of control traffic in network monitoring into three categories: (1) sampling or stopping monitor placement after covering a portion of the network, (2) utilizing heuristics, and (3) considering a simplified problem formulation in which flows have a single path.

The first category of related work deals with monitor placement using sampling techniques [10], [17], [20], [22]. Jackson et al. focus on capturing a high percentage of network traffic data by using a minimum number of monitors on autonomous system boundaries [10]. However, considering different autonomous systems as single entities results in a loss of flow monitoring precision at the router level. Another common approach to reduce monitoring load is to sample only a fraction of packets at a router [17], [20], [22]. Suh et al., in one problem formulation, consider the problem of monitoring flows by maximizing the coverage without violating the deployment and operating costs of monitors, while optimizing sampling rates [17]. Cantieni et al. also optimize monitor placement and sampling strategies to achieve high monitoring coverage [2]. However, sampling approaches result in a probabilistic coverage of the network flows, which can lead to lower accuracy of flow volume estimation and increase the likelihood of missing smaller flows. Probabilistic and redundant coverage of sampling is also a drawback of monitoring tools available on routers such as NetFlow, or CMON [5], [8].

The second type of solution uses heuristics to place monitors [3], [7], [14], [20], [21]. Zang et al. propose greedy heuristics that monitors flows on each edge [20]. Huang et al. optimize monitor placement in dynamic routing scenarios using one MILP and two heuristics [7]. The authors later introduce a framework, LEISURE, that balances monitoring tasks equally between different monitors in the network [3]. Heuristic solutions, however, do not offer performance guarantees.

Third, previous work considers single path routing for each flow [2], [4], [17]. Chaudet et al. considers minimizing monitoring overhead with passive monitors by minimizing the number necessary to observe the network edges [4]. Assuming fixed path routing allows the authors to show the problem’s equivalence to Set Cover as well as allowing for a reduction from their problem to the Minimum Edge Cost Flow problem. In one formulation of the problem, Chaudet et al. consider the multipath version of the problem but only introduce an ILP with no additional complexity results. Suh et al. define several variations of network monitoring problems, without sampling, show them to be NP-Hard, and propose approximation algorithms and Integer Program solutions [17]. The shortcoming of single path routing is that they are not compatible with multipath forwarding of equal-cost multipath routing (ECMP), or multipath TCP (MPTCP).

Our work takes two approaches to addressing these gaps. First, we provide an approximation algorithm for multipath flow instances that achieves a performance guarantee and a novel heuristic. Second, we provide a method to adapt existing single path flow monitoring solutions in a multipath context. Our solutions also use a flexible cost function able to minimize the overhead of monitoring control traffic.

One final related work category monitors vertices in the network, rather then edges [6], [13], [14], [21]. Gupta et al. develop techniques to reduce overall monitoring overhead in wireless mesh networks [6]. One of the techniques that they utilize is minimizing the number of routers used as monitors with a modified vertex cover approximation algorithm that prioritizes vertices with a high degree. Park and Lee also maximize network coverage while reducing the number of monitors, placed on vertices, to detect DDoS attacks in networks [13]. Zeng et al. and Qin et al. focus on minimizing the number of vertex monitors in a network using heuristics [14], [21]. These approaches have the cost equivalent to monitoring traffic on all the edges at a vertex – a solution subsumed by our approach and avoided in practice due to its high cost.

III. PROBLEM FORMULATION

We consider a network, comprised of a set of vertices \(V \) and directed edges \(E \). Each of the \(k \) flows in the network consists of a source \(s_k \) and destination \(t_k \) vertex, along with a set of edges, \(E_k \subset E \), hosting the flow. Flow instances \((s_k, t_k, E_k)\) are known, but traffic volumes at each edge are unknown. Additionally, a weight \(c(e) \) is associated with each edge in the network, reflecting the cost of monitoring the traffic on that edge. This monitoring cost function enables optimization of various performance metrics (e.g. minimize the number of monitors placed, minimize distance between monitors and controllers).

