

Montana University Bozeman (CSCI 468)

Compilers Capstone
Professor Carson Gross

Gregory Hill, team member 1
5-6-2022

Hill 1

Section 1: Program

Source Link

Section 2: Teamwork

 This project was completed with contributions from two team members, myself, and my

team member. I was designated the primary coder of the project, and my team member was

designated the code tester of the project. My primary contribution to the project was the coding

of the compiler. This included the implementation of parsing, evaluating, and compiling

Catscript code. As the primary coder, I worked about ninety percent of the hours spent on this

project. My team member’s primary contribution was generating three tests and the Catscript

documentation. These tests were made to ensure the correct implementation of my code, and the

documentation is an outline, as a getting started guide, of the Catscript programming language.

As the code tester my team member worked about ten percent of the hours spent.

Section 3: Design Pattern

 In this project, the design pattern of memoization was used. This pattern is in the file

CatscriptType.java located within the “parser” package. The exact file path is as follows:

“src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java.” Within this file

memoization is implemented on the method “getListType.”

https://github.com/Gregory-Hill/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip

Hill 2

 The purpose of using this pattern is to eliminate the need to initialize a new list type

every time the getListType method is called. Without the use of memoization, when the method

is called, a list type must be initialized, creating the scenario where every time the program needs

to access the type of a list, the program must spend resources and additional time creating the

initialization.

 When memoization is implemented in this method, it stores the already initialized types

into a HashMap that can later be referenced. Now, when the getListType method is called, if the

desired type has already been initialized, it exists on the HashMap and can be accessed and

returned. Using the HashMap to store initialized types results in the program not having to spend

additional compute resources and additional time to create a new list type every time the method

is called, improving the speed and efficiency of the program.

Section 4: Technical Writing

Catscript Documentation Link

Section 5: UML

UML Diagram Link

https://github.com/Gregory-Hill/csci-468-spring2022-private/blob/master/capstone/portfolio/Partner_Catscript.md
https://github.com/Gregory-Hill/csci-468-spring2022-private/blob/master/capstone/portfolio/UML_DIAGRAM.png

Hill 3

Section 6: Design Trade-Offs

 The most important design trade-off made in the creation of the compiler was the

decision to use recursive descent to hand write the parser instead of using a parser generator.

Using a parser generator would have saved some development time, as implementing the parser

by hand is more time consuming, but it also would have drastically decreased the

understandability of the program.

 The main goal during the creation of this project, was to not only correctly implement the

program and create a compiler, but also have the programmer understand how the compiler

works. Using recursive descent in the parser section of the program allowed the coder to work

step by step through the parsing processes, forcing them to understand what is happening instead

of just using generated code. In addition, the generated code from a parser generator is most

often unreadable and exceedingly difficult to digest, while the code made using recursive descent

is much simpler and the flow of the program is much easier to understand.

 Using recursive descent instead of a parser generator requires more work from the

programmer initially, but because of that additional work, the rest of the compiler will be easier

to implement because of the better understanding of the program obtained.

Section 7: Software Development Life Cycle Model

 The development of this project was modeled around test driven development. Prior to

implementation of the parser, evaluator, and compiler sections of the program, many tests were

written to ensure the program is being implemented correctly.

Hill 4

 This model of development greatly helped in the implementation of the program in this

project. Because all tests were written prior to implementation I had a much better understanding

what needed to be completed. Without these tests, I would have been struggling to implement

one working feature of the program, most likely trying to get everything to work at once. With

the tests to start from, implementing parsing, evaluating, and compiling became a step-by-step

process that was easy to follow along.

 Test driven development allowed me to work on this project with a better understanding

of each method, each class, and how the compiler worked, most likely allowing me to complete

this project earlier and with more knowledge of compilers.

