
Montana State University
Gianforte School of Computing

CSCI 468 Compilers

Jack Tetrault

May 2022



1

Table of Contents
Section 1: Program………………………………………………………... 2
Section 2: Teamwork……………………………………………………… 2

Estimated Contributions
Section 3: Design Pattern…………………………………………………. 3
Section 4: Technical Writing………………….………………………..… 3

Catscript Typesystem………………………………………………… 3
Tokenization………………………………………………………….. 4
Parsing……………………………………………………………...… 5
Evaluation……………………………………………………………. 6

Section 5: UML………………………………………………………….… 7
Section 6: Design Trade-Offs………………………………………….….. 8
Section 7: Senior Development Cycle Model……………………………. 8



2

Section 1: Program

The following file: source.zip is located in the portfolio directory.

Section 2: Teamwork

The design aspect of this project was completed by me, as I am the primary developer. The
teamwork aspect of this project, however, was incorporated through the implementation of
additional testing and documentation. The workload was split into the following, approximately
90% of time and effort was dedicated towards the design aspect of the program, completed by
me, the primary developer, and the remaining 10% are accredited to my partner, for providing
me with three additional tests as well as providing documentation for my code (Section 4). The
approximation of work hours would be about 90 hours compared to about 10 hours. This division
of workload also applies conversely to my partner. The following tests were provided to me by
team member 2. They consist of a token, parsing, and an evaluation test.

//test #1
@Test
public void tokenTests() {

assertTokensAre("10 + 12 - 12", TokenType.INTEGER, TokenType.PLUS,
TokenType.INTEGER, TokenType.MINUS, TokenType.INTEGER, TokenType.EOF);

assertTokensAre("return true return false", TokenType.RETURN,
TokenType.TRUE, TokenType.RETURN, TokenType.FALSE, TokenType.EOF);

assertTokensAre("{[()]}", TokenType.LEFT_BRACE, TokenType.LEFT_BRACKET,
TokenType.LEFT_PAREN, TokenType.RIGHT_PAREN,

TokenType.RIGHT_BRACKET, TokenType.RIGHT_BRACE, TokenType.EOF);
}
//test #2
@Test
public void parsingTest() {

VariableStatement expr = parseStatement("var dog : string = bark");
assertNotNull(expr);
assertEquals("dog", expr.getVariableName());
assertEquals(CatscriptType.BOOLEAN, expr.getExplicitType());
assertTrue(expr.getExpression() instanceof StringLiteralExpression);

}
//test #3
@Test
public void evalTests() {

assertEquals(false, evaluateExpression("5 > 15"));
assertEquals(true, evaluateExpression("2 < 3"));
assertEquals(false, evaluateExpression("true != true"));
assertEquals(7, evaluateExpression("7"));

}



3

Section 3: Design Pattern

Memoization is a programming technique used to optimize expensive recurring function calls.
Using this optimization pattern, we store the output of an expensive function call, and when the
function is called again, the previous result is already stored. This prevents the program from
needing to re-compute everything, and rather just uses what it already knows.

static Map<CatscriptType, CatscriptType> CACHE = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

CatscriptType potentialMatch = CACHE.get(type);
if (potentialMatch != null) {

return potentialMatch;
} else {

ListType listType = new ListType(type);
CACHE.put(type, listType);
return listType;

}
}

In the memoization function (shown above) the program will treat any function passed in as a
CACHE. When the memoization function is called, it looks to see if the function passed in
already exists in a list of functions. If the function is found in the list, then the program knows it
has already done this computation and simply returns the stored result. If the function is not
already in the list, the program creates a copy of the said function call and adds it to the list.

Section 4: Technical Writing

Catscript Typesystem:

- int - integers
- bool - a Boolean value
- object - any object
- null - type of null value
- void - no type
- list<int> - list of integers
- list<object> - list of objects
- list<list<int>> - list of lists holding ints



4

Tokenization:

Our parser, using recursive descent, starts with tokenization. This was also the first aspect that
we were tasked to complete. Tokenization begins with the tokenize() function, which gets rid of
unnecessary whitespace. After that is complete, the scanToken() function associates a type to the
token.
private void tokenize() {

consumeWhitespace();
while (!tokenizationEnd()) {

scanToken();
consumeWhitespace();

}
tokenList.addToken(EOF, "<EOF>", postion, postion, line, lineOffset);

}

private void scanToken() {
if(scanNumber()) {

return;
}
if(scanString()) {

return;
}
if(scanIdentifier()) {

return;
}
scanSyntax();

}

This function scans the token until a matching type is returned. This is an example of how
recursive descent parsing works throughout the program. Depending on the type returned,
another function is called to tokenize that specific type. If the scanToken() returns scanNumber
(shown below), the function will first look to verify that the token type is an integer, then it
checks each integer token, if those tokens match, they are added to a list of tokens that will
eventually be sent to the parser.