By monitoring traffic patterns on a select set of edges, we seek to determine the flow volumes on all edges of the network. The network is subject to the normal conservation of flow assumption: The amount of flow into each vertex equals the amount out, except at sources and destinations. We aim to identify the amount of traffic traversing each edge in the network by utilizing turnstile monitors to disambiguate traffic volume on each edge. A turnstile is able to log all traffic that it encounters and is able to determine which flow the traffic belongs to. The placement of a turnstile incurs the cost of the edge weight associated with monitoring that edge. The goal is to place a minimum cost set of turnstiles so as to determine the traffic volume on every edge in the network. The Turnstile Placement problem is formally defined below and a sample instance is presented in Figure 1.
Definition 1. Given a weighted, directed graph, $G = (V, E, c)$, where $c: E \to \mathbb{R}$ is a turnstile placement cost function, and a set of commodity flows $\{s_k, t_k, E_k\}$, where s_k is the source, t_k is the destination, and E_k are the edges used for the kth commodity, the Turnstile Placement (TP) problem seeks a subset $M \subseteq E$ of minimum total cost, such that knowing the commodity flow volumes on the edges in M uniquely determines all commodity flows on all edges.

A. Turnstile Placement for a Single Commodity

The special case of the TP problem with a single commodity (one multipath flow) is called the Single Commodity TP (SC-TP) problem. Given an undirected graph, $G = (V, E)$, a cycle transversal of the graph is a set of edges, $S \subseteq E$, such that every cycle in the graph includes at least one edge from S [18], [19]. Establishing the equivalence between the SC-TP and the cycle transversal problem requires a slight modification to the SC-TP input. We add a back-edge from the destination to the source vertex to complete a source-destination cycle. This modified graph is represented as $G = (V, E \cup \{(t, s)\}, c)$ for source s and destination t in V. With the back-edge in place, we insist on conservation-of-flow at each each vertex in G, as the back-edge carries the total flow from s to t, and back to s.

Lemma 1. Given an instance to the SC-TP problem, $G = (V, E \cup \{(t, s)\}, c)$ and a single flow, the set $T \subseteq E$ is a feasible solution to the SC-TP instance if and only if it is a cycle transversal for G with undirected edges.

Proof. Suppose that $T \subseteq E$ is a feasible solution to an SC-TP problem instance. This means that the traffic values for each edge in E can be determined from the turnstiles on T, but the cost of T need not be optimal. Consider, for the sake of a contradiction, a cycle in the undirected version of G that did not have an edge in T. If such a cycle existed, then an arbitrary amount of traffic r, could be added to each edge e of the cycle, where the flow on e is increased by r if the edge points in the direction of the cycle and $-r$ otherwise. Hence, edges can host unrestricted traffic values, and contradicts T being a solution to the SC-TP problem. Thus, T must provide a cycle transversal of the undirected version of G.

Suppose that $S \subseteq E$ is a cycle transversal for the undirected version of G. For the sake of a contradiction, further suppose that S is not a valid solution to the SC-TP problem. This means that there is some edge, (u, v), whose flow value cannot be determined from knowing the flows on the edges S. Since conservation of flow holds at each vertex, there must be at least one other edge incident to v whose flow is also not determined. Without loss of generality, say this is the edge from v to w. Again, there is an edge starting at w and going to some vertex other than v on which the flow is also undetermined. Note that this edge is necessarily not in S. Since G is finite, continuing to follow a path of undetermined edges in this manner must ultimately create a cycle without any edges in S. Existence of this cycle contradicts the assumption that S provides a cycle transversal. Thus, S must be a valid solution to the SC-TP problem.

Since the same set of edges is used in an SC-TP solution as in a cycle transversal solution, the accumulated edge costs of these solutions are identical. Thus, a minimum cost cycle transversal solution equates to a minimum cost SC-TP solution, and vice versa. The equivalence of the SC-TP and cycle transversal problems provides a solution to SC-TP instances, as the minimum cycle transversal problem can be solved by determining a maximum cost spanning tree (easily computed using a standard minimum-weight spanning tree algorithm and negating all edge costs).

