
Software Engineering Applications
ESOF 423 - Spring 2022

Patrick O’Connor
Marnie Manning
Silas Almgren

Section 1: Program

All of the source code for this project can be found on our Github.

Specifications for our tech stack:

Framework: .NET 5

Languages: C#/JS/HTML & CSS

Hosting: Heroku Free Tier - 1 web dyno (container), 1 worker dyno, 512 MB per dyno

Libraries: XUnit (for testing), OpenXML

Section 2: Teamwork

Member 1

Over the course of the semester I have taken a good mix of both Front end and back end. With
the assistance of Member 3, a solid representation of the validation results now exists and is
automated in that a new warning or error could be added without any implementation changes in
back end logic for displaying data. Furthermore as others have done I have tackled a couple of
the actual validation of requirements in submitted dissertations.

Member 2

Most of what I worked on has been back end functionality for parsing and measuring the
qualities of a given document submitted by users. Specifically I have worked on parsing table
and figure information such as table/figure location, spacing, and other formatting requirements
required by figures. I also worked to help put together and maintain some of the artifacts for this
project like the trello board and burn down documents.

Member 3

For the most part, I tried to tackle the DevOps side of things. Initially, this involved getting an
empty .NET Core project set up in the github, configuring the CI/CD to automate building and
testing the app, and getting it up on Heroku. From there, the bulk of my work was setting up the
overarching structure of the app. This entailed setting up the controllers, view models, creating
the structure to get a word document into the backend, and building some generic structure for
where the validation code can be written. Overall, the aim of this work was to set up a good
structure to allow the other members to write good code without worrying about framework
specific details. Of course, like all of us, I also built a couple of the validation components.

1

https://github.com/423s22/G3

Section 3: Design pattern.

One design pattern that was used was the Model-View-Controller (MVC) pattern. This design
pattern can implicitly be seen in the structure of our web application. By examining the source
code in our Github repository, it can be noted that there are individual directories for each
component of this design pattern (Models, Views, and Controllers). In this structure, the
controllers dictate the routing to be used by the web application. The models are used to program
the logic of the application, as well as pass data to the views. With the specific framework used,
.NET Core, the views are rendered into static HTML which is loaded for the user on the client
side. A diagram of this structure can be seen below.

This design pattern was chosen for a couple of reasons. One main factor was simply that MVC is
the default structure for a .NET Core web application. Since we chose early on to use the
C#-based OpenXML library, .NET was our best choice for a web framework. Additionally, the
MVC pattern allows for good separation between the different elements of the application. For
example, new formatting rules can be easily added to the backend models without needing to edit
any functionality on the frontend views. In addition to editing existing functionality, the concept
of controllers makes it easy to add new features that are clearly separated from the ones already
in place. Overall, this design pattern helps to make the application reusable and extendable.

2

Section 4: Technical writing

All of our documentation can be found through the README on our github repository.

Section 5: UML

A high resolution version of our UML class diagram can be found on the github repository.

3

https://github.com/423s22/G3/blob/main/README.md
https://github.com/423s22/G3/tree/main/Docs

Section 6: Design trade-offs.

One design tradeoff that had to be made in the development process was where to host our
application. Cloud development is currently an extremely lucrative field, which means there are
effectively endless options for hosting services. After initial deliberations, our choices were
narrowed down to three options: DigitalOcean, Heroku, and simply hosting on a school server.
We ended up hosting on Heroku, but it’s worth discussing why we didn’t go with the other
options. DigitalOcean is an incredibly popular hosting service that allows you to configure web
servers on “droplets”, which are effectively web-facing Virtual Machines (VMs). Essentially,
getting a droplet allows you to access a Linux server of your choice where you can configure
your application. In turn, setting up our web application on DigitalOcean would have been pretty
similar to using a school server. For a .NET app, this would involve configuring a web server
like Apache and setting up the .NET app to be served over a reverse proxy on this web server.
For the most part, this isn’t a terrible process, but it would have taken a fair amount of time and
would’ve been harder to maintain in the long run. Instead of taking this more involved approach,
we used the “one-push” hosting service, Heroku. Hosting on this service simply involves
creating an application within their website and pushing your application from a command line.
When pushing, Heroku automatically configures the VM your application is served from and
figures out all the details needed to host your chosen framework. One caveat with Heroku is that
your VM is only live when the application is being used. If the site is idle for long enough, it will
effectively power down. As a result, the first user to access the application after it’s been idle can
expect a 5-10 second wait time while the VM spins back up. Another consideration we had to
take with this service is that it doesn’t have out-of-the-box support for .NET applications. This
required us to containerize our application with Docker. Fortunately, Docker is very simple to
use, and setting it up took much less time than configuring a web server would have. Ultimately,
Heroku proved to be the best hosting solution. While it provided less customizability and slower
speeds at start time, it is much less complex to use, was efficient enough for our usage, and will
offer much better maintainability.

Section 7: Software development life cycle model.

For our project, we used a modified Agile Scrum framework to develop the capstone
project. Our Scrum framework consisted of two-week-long sprints with planning meetings at the
beginning of each sprint. During a planning meeting, we would outline what was in our backlog
for a given sprint and assign a story point value for each item in that backlog. Once we had story
points assigned we would assign the different action items to different team members. The
assigned action items were stored on a group Trello board we could refer back to throughout the
sprint. During our two-week sprint, we would regularly have standup meetings on Wednesday

4

and Friday with occasional meetings on Monday. Throughout the sprint, we would record the
story points completed and the hours spent on a burndown chart that tracked the progress of the
entire project.

This method worked well for us as it promoted high communication and reflection.
Choosing to use story points with agile helped keep our project in perspective as we worked. By
the last two sprints, we had a good idea of how long a given action item might take given its
story point value and what tasks might need to be broken down into two different action items.
Additionally, choosing to use story points instead of hours in our planning helped keep morale
high, there was less stress when an action item took longer than we expected. Our frequent
standup meetings kept us in communication, and when we had problems we could easily help
each other or brainstorm.

While this method generally worked well for this project there were a few aspects that
could have been better suited to our project. Due to the life cycle model being predetermined by
the class the time frame of the sprints did not line up with where we were actually at in
development. The beta release ended up being too soon and by the time the release candidate
was due we were already testing it for bugs. Being able to choose the length of our sprints, or
choose which sprint would have which deliverable might have been able to help prevent the
discrepancy between the deliverables and sprints.

Additionally, having our client more integrated into the review phase of the sprint could
have helped us gain a better understanding of what our client wanted early on and how this
project would fit into the future of the product. The structure of a sprint presented in this class
did not involve clients in the review process. We met with our client towards the latter half of the
planned six sprints and this meeting changed the focus of our development from a broader to a
more focused scope for the end product. Perhaps if our clients were more involved we would
have been able to spend more energy on the aspects of the product they valued the most.

5

