
468 Compilers Capstone

Spring 2022

By: Cody Flynn

Partner: Aidan Scallen

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 1/8

Section 1: Program
Path of source code zip file: csci-468-spring2022-private\capstone\portfolio\source.zip

Section 2: Teamwork
In this project, I worked with my partner to enhance our codebase's usability and flexibility in handling
edge cases by generating additional tests that we then traded so that each of us could benefit equally.
Along with these tests, my partner provided documentation that helped explain how the catscript
programming language is really functioning. Below is an example of one of the tests my partner
generated

This test is beneficial because we did not have a test to check if a variable has the same name as a
function. By including this test in our development process, we can be sure that this error is handled
by our parser in a way that is useful for our debugging needs.

Working as a partnership for this testing stage of the development process was advantageous for us
because we got to experience another side of software engineering that was unique in our computer
science curriculum. Typically, tests are provided for us that we must pass in order to assess the
correctness of our programs. However, in this project we needed to think of how best to help our
partner find hidden bugs through generating additional tests. I think this side of engineering is often
overlooked but is an important field in the industry. Through this project and partnership, we gained
valuable experience in quality assurance testing.

Section 3: Design pattern
An example of a design pattern implemented in this project is the memoization pattern. This pattern is
used to store frequently accessed data in a cache so that it can be retrieved more efficiently at a later
time. The code below is located in our CatscriptType class and functions as a getter method. In this
case, our cache is being represented as a hash map that keeps track of which list types have been
created already. We first look in the cache to see if the current type is already in the map. If it is, we
don't need to add it to the cache a second time, the type retrieved from the map can simply be
returned by the function. If the type is not yet in the map, it needs to be added and once again
returned.

//Here is test number one
@Test //checking if you can have one valid function name followed by an error.
void varFunctionMultConflict() {
 assertEquals(ErrorType.DUPLICATE_NAME, getParseError("var x = 10\n"
 + "var y = 25\n" + "function y(){}"));
}

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-2-teamwork
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-3-design-pattern

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 2/8

This pattern improves efficiency over a more basic implementation because a new ListType object is
only created once each time the getListType method is called per type, rather than constructing an
object with every call.

Section 4: Technical writing. Include the technical
document that accompanied your capstone
project.

Catscript Documentation

Introduction

Welcome! Catscript is a basic scripting language. Here is a simple example of assigning a variable to a
string value and printing that variable.

Features

Variable Statements

In catscript, variables can be assigned to any type expression with the standard single equals sign
operator (=)

static HashMap<CatscriptType, ListType> cache = new HashMap<>();
 public static CatscriptType getListType(CatscriptType type) {
 ListType listType = cache.get(type);
 if (listType == null) {
 listType = new ListType(type);
 cache.put(type, listType);
 }
 return listType;
 }

var x = "hello world"
print(x)

variable_statement = 'var', IDENTIFIER,
 [':', type_expression,] '=', expression;

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-4-technical-writing-include-the-technical-document-that-accompanied-your-capstone-project
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#catscript-documentation
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#introduction
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#features
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#variable-statements

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 3/8

For Statements

For statements require parantheses surrounding the expression and brackets around the statement to
be executed

If Statements

If statements require parantheses around the expression, brackets around the statement, followed by
an optional else conditional statement

Function call Statements

Calls to functions are made with a unique identifier followed by a list of arguments of varying length

Return Statements

Returning from a function is done using the standard return keyword

Additive Expressions

Order of operations is maintained in catscript by evaluating factor expressions before additive
expressions. Standard operators are used for addition and subtraction

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
 '{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
 { statement },
 '}' ['else', (if_statement | '{', { statement }, '}')];

function_call_statement = IDENTIFIER, '(', [expression , { ',' , expression }] , ')'

return_statement = 'return' [, expression];

additive_expression = factor_expression { ("+" | "-") factor_expression };

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#for-statements
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#if-statements
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#function-call-statements
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#return-statements
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#additive-expressions

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 4/8

Factor Expressions

A single forward slash is used for division while a single asterisk is used for multiplication

Unary Expressions

The not keyword represents negation in Catscript

Comparison Expressions

Standard conventions are followed for the greater than, less than, etc operators

Equality Expressions

The boolean expressions use '!=' to represent not equal while '==' represents is equal

Primary Expressions

The list of primary expressions in Catscript

Type Expressions

Types that are available in catscript

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive_expression
};

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
 list_literal | function_call | "(", expression, ")"

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#factor-expressions
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#unary-expressions
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#comparison-expressions
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#equality-expressions
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#primary-expressions
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#type-expressions

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 5/8

List Literal Expressions

Lists require open and close square brackets surrounding the expressions they contain

Section 5: UML.
This UML sequence diagram represents a high level view of the parse functionality in our compiler. The
code that this diagram is translated from starts with the snippet below.