Lemma 2. Given an undirected graph with edge costs, $G = (V, E, c)$, and a spanning tree, $T \subseteq E$, of maximum cost, the remaining edges, $E \setminus T$, form a minimum cost cycle transversal of G.

Proof. Suppose that T is a maximum cost spanning tree of G. Since T is a tree, it cannot contain any cycles, and so any cycle in G must have at least one edge in $E \setminus T$, otherwise the entire cycle would be contained in T. Therefore, the set $E \setminus T$ forms a cycle transversal of G.

Since T is a spanning tree of maximum cost, the remaining edges in $E \setminus T$ form a minimum cost spanning tree complement, and therefore, a minimum cost cycle transversal of G.

B. Turnstile Problem Complexity

Lemma 1 and Lemma 2 show how the SC-TP problem can be solved optimally in polynomial time. However, The general TP problem is inapproximable within a bound of $w \ln k$ for some $w > 0$, where k is the number of commodities in the TP instance. This result is obtained via a reduction from the SET-COVER problem and details are included in the Appendix as part of Lemma 5. Due to the complexity of the TP problem, in Section IV we introduce an approximate solution in lieu of pursuing optimal approaches.

IV. ALGORITHMS

In this section, we provide three algorithms for the TP problem. The first is an approximation algorithm that greedily selects turnstile locations to minimize total solution cost. The second algorithm leverages the relationship between the SC-TP problem and the complement of maximum spanning trees detailed in Lemma 1 and Lemma 2. The third is a method that enables using existing single path solutions for a multipath TP instance. In Section V, performance of these solutions are demonstrated with a constant valued turnstile placement cost function, resulting in the objective of minimizing the number of turnstiles placed. However, the algorithms detailed in this section are able to handle any generalized turnstile placement cost function.
A. Approximation Algorithm

In this section, we introduce an approximation algorithm, TP-Approx, for the TP problem with a general turnstile placement cost function, which achieves an approximation ratio of \((\ln m + 1)/(\ln k + 1)\), where \(k\) is the number of commodities and \(m\) is the number of edges in the network. (Theorem 1 below actually proves a slightly tighter bound.)

Each edge in a TP instance hosts some number of flows. A turnstile placed on some edge is said to help a commodity if that turnstile lies on at least one cycle in that commodity not already containing a turnstile. In this way, a proposed turnstile location only helps a commodity if it can be placed on an edge that separates two parts of that commodity's subgraph. If a such a path exists, then the turnstile on an edge helps that commodity. Once the best turnstile location edge \(e\) is determined, \(e\) is removed from all commodity graphs. This ensures that cycles discovered in subsequent iterations are not covered by any turnstile selected up to that point. An outline of TP-Approx is presented in Algorithm 1 and its running time is analyzed in Lemma 3.

Algorithm 1 TP-Approx

\[
c(e) = \text{cost of placing turnstile on edge } e \\
\text{helps}(e) = \text{commodities helped by a turnstile on } e \\
\text{while } \forall e \in E : \text{helps}(e) \neq \emptyset \text{ do} \\
\quad \text{Determine } e' = \arg \min_{e' \in \text{helps}(e)} \frac{c(e)}{|\text{helps}(e)|} \\
\quad \text{Place a turnstile on edge } e' \\
\quad \text{Remove } e' \text{ from } G \\
\quad \text{Update helps}(e) \text{ for remaining edges } e \in G
\]

Theorem 1. TP-Approx achieves a \((\ln R_{\text{max}} + 1)/(\ln k + 1)\)-approximation ratio, where \(k\) is the number of commodities and \(R_{\text{max}}\) is the maximum number of turnstiles needed by any single commodity, considered in isolation as an SC-TP instance. \(R_{\text{max}} = \max_{i} (m_i - n_i + 1)\) where \(n_i\) is the number of vertices and \(m_i\) is the number of edges in the subgraph hosting commodity \(i\).

