
Capstone Portfolio

CSCI 468: Compilers
Spring 2022

Team members:
Alonso Darias

Miles Naberhaus

Section 1: Source Code
A link to the source code for the Catscript compiler:

https://github.com/addariasfr/csci-468-spring2022-private/blob/master/capstone/portfolio/source.
zip

Section 2: Teamwork
For this project I collaborated with Miles Naberhaus. We worked together to write the

recursive descent parser for Catscript and a number of tests for the language. I, Alonso Darias,
was the main programmer. I wrote the source code and most of the report excluding the
Technical Documentation. Miles, who served as the tester and documenter for this project, wrote
the technical documentation as well as three tests for my source code which are contained in the
src/test/java/edu.montana.csci468/demo/PartnerTest.java file.

Section 3: Design Pattern
The design pattern I utilized in this project is the memoization of the list type access

method. This involves storing previously retrieved list type objects in a cache to save time and
memory space when the same type is requested again. The second time a certain list type is
requested, the value in cache can be returned rather than taking the steps to create a new type
object.

Section 4: Technical Documentation
Introduction

Catscript is a simple, statically typed computer programming language built on top of
Java. It implements recursive descent parsing such that the parse trees are easy for users to
understand and use. There are two primary types of parse elements in Catscript, expressions and
statements. Expressions evaluate to some value, while statements execute some computation.
The typing system in Catscript includes integers, strings, booleans, lists, null, and objects, with
many parse elements able to be explicitly given a type. The basic parse of Catscript begins with a
CatscriptProgram statement, which then handles the parsed elements found during runtime.
Below, we will give short descriptions of each parse element in the Catscript language, along
with example Catscript code demonstrating their functionality and syntax.

Parse Elements

Expressions
Literals:

BooleanLiteralExpression

https://github.com/addariasfr/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip
https://github.com/addariasfr/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip

In Catscript, a boolean value (true or false), can be stored as a BooleanLiteralExpression.

var bool = true

IntegerLiteralExpression
Integers are represented (when using variables) with the Catscript

IntegerLiteralExpression class. The Catscript below will evaluate to the integer value 1.

var intExample = 1

ListLiteralExpression
Catscript represents lists as ListLiteralExpressions, which use brackets and commas to

define the elements they contain. The below example specifies the explicit type of elements it
will contain as strings.

var l : list<string> = ["one", "two", "three"]

NullLiteralExpression
The value of null can be represented in Catscript as an instance of a

NullLiteralExpression, which simply has the value null.

var nullExample = null

StringLiteralExpression
A basic string is implemented in Catscript with the StringLiteralExpression class, which

stores a string. As with other expressions, it can be explicitly or implicitly typed.

var implicit = "string one"
var explicit : string = "string two"

TypeLiteral
A TypeLiteral holds the value of one of the Catscript types, which are INT, STRING,

BOOLEAN, OBJECT, VOID, and NULL. The below code shows a variable being assigned to a
string value with the explicit type STRING.

var x : string = "string"

Mathematical and Logical:

AdditiveExpression
An AdditiveExpression is simply a Catscript expression that represents an additive

problem, with a left hand side, a right hand side, and an operator. Below are two
AdditiveExpressions, with a mathematical operation and a string concatenation.

print(1 - 1)
print("string one" + "string two")

FactorExpression
Multiplication and division are handled in Catscript FactorExpressions, containing a right

hand side, left hand side, and an operator (similar to AdditiveExpression).

print(1 / 1)
print(10*3)

ParenthesizedExpression
A ParenthesizedExpression is the addition of parentheses into some expressions to set

their operation order.

print((1+4)*4)

ComparisonExpression
The ComparisonExpression is used in Catscript to compare objects, with the four

comparisons used as operators being greater than, less than, greater than or equal, and less than
or equal. Like AdditiveExpression and FactorExpression, it has a right hand side and a left hand
side. These expressions evaluate to boolean values.

print(1>2)

EqualityExpression
The equality expression is the ComparisonExpression without the relational comparisons,

as it only checks for object equality. The following two examples are comparing
BooleanLiteralExpressions with the two logical equality operators. It also has a right hand side
and a left hand side.

print(true==false)
print(true!=false)

UnaryExpression
The UnaryExpression is the Catscript representation of the logical “not” and

mathematical negative values.

var negOne = -1
var notTrue = not true

Computing:

FunctionCallExpression
The FunctionCallExpression is a ParseElement in Catscript that contains the Identifier

and arguments necessary to call a function. Functions are called by first referencing a Function’s
Identifier, and the passing its arguments in through parentheses.

foo(true)

IdentifierExpression
An IdentifierExpression is essentially a name in Catscript, one which references some

function or variable. Below, “bar” and “foo” are IdentifierExpressions.

var bar = "something"
foo()