private boolean scanNumber() {
if(isDigit(peek())) {

int start = postion;
while (isDigit(peek())) {

takeChar();
}
tokenList.addToken(INTEGER, src.substring(start, postion), start, postion, line,

lineOffset);
return true;

}
else {

return false;



5

}
}

Parsing:

Parsing also plays a vital role in this program. The parser essentially takes in a list fed from the
tokenizer and veriefies if the given grammar fits within Catscript’s. Recursive Decsent was used
to construct the parser, which ultimately resulted in the structure looking very similar to the
Catscript’s recognizable grammar. One significant function used for parsing is parseStatement()
(shown below). This function parses out the correct type and continues to descend into more
specificity.

private Statement parseStatement() {
Statement printStmt = parsePrintStatement();
if (printStmt != null) {

return printStmt;
} else if (tokens.match(VAR)) {

return parseVariableStatement();
} else if (tokens.match(IF)) {

return parseIfStatement();
} else if (tokens.match(FOR)) {

return parseForStatement();
} else if (tokens.match(IDENTIFIER)) {

Token ident = tokens.consumeToken();
if (tokens.match(EQUAL)) {

return parseAssignmentStatement(ident); //assignment
} else {

return parseFunctionCallStatement(ident); //function call
}

}
if (currentFunctionDefinition != null) {

return parseReturnStatement();
}
return new SyntaxErrorStatement(tokens.consumeToken());

}

Another very significant parsing function is parseFunction(). Similar to the type scanning that
was done during tokenization, the function begins by locating the start of the function. After
taking in the function token, the program sets the according function name from the type value of
the function. Next, a list is created in order to store all of the function arguments, making it easier
to evaluate them. After the function loops through and adds all of the statements within the list to
our parameters, and we have added all the types and parameters to the function, we access the
function body, which calls another function to process that said line.



6

Evaluation:

Literals

Literals are made up of literal values encoded into the language. Types of literals include
booleans, strings, lists, and null, and their values are simply just returned when evaluated.

Parentheses

Evaluating parentheses is done by simply returning the value that the expression enclosed within
‘(‘’)’ evaluates to.

Unary

Expressions with just a single argument are evaluated by first evaluating the right-hand-side, and
applying the operator to solely that value.

Binary expressions have both right-hand and a left-hand side arguments. These expressions are
evaluated by first checking the type, and then concatenating the two values together to be
returned.



7

Section 5: UML

For this project, all of the classes and overall structure of the program was created prior by the
professor. As a result, a diagram complete with all the class details was not necessary. Instead, I
have included the basic class diagram depicting the relationship between Expressions,
Statements, and Parsing. The extression types have an “is a” relationship with Expression and the
statement types have also have an “is a “ relationship with Statement. This is because the specific
expression and statement types are still identified as Expressions and Statements accordingly.



8

Section 6: Design Trade-offs

The most significant choice regarding design trade-offs was the decision to implement
“Recursive Descent” in our parsing rather than using a “Parser Generator” approach.

A parser generator is made up of two parts, lexical grammar as REGEX (regular expression)
and a long grammar as EBNF(Extended Braccus Naur Form). This method essentially takes in a
set of rules and uses this to create a parser, similar to an Abstract Syntax Tree. Although using
this parsing technique can require less code and infrastructure, it can also be more difficult to
understand, thus taking more time to implement.

Recursive descent, on the other hand, is a top-down approach to parsing. This parser relies on
recursive procedures, which ultimately helps the programmer gain a better understanding of
parsing and working with various grammars. For each output in the grammar, there also exists a
method. The significance of giving each production a corresponding method is that it allows for
a clearer understanding of the recursive nature of parsers. This technique is also widely used in
the industry to tokenize source code.

For this project, the parsing algorithm was chosen as recursive descent. I believe the trade-off
was definitely worth it, as it seemed to be much easier to understand and see how the compiler
was actually working.

Section 7: Software Development Life Cycle Model

The software development life cycle model used in this program was test-driven development.
Test-driven development is done by writing the test cases for your program before a full draft of
the code has been completed. This style of programming essentially means the programmer
codes, tests, and designs concurrently. As a result, developers have the ability to follow their
progress through the evaluation of the pre-constructed tests.

This technique of a somewhat “checkpoint” approach to programming proved to be very
beneficial to the personal completion of this project. Instead of creating and running various tests
at once to verify certain aspects of development, individual tests with multiple aspects
predetermined parameters can provide insight as to what is working, what still needs work, and
what hasn’t been started. This not only helps the programmer track their progress, but also gives
them a better insight into how specific aspects of the program are performing.


