
Compilers Project

Joshua Anderson

Gianforte School of Computing, Montana State University

CSCI 468: Compilers

Carson Gross

Spring 2022



RECREATIONAL AVIATION FOUNDATION 2

I. Program

See /capstone/portfolio/source.zip file for all source code and tests.

II. Teamwork

The team consisted of myself, Philip Gales, and Jesse Russell. Majority of the project

was done by myself throughout the semester though. The part where the group came in was with

the testing phase. We each chose one of the others’ compilers and created test cases to ensure

they functioned correctly. We also each documented the functionality of the compilers and had

each other look over those documents. The team communicated through Discord and worked

together to make sure we all had solid final projects to submit in the end. The entire project took

over eighty hours to complete and the group portion was at most six hours.

III. Design Pattern

The design pattern that was used for this project was the Memoization Pattern. This

design pattern ensures that for the same inputs, a specific method won’t execute more than once

by storing the results in a Hash Map. This was implemented in the CatscriptType class on the

getListType method in order to reduce the amount of times a new ListType is created. The

Memoization Pattern helps reduce redundancy and increases efficiency which is why it was

chosen for this project.

IV. Technical Documentation

See /capstone/portfolio/Catscript.md for the technical documentation.



RECREATIONAL AVIATION FOUNDATION 3

V. UML

Figure 1

All Expression Types Class Diagram



RECREATIONAL AVIATION FOUNDATION 4

Figure 2

All Statement Types Class Diagram



RECREATIONAL AVIATION FOUNDATION 5

Figure 3

Expression Class Diagram



RECREATIONAL AVIATION FOUNDATION 6

Figure 4

Statement Class Diagram



RECREATIONAL AVIATION FOUNDATION 7

VI. Trade-Offs

Throughout the design process of this project, there were many times where decisions

had to be made that lead to different trade-offs. Here are some of those decisions:

1. Recursive Descent vs. Parser Generator : The first choice I had to make was the

approach to the compiler. Both Recursive Descent and Parser Generator have been used

throughout the development of all programming languages. Parser Generators are more

commonly taught in the academia world, but Recursive Descent finds itself more

apparent in the industry world nowadays. I ultimately decided on the Recursive Descent

method because it’s extremely efficient and expresses the natural recursive nature of

context-free grammars more obviously.

2. Test Driven vs. Scrum: The other decision I had was what the life cycle approach was to

be in order to most effectively accomplish my goals. Of the many potential methods, I

determined that either Test Driven Development or Scrum would be best for the desired

outcomes. Ultimately, I ended up on Test Driven Development due to the more stable

approach it took compared to Scrum. With the Scrum life cycle approach, you have to

work on different parts of the project all the time which wasn’t something that sounded

appetizing especially when I was learning how to do everything as I went. Test Driven

Development has a very clear beginning to end approach that also allows you to ensure

that the functionalities that you want to be a part of your program are accomplished

effectively. It also means that the code is well documented since the tests can show very

clear use cases of everything. It’s because of those reasons that I chose Test Driven

Development over Scrum for this project.



RECREATIONAL AVIATION FOUNDATION 8

VII. Test Driven Development Life Cycle Approach

To best ensure that I had a consistent and organized approach with a clear beginning to

end process, I decided to use the Test Driven Development life cycle approach. This framework

emphasizes testing your code over and over again in order to accomplish your goals. It does an

excellent job at interwevening coding, testing, and designing all together. Some benefits of using

the Test Driven Development life cycle approach are that it helps eliminate unnecessary coding

by reducing the amount of debugging and design time, it is extremely easier to refactor code as

long as tests remain passing, and it makes your code well documented since each test shows

specific use cases. There were also some downfalls to using the Test Driven Development life

cycle approach. If the tests had bugs in them, then your code would have bugs in them. If

requirements changed, then all your tests would have to change to fit the requirements. This can

be really time consuming. But even with these downfalls, I ultimately decided that the Test

Driven Development life cycle approach was the one I wanted to use.