Proof. Let \(R_i^t\) be the number of remaining turnstiles needed for commodity \(K_i\), just after TP-Approx places the \(t\)-th turnstile, \(T_i\). Note that for each commodity \(K_i\), \(R_i^0 = m_i - n_i + 1\) since the spanning tree has exactly \(n_i - 1\) edges and the complement of the spanning tree are the edges that break all cycles, as detailed in Lemma 2. We say that commodity \(K_i\) is finished when \(R_i^t\) reaches 0. We define the function \(\text{helps}\) on a turnstile \(T\) at iteration \(t\) as,

\[
\text{helps}_t(T) = \{K_i : R_i^t = R_i^{t-1} - 1, \text{ if } T \text{ is chosen at } t\} \tag{1}
\]

Let \(\text{OPT} = \{T_1^*, \ldots, T_p^*\}\) be an optimal placement of turnstiles. Suppose the TP-Approx algorithm chooses turnstiles, \(\text{ALG} = \{T_1, \ldots, T_a\}\), in this order. Consider \(K_i \in \text{helps}_t(T_i)\).

Just prior to TP-Approx selecting \(T_i\), at least \(R_i^{t-1}\) run turnstiles in \(\text{OPT}\) that could help \(K_i\) have not yet been selected by \(\text{ALG}\). If this were not the case, then by adding them to TP-Approx's solution, commodity \(K_i\) could be finished with fewer than \(R_i^{t-1}\) turnstiles, which contradicts Lemma 2. Note that the per-commodity cost of \(T_i\) is at most the per-commodity cost of the aforementioned OPT turnstiles (since TP-Approx makes a greedy choice). Pick any \(R_i^{t-1}\) of these OPT turnstiles and call the set of them OPT\(t, i\). Observe that,

\[
\frac{c(T_i)}{|\text{helps}_t(T_i)|} \leq \frac{1}{R_i^{t-1}} \sum_{T^{*} \in \text{OPT}(t, i)} \frac{c(T^{*})}{|\text{helps}_t(T^{*})|}
\]

We have,

\[
c(\text{ALG}) = \sum_{i=1}^{a} c(T_i) \\
= \sum_{i=1}^{a} \sum_{K_i \in \text{helps}_t(T_i)} c(T_i) / |\text{helps}_t(T_i)| \\
\leq \sum_{i=1}^{a} \sum_{K_i \in \text{helps}_t(T_i)} \frac{1}{R_i^{t-1}} \sum_{T^{*} \in \text{OPT}(t, i)} \frac{c(T^{*})}{|\text{helps}_t(T^{*})|} \\
= \sum_{T^{*} \in \text{OPT}} c(T^{*}) \sum_{i=1}^{a} \sum_{K_i \in \text{helps}_t(T_i)} \frac{1}{R_t^{t-1}|\text{helps}_t(T^{*})|} \tag{2}
\]

After each iteration, \(t\), some of the \(R_i^t\) decrease by 1 (those commodities helped by \(T_i\)). If \(R_i^t\) reaches 0 and \(K_i \in \text{helps}_t(T^{*})\), then \(|\text{helps}_t(T^{*})| < |\text{helps}_t(T^{*})|\). Order the commodities in \(\text{helps}_t(T^{*})\) by increasing \(R_i^0\) values; say the

Lemma 3. TP-Approx returns a set of turnstiles that resolves all traffic flows on each edge in the network and has a running time of \(O(km^3)\), where \(k\) is the number of commodities and \(m\) is the number of edges in the network.

Proof. Lemma 1 shows that a cycle transversal provides a valid turnstile solution for a single commodity. Since the algorithm runs until all intra-commodity cycles have at least one turnstile on them, all traffic for each commodity is monitored, and thus the turnstiles selected provide a valid solution for the entire network.