SyntaxErrorExpression
Syntax errors are represented in Catscript as SyntaxErrorExpressions when they are

parsed. Here is an example, where a list does not have an opening or closing bracket, resulting in
its parse returning a SyntaxErrorExpression.

var errorList = 1, 2,

Statements
Functions:

FunctionDefinitionStatement, FunctionCallStatement, and ReturnStatement
A FunctionDefinitionStatement in Catscript requires syntax as follows: ‘function

Identifier (ParameterList) { Body },’ where the Identifier is an IdentifierExpression, the
ParameterList is a list of IdentifierExpressions (with optional explicit typing if followed by ‘:
TypeLiteral’), and Body is some number of Statements with an optional ReturnStatement (‘return
Expression’). A FunctionCallStatement is syntactically written ‘Identifier (arguments),’ where
the Identifier is an IdentifierExpression that maps to some FunctionDefinitionStatement and
arguments are a set of Expressions. Below is an example, in which the Function foo() is called
with the argument “foo,” which it will print, and then return “bar,” which is then printed outside
once it has returned. The major difference between FunctionCallStatement and
FunctionCallExpression is that FunctionCallStatement executes, while FunctionCallExpression

evaluates (a core difference between all Statements and Expressions).

function foo(x : string) { print(x) return "bar" }
print(foo("foo"))

Computing:

ForStatement
The Catscript ForStatement is syntactically generated with ‘for (Identifier in Expression)

{ Statements },’ where Identifier is the iterator we will be using, Expression is the Expression we
will iterate over, and Statements are the set of Statements to be executed on each iteration of the
loop. The example below will print out the values in the ListLiteralExpression given.

var iterList = [1, 2, 3, 4]
for (i in iterList) { print(i) }

IfStatement
The Catscript IfStatement is syntactically generated with ‘if (Expression) { Statements

},’ followed by an optional ‘else (IfStatement)’ or ‘else { Statements }.’ Expression is some
Expression that if evaluated to true will continue into the IfStatement, and Statements are the
Statements to be conditionally executed.

if (false) {
print("I will not print")

} else if (false) {
print("I will also not print")

} else {
print("I will print")

}

PrintStatement
The PrintStatement, which we have been using to demonstrate code throughout this

documentation, should need little explanation. Its syntax is simply ‘print (Expression),’ where
Expression is some Expression whose value we would like to print.

print(true)
print(4)
print("String")
var printList = [1, 2]
print(printList)

VariableStatement

Much like the Catscript PrintStatement, the VariableStatement’s use should be somewhat
apparent (it sets a variable’s value to something or declares a variable). Its syntax is ‘var
Identifier’ followed by an optional explicit type declaration ‘: type’ and ending with ‘=
Expression.’ Here, Identifier is an IdentifierExpression that the will be the new variable’s name,
and Expression is some Expression which will be evaluated to set the value of this new variable.

var implicit = 10
var explicit : string = "string"

AssignmentStatement
The AssignmentStatement allows a value to be assigned to a variable. It has the following

syntax: ‘Identifier = Expression,’ where Identifer is an IdentifierExpression mapping to some
variable, and Expression is some Expression, the value of which we will assign to this variable.

var assignable : string = "string"
assignable = "newstring"

Section 5: UML

This UML diagram represents the ParseElement class and its descendants. These are all
the program elements that the Catscript parser can parse. There are two main parent classes that
inherit from the ParseElement class. These are Expression and Statement. These are the two
main categories of program elements that one can have in a Catscript program. The main
difference between an expression and a statement is that an expression is something that
evaluates to a value and a statement is something that executes. The classes that inherit from the

Expression class are all the different expressions that can exist in a Catscript program and
likewise for the Statement class.

Section 6: Design Trade-Off
For this project I made the design trade-off to create a recursive descent parser rather than

a parser generator for Catscript. This decision was made because the process of creating a
recursive descent parser makes the recursive nature of programming language grammars
apparent and understandable. Had we used a parser generator instead, the process of creating the
parse tree would have been obfuscated and much less intuitive than in the case of a recursive
descent parser where the process is tangible. Despite it being more lines of code to create a
compiler using a recursive descent parser, the benefits of gaining a window into the functionality
of a programming language make it the ideal parsing method for this project.

Section 7: Life Cycle Model
For this project I followed a Test Driven Development (TDD) development life cycle

model. In this model, I began with a test suite of failing tests which should all pass when the
project is complete and worked to make each test pass. This lifecycle made my progress very
clear to me. At any time I could compute my completion based on the ratio of passing tests to
total tests. This was very beneficial for monitoring my progress. Additionally, the tests aided my
development by atomizing the tasks to be completed. It was much easier for me to sit down to
complete a finite number of tests than it would have been for me to sit down to write an entire
recursive descent parser. By doing this, the TDD lifecycle made this large project much less
intimidating.