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type_expression,
'>']

list_literal = '[', expression, { ',', expression } ']';

public CatScriptProgram parse(String source) {
 tokens = new CatScriptTokenizer(source).getTokens();

 // first parse an expression
 CatScriptProgram program = new CatScriptProgram();
 program.setStart(tokens.getCurrentToken());
 Expression expression = null;
 try {
 expression = parseExpression();
 } catch(RuntimeException re) {
 // ignore
 }
 if (expression == null || tokens.hasMoreTokens()) {
 tokens.reset();
 while (tokens.hasMoreTokens()) {
 program.addStatement(parseProgramStatement());
 }
 } else {
 program.setExpression(expression);
 }

 program.setEnd(tokens.getCurrentToken());
 return program;
 }

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#list-literal-expressions
https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-5-uml

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 6/8

Essentially, during the parsing phase, the source string will be split into a list of tokens from the
tokenizer. Then, while there are still tokens remaining, we will parse expressions from them in a
recursive fashion. If an expression has not been identified by the parser, we will begin looking for
statements within the list of tokens until there are no tokens remaining.

Section 6: Design trade-offs
In this project, the main design trade-off was deciding which type of parser to implement. The two
main options were a parser generator or a recursive descent parser.

An advantage of parser generators is that they require less coding on the developer's part. The
generator creates most of the code based on the grammar it is provided. Therefore, using a parser
generator can save time initially. However, a major drawback to parser generators is the readability
and debuggability of the code that is created. If you look at the parser code that is generated, it is
quite difficult for humans to comprehend. The variables are not intuitively named and the structure of
the code is extremely complex and convoluted. Another disadvantage of parser generators is that they
are not often used in industry. Parser generators tend to be more of an academic exercise rather than
a method applicable to a wide variety of tasks. Finally, building a parser generator does not give a
student a good sense of the recursive nature of grammars the in the way that a recursive descent
parser does. The generator does not create code in a logically recursive, top-down sequence that a
human would. This makes identifying the recursive patterns in the language's grammar much harder
to identify and is not as useful for a beginner.

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-6-design-trade-offs
https://user-images.githubusercontent.com/63932606/167333080-dc427e28-a48b-466c-bf8b-95a1f802f00d.png

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 7/8

Recursive descent parsers have the advantage of being much easier to understand for students trying
to learn how compilers really operate. Because recursive descent parsers are written entirely by hand,
the readability of the code is much improved over what a parser generator creates. The recursive
descent parser allows for more nuanced and customizable programming languages because they can
be tweaked at a more granular level. This is opposed to what a parser generator creates because that
code largely must be accepted as is. The recursive descent parser provides a better window into the
code while a parser generator creates more of a black box. Additionally, recursive descent parsers are
widely used in industry. Most major programming languages including Java implement a recursive
descent parser because of the customizability they provide. This makes learning how to create a
recursive descent parser much more valuable to a student who could possibly be required to come up
with one during their career. The major downside of the recursive descent parser is the amount of
code that a developer has to write themselves. To implement a recursive descent parser from scratch,
the coder must write not only each function within the parser, but all of the infrastructure code
required for the program to run. For someone new or unfamiliar with parsing, this amount of code can
be quite intimidating and time-consuming. Depending on the grammar of the languge you are
parsing, building a recursive descent parser could take several times longer than using a parser
generator.

Weighing these pros and cons between parsing techniques, the recursive descent parser was chosen
for this project. While every project has trade-offs in the implementation of design elements, being
able to analyze the strengths and weaknesses of each element is an important skill that this project
helped develop.

Section 7: Software development life cycle model
The software development life cycle model used for this project was test driven development. This
style of software development focuses on writing tests that satisfy the requirements of the project,
then writing code to make those tests pass. If bugs are found, additional tests will be developed so
that code can be written to fix the bug. These steps can then repeat, forming a cyclical model.

There are several benefits to using test driven development to build a compiler like this. First, the tests
provide a clear development path to follow. There is much less ambiguity over whether or not
progress is being made when you can observe tests passing that were failing before changes to the
code were made. Second, test driven development allows for a more manageable point of entry into a
large codebase such as this project. Programmers can often be overwhelmed by the size of a new
program, but following the tests and getting them to pass one at a time makes becoming familiar with
the codebase much easier. Finally, I believe gaining experience with test driven development will be
beneficial to our careers. Many, if not all, large scale projects implement some sort of testing in their
development process. However, with most school projects the tests are hidden from the student until
their project is submitted and graded by an instructor. Incorporating tests directly into the
development process is a more practical and applicable method for real-world programming.

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-7-software-development-life-cycle-model

5/8/22, 9:06 PM csci-468-spring2022-private/Capstone.md at master · cody-flynn/csci-468-spring2022-private

https://github.com/cody-flynn/csci-468-spring2022-private/blob/master/capstone/Capstone.md 8/8

A downside to the test driven development model is the slight lack of freedom that comes with coding
specifically to get tests to pass. If the tests were not there, it may become more likely that a student
would come up with a unique solution to a problem since they aren't as pigeonholed by individual
tests. Another downside to this development model is the narrower sense of understanding of the
project the programmer may have. While focusing on one test at a time may be beneficial, it can also
be detrimental to one's ability to grasp what is going on in the program as a whole.