In each iteration of the algorithm, the number of commodities helped must be calculated for each edge. This amounts to, for each edge, searching for a cycle in each commodity's subgraph, which can be done with depth first search in a total of \(O(km^2)\). The number of iterations needed is maximized when the algorithm places a turnstile on each edge. Therefore, the running time of Algorithm 1 is in \(O(km^3)\).
set is K_1, \ldots , K_k. The sum over iterations, t, is maximized if TP-Approx helps the commodities in this order (so that the first commodity, K_1, is finished before any others are helped, etc.). In this case, we have:

$$\sum_{t=1}^{a} \sum_{K_i \in \text{helps}_T(T_t)} \frac{1}{R_{i}^{t-1} - |\text{helps}_T(T_t)|}$$

$$= \sum_{k=1}^{K_k} \frac{1}{k_0 - k + 1} \sum_{t=R_{i}^{0}}^{1} \frac{1}{r}$$

$$\leq \sum_{k=1}^{K_k} \frac{1}{k_0 - k + 1} (\ln R_{i}^{0} + 1)$$

$$\leq \sum_{t=1}^{a} \sum_{K_i \in \text{helps}_T(T_t)} \frac{1}{R_{i}^{t-1} - |\text{helps}_T(T_t)|}$$

$$= (\ln R_{\text{max}} + 1) \sum_{k=1}^{K_k} \frac{1}{k_0 - k + 1}$$

$$\leq (\ln R_{\text{max}} + 1)(\ln k + 1), \tag{3}$$

where $R_{\text{max}} = \max_i R_{i}^{0}$. Substituting (3) into (2) yields,

$$c(\text{ALG}) \leq \sum_{T^* \in \text{OPT}} c(T^*)(\ln R_{\text{max}} + 1)(\ln k + 1)$$

$$= (\ln R_{\text{max}} + 1)(\ln k + 1)c(\text{OPT}),$$

as was to be shown.

Corollary 1. Since $R_{\text{max}} \leq m$, the TP-Approx algorithm trivially achieves an $(\ln m + 1)(\ln k + 1)$ approximation ratio.

B. Maximum Spanning Tree Approach

In this section, we introduce another approach to solve the TP problem based on the relationship between the turnstile problem and the cycle transversal problem detailed in Section III-A. Lemma 2 showed that placing turnstiles on the complement of a maximum spanning tree (MaxST) for a single commodity instance, SC-TP, provides an optimal turnstile placement for that instance.

Given an instance of the TP problem, the algorithm TP-MaxST iterates through the set of commodities, finding a MaxST over the edge set for that commodity, and places turnstiles on the complement of the MaxST. After turnstiles are placed for a commodity, all the edges selected are removed from the graph. This will ensure that purchased turnstiles will break cycles in any future commodities sharing those edges, and will not be included in their MaxSTs. Since each commodity has turnstiles placed on the complement of a MaxST over its edge set, TP-MaxST will produce a valid solution for the full TP instance. TP-MaxST is detailed in Algorithm 2.

C. Multipath to Single Path Translation

In this section, we detail a process for adapting existing multicommodity, single path, flow monitoring approaches to multipath TP instances. One naïve approach would be, given an instance with a multipath commodity, decompose its flow into a collection of single path $s-t$ flows. Aggregate solutions to the single path flows could then be used as a solution to the multipath flow. This approach does not address ambiguities that can occur at intersections of those decomposed paths and is illustrated in Figure 2(a).

To successfully decompose a multipath TP instance, we segment each multipath flow into a set of sub-paths (pathlets), such that a turnstile anywhere on each pathlet will provide a valid turnstile placement for the original multipath flow. These pathlets can then be treated as their own single path flows, and the same monitors placed by existing multicommodity single path monitoring approaches for the set of pathlets will suffice to monitor the original TP instance.

The translation from multipath TP instances into single path commodities involves decomposing each multipath flow into a collective set of pathlets. For each multipath flow from the TP instance, the decomposition begins by marking the source and sink vertices in the flow. Unmarked pathlets are then iteratively added to the set. An unmarked pathlet is a loopless path constructed between marked vertices such that only unmarked edges and vertices are traversed. One way to generate this is by using breadth first search from some marked vertex over unmarked edges until the first marked vertex is reached. The pathlet is added to the set of pathlets, and each vertex and edge in the pathlet is marked. This process is continued until all edges in the flow are marked. Once a flow is decomposed into pathlets, all marks are disregarded and the next flow is decomposed. The set of pathlets resulting from the decomposition of all multipath flows in the TP instance is returned as a set of single path flows, ready for existing single path sensor placement algorithms. This translation is detailed in Algorithm 3 and shown in Figure 2(b).

Lemma 4. A turnstile placed anywhere on each pathlet in

Algorithm 2 TP-MaxST

```
for all commodities $(s_k, t_k, E_k)$ in TP instance do
    Find a MaxST $T_k$ that spans $E_k$
    Place turnstiles on $E_k \setminus T_k$
    Remove all edges $e \in E_k \setminus T_k$ from $E$
end for
```

Fig. 2. The multipath flow on all edges shown in 2(a) from a to d requires at least two turnstiles. However, if this multipath flow were to be decomposed into $s-t$ paths, blue and red, a turnstile placed on edge (b, d) would cover the two single path flows, but not the original multipath flow with undirected cycle (a, b, c). The pathlet decomposition shown in 2(b) avoids this issue.
the set of pathlets returned by Algorithm 3 will form a valid turnstile placement for the multipath TP input.

Proof. By Lemma 1, a placement of turnstiles is valid if each cycle in the graph has a turnstile on at least one edge. We aim to show that each cycle in the graph must have one pathlet from \(\mathcal{P} \) totally contained within that cycle. If that were the case, then any turnstile placement along that pathlet would sufficiently cover that cycle, thereby providing a valid placement as each cycle has such a pathlet.

Consider a cycle in the graph. Because each pathlet in \(\mathcal{P} \) is loopless, this cycle must consist of multiple pathlets. Select some pathlet on the cycle that also contains edges off the cycle (if no such pathlet exists, then the pathlets are fully contained in the cycle and any turnstile placement will suffice). The vertices of that pathlet that lie on the cycle cannot be intermediate vertices of any other pathlet, since pathlet building ends as soon as a marked vertex is encountered. This means that those vertices must be endpoints for one or more pathlets. Thus, the remaining pathlets composing the rest of the cycle cannot all include edges off the cycle, or else some pathlet must include a vertex from another pathlet as an intermediate vertex.

\[\text{Algorithm 3: Multipath Flows to Single Path Flows} \]

\[\mathcal{P} = \text{set of pathlets = } \emptyset \]

\[\text{for all commodities } (s_k, t_k, E_k) \text{ in TP instance do} \]

\[\text{Mark } s_k \text{ and } t_k \]

\[\text{while unmarked edges remain in } E_k \text{ do} \]

\[\text{Find unmarked path between marked vertices} \]

\[\text{Add path to } \mathcal{P} \text{ and mark all its vertices and edges} \]

\[\text{end while} \]

\[\text{end for} \]

\[\text{return Set of pathlets, } \mathcal{P} \]

\[\text{A. Number of Turnstiles Placed} \]

The first simulation aims to determine the number of turnstiles placed by the algorithms on instances small enough for optimal turnstile placements to be computed. Figure 3 shows the results of these simulations. Four commodities are generated, per instance, using the technique described above on the five Internet Topology Zoo topologies using the CPLEX LP-Solver to generate the commodity edge sets. The graph shows the average number of turnstiles needed to monitor each instance over 50 simulations, on each topology. OPT and TP-Approx average between three and four turnstiles for each topology with TP-Approx placing, on average, fewer than 1% more turnstiles than OPT. The number of turnstiles chosen by the optimal solution to be necessary for the topologies averages at 3.91. GSP and TP-MaxST place about 1% and 40% more turnstiles than OPT respectively. We suspect that the Viarol topology requires fewer turnstiles than the others because there are fewer distinct paths through the network than the others.

The second simulation aims to determine the number of turnstiles placed by the algorithms on the five Internet Topology Zoo topologies, with larger traffic patterns which contain too many flows to solve optimally. To generate an instance with 100 commodities, the instances are generated, four commodities at a time using the CPLEX LP-Solver to generate commodity edge sets, and merged into a single graph. Figure 4 shows the average number of turnstiles required by each algorithm over 50 iterations on each topology. TP-Approx places, on average across the five topologies, 21.34 turnstiles in each simulation, whereas GSP places 22.6, and TP-MaxST places 45.04. As a result, TP-Approx places about 6% fewer turnstiles than GSP and about 53% fewer turnstiles than TP-MaxST. Increasing the number of commodities results in more of the underlying network being utilized, leading to a larger number
of turnstiles being placed by all solutions. The relative number of turnstiles required between the various algorithms also increases due to TP-Approx and, to a lesser extent, GSP making better use of inter-commodity collaborative placements.

The third simulation aims to determine the number of turnstiles placed by the algorithms on the five Internet Topology Zoo topologies, with commodity edge sets determined using the k-shortest path algorithm on each source destination pairing. Like the previous simulation, 100 commodities are generated on each instance. To determine the commodity edge sets, we use k-shortest paths with k equal to one, three, and five, to explore the effectiveness of the different algorithms as the commodities contain more paths. Figure 5 shows the average number of turnstiles required by each algorithm over 50 iterations on the Tinet topology. TP-Approx places fewer turnstiles in every instance, even when k is set to one. This result confirms that TP-Approx is a viable solution for the single path version of the problem, as well as the multipath formulation. Increasing the value of k highlights the reduced number of turnstiles placed by TP-Approx compared to the other solutions. TP-Approx places 34.3 turnstiles on average while GSP and TP-MaxST place 39.78 and 53.9 respectively when k is set to three. In this case, the GSP solution places about 16% more turnstiles than TP-Approx. TP-Approx places 38.84 turnstiles on average and GSP and TP-MaxST place 47.56 and 63.4 when k is set to five. This results in GSP placing about 22% more turnstiles than TP-Approx.

B. Placement Effectiveness

In certain scenarios (e.g. large topologies, restricted monitoring budget, loose monitoring requirements), placing fewer turnstiles than necessary makes sense, accepting that the entire network may not be covered. In this scenario, it is advantageous to employ an algorithm that provides the highest rate of return, in terms of network coverage, per turnstile placed. The fourth simulation explores this scenario by investigating the rate at which the algorithms cover the network. Specifically, the Monitoring Benefit for placing a turnstile on an edge is the number of flows that have a cycle covered as a result of the placement.

Figure 6 shows the total number of turnstiles placed, in the order that they are placed, versus the number of commodity-required turnstiles covered. Note that the number of commodity-required turnstiles is just the sum of the number of turnstiles each individual commodity requires, $\sum_{i=0}^{k} m_i - n_i + 1$, where k is the number of commodities as detailed in the beginning of the proof to Theorem 1. Using the Tinet topology, with 100 commodities, we obtain the results shown in Figure 6. The commodity edge sets are generated using k-shortest paths with k set to three. TP-Approx achieves 95% of the total number of commodity-required turnstiles after placing 26 turnstiles, whereas GSP requires 30 and TP-MaxST requires 36 to cover 95% of the commodity-required turnstiles. In this scenario, TP-Approx requires almost 14% fewer turnstiles than GSP.
and almost 28% fewer turnstiles than TP-MaxST for cover 95% of the commodity-required turnstiles. TP-Approx is not only able to place a fewer number of total turnstiles for full coverage, but is capable of placing turnstiles that benefit a large number of flows from the beginning. Figure 6 shows that this trend holds steady for any percent of the total number of commodity-required turnstiles. Interestingly, initial turnstiles placed by TP-MaxST and GSP are close to benefiting the same as TP-Approx, but that TP-MaxST diverges into less valuable placements at about 25% coverage of the commodity-required turnstiles.

VI. Conclusions

The turnstile placement techniques introduced in this paper provide a new and efficient way to monitor multipath traffic flows, in settings such as software defined networks, to improve load balancing and network efficiency. Minimizing the number of turnstiles reduces the cost of monitoring; we have developed several efficient algorithms that minimize the number of turnstiles needed to monitor traffic flows. In particular, the TP-Approx algorithm achieves near optimal performance in simulations on real Internet topologies. There are several interesting open questions regarding flow monitoring with turnstiles: First, besides the cost of turnstile placement, there may be additional costs related to the volume of the flows monitored. Although flow volumes are initially unknown, once turnstiles are placed and edge-flow volumes calculated, the turnstile costs could be updated to reflect current flow volumes. Second, the network is dynamic and new flows will be added while old flows are removed. If the existing turnstiles are insufficient (or redundant), then a new turnstile solution should be found, that accrues the least changeover cost. Finally, turnstile monitoring may be of use for flow monitoring in other types of networks, e.g. transportation networks, social networks, etc.

APPENDIX

Lemma 5. There exists a constant, \(w > 0 \), such that the TP problem has no polynomial time \(\ln k \)-approximation algorithm, where \(k \) is the number of commodities, unless \(P = NP \).

Proof. This result is via an approximation-preserving reduction from the SET-COVER problem: Given a collection \(S \) of subsets of a finite sized universe, \(U \), find a minimum sized \(S' \subset S \) such that for all \(u \in U \), \(u \) is contained in some set in \(S' \). Let \(S = \{ S_1, ..., S_n \} \), where \(S_i \subset U \) for all \(i \), be an instance of SET-COVER. Reduce this instance to a TP instance as follows:

Create a graph component with a line topology having \(n+1 \) vertices and \(n \) edges, where vertex \(j \) shares a directed edge to vertex \(j+1 \). These \(n \) edges will each be sequentially associated with a unique member of \(S \) (e.g. edge from \(j \) to \(j+1 \) corresponds to set \(S_j \)). Let the turnstile placement cost function be unit valued for all edges in the graph, thereby making the objective to minimize the total number of turnstiles placed.

Each element of the universe, \(U \), will be represented by a single-path commodity flow. Do this by first creating, for each element in \(U \), two new vertices to serve as that commodity’s source and destination. For each commodity, \(i \), consider the ordered list of sets, \(S_i \subset S \) that its corresponding element of the universe is a member of. Create a source- to-destination path for each commodity by beginning at that commodity’s source and making a directed edge to the vertex corresponding to the source vertex of its first element of \(S_i \). So, if \(S_j \) is the first element of \(S_i \), an edge will be made from commodity \(i \)’s source to vertex \(j \). Now, take the existing edge to that set’s destination vertex and create a new directed edge to the source vertex of the next element of \(S_i \). Continue this process until there are no remaining elements in \(S_i \), and then terminate at that commodity’s destination vertex. See Figure 7 for an example reduction.

A solution to the SET-COVER instance provides a solution to the TP instance of the same size since a subset of \(S \) that contains all elements of the universe will correspond to a set of edges that are cumulatively traversed by each commodity. Since each commodity is a single path, requiring a single
turnstile to monitor its traffic, these edges provide a valid solution to the TP instance.

Given any solution to the TP instance, this solution is equivalent to one with turnstiles placed only on edges generated by elements of S, as opposed to the commodity specific edges. This solution corresponds to an equally sized solution to the SET-COVER instance, as a subset of S is selected that must cover all elements of the universe, since the turnstiles cover all commodities.

Since the turnstiles placed and the set cover elements are in one-to-one correspondence, the number of turnstiles placed for the TP instance is the same as the size of the set cover, thereby making the costs equal and the reduction approximation-preserving. It was shown in [15] that there exists a constant, $w > 0$, such that SET-COVER cannot be approximated within a factor of $w \ln n$, where n is the size of the universe U, unless $P = NP$. Therefore, TP cannot be approximated within a factor of $w \ln k$, where k is the number of commodities, unless $P = NP$.

\[\square \]

ACKNOWLEDGEMENT

We thank Schloss Dagstuhl, as this line of research stems from problems posed during a working group at Dagstuhl Seminar 16022 [9].

REFERENCES

