Catscript Documentation

Cole Brooks

1 Introduction

Catscript is a small, statically typed programming language that compiles to JVM Bytecode. It
features a recursive descent parser, type inference, objects and primitives, as well as several other
interesting features which will be covered throughout the documentation.

2 Expressions

Catscript features an abstract Expression class from which all other expression types inherit. An
expression is some piece of code that eventually evaluates to some value, such as a number, a string,
or a boolean. The abstract Expression class features an abstract method called getType(), which
is implemented in the expression classes, and returns the type that an expression will eventually
evaluate to.

2.1 Primary Expression

The base expression is the Primary Expression, which can resolve to any of the following:
* Identifier

* String literal

Integer literal

Boolean literal

Null literal

List literal
* Function call
* Parenthesized expression

Any expression or statement containing another expression will eventually resolve to some form
of a primary expression.



2.2 Identifier Expression

The Identifier Expression is how Catscript implements variables. The identifier expression holds a
string to serve as the variable name, and also holds information on the variable type, as Catscript
is a statically typed language. Catscript’s type system will be covered in more detail below. The
variable name is then used to look up its corresponding value in the symbol table.

2.3 Unary Expression

The Unary Expression is how Catscript implements the not and negative operators, which are “not”
and “-” respectively. For example, all of the following are valid Catscript unary expressions:

-1
not true
not not foo

2.4 Factor Expression

The Factor Expression is how Catscript implements the multiplication and division operations,
which are “*”” and “/” respectively. Below are some examples of valid Catscript factor expressions:

foo = -1
25 / =5
(foo — bar) / 2

2.5 Additive Expression

The Additive Expression is how Catscript implements the addition and subtraction operations,
which are “+” and “-” respectively. Additionally, the “+” operator is overloaded to support string
concatenation. Below are some examples of valid Catscript additive expressions:

x + 5
5 -2
foo + "bar"

2.6 Comparison Expression

The Comparison Expression is Catscript’s implementation of the relational operations: strictly
greater than (“>"), strictly less than (“<”), greater than or equal to (“>="), and less than or equal
to (“<="). Below are some examples of valid Catscript comparison expressions.

foo > 5
foo + 5 > 10
foo / 2 <= bar * 2




2.7 Equality Expression

The Equality Expression is Catscript’s implementation of the equal to (“==") and not equal to
(“!1=") operations. Below are several examples of valid Catscript equality expressions:

foo == bar

foo ==

x I=vy

foo — bar == x * y

2.8 Expressions Conclusion

This has been a brief overview of the expressions system Catscript uses to manipulate values. The
next section documents the statement system that Catscript uses to induce side effects.

3 Statements

In the same way that all Catscript expressions inherit from an abstract Expression class, all Catscript
statements inherit from an abstract Statement class. As mentioned above, while Catscript expres-
sions evaluate to a value of some kind, Catscript statements instead invoke some sort of side effect
in the program, i.e, they change the program’s state.

3.1 Print Statement

One of the most basic statements is the Print Statement. The print statement is called with the
“print” keyword, followed by some sort of expression. After evaluating its expression, the print
statement then prints that value to the program’s standard output stream. The print statement may
only have expressions passed to it, as they provide some value to be printed. A statement does not
necessarily provide a value, and thus is not a valid input to the print statement. Below are some
examples of valid Catscript print statement calls:

print ("foo™)
print (foo)
print (foo + "bar")

3.2 Variable Statement

The Variable Statement is used to declare and assign new variables. Note that it is not possible in
Catscript to declare a new variable without also providing an expression to be assigned as a value.
A variable is declared/assigned as follows:

1. A required “var” keyword

2. A required variable name, or identifier



(a) An optional “:” symbol followed by an explicit type
3. A required “=" symbol
4. A required expression

Should the programmer choose to specify an explicit type, the program verifies that the explicit
type is assignable from the type returned by the expression’s getType() method. If not, the program
throws an Incompatible Types error. If the programmer chooses not to specify an explicit type,
the variable type is inferred from the expression’s getType() method. Below are some examples of
valid Catscript variable statements:

var foo : int =1
var foo : object = 1
var foo =1

3.3 Assignment Statement

Related to the Variable Statement is the Assignment Statement. The Assignment Statement is used
to change the value of an existing variable. The syntax for the assignment statement is as follows:

1. A required identifier'
2. A required “=" symbol
3. A required expression?

Below are several examples of valid Catscript assignment statements:

foo = "bar"
foo = bar
foo = 2 + 2

3.4 If Statement

The If Statement in Catscript is very similar to the if statement in other programming languages
such as Java or C. It is used to determine whether or not not execute a series of statements. A
Catscript if statement is invoked as follows:

1. A required “if”” keyword

2. A required “(* symbol

INote that the program verifies that the identifier has already been registered in the symbol table as a variable name.
If there is not a variable of the same name already registered, the program throws an Unknown Name error.

Note that if the variable type that is registered in the symbol table is not assignable from the type of the assignment
expression, the program throws an Incompatible Types error.



3. A required expression to evaluate®

4. A required “)” symbol

5. A required “{” symbol

6. A required series of statements to execute
7. A required “}” symbol

8. An optional “else” keyword

(a) An optional if statement or
(b) A required “{” symbol
(c) A required series of statements to execute

(d) A required “}” symbol

Below is an example of a valid Catscript if statement, featuring the optional else if construct:

if (foo == "bar") {
print ("bar™)
} else if (foo == "foo") {

print ("foo™)

}

3.5 For Statement

The syntax of the For Statement is more similar to the for statements of Python, in that it uses
an “in” keyword. Currently the for statement only supports iterating through a list, there is no
provision for counting up to some value, as a programmer would in Java with

int i = 0; 1 < 5; 1i++

or as they would in Python with

i in range 5

Catscript’s for statement is constructed as follows:
1. A required “for” keyword
2. A required “(” symbol
3. A required variable name, or identifier

4. A required “in” keyword

3Note that the program verifies whether the expression evaluates to a boolean. If it does not, an Incompatible Types
error is thrown.



5. A required expression*

6. A required “)” symbol
7. A required “{” symbol
8. A required series of statements to evaluate
9. A required “}” symbol

Below is an example of a valid Catscript for statement:

for (x in [1, 2, 3, 4, 5]1) {
print (x + " foobar™)

}

3.6 Function Definition Statement

The Function Definition Statement is used to define functions that can be called elsewhere in the
code. Functions can have an explicit return type, or if no explicit return type is declared, the func-
tion is of type void. If an explicit return type is declared, the program verifies return coverage, and
that the type of the expression to be returned matches the function’s explicit return type. Addition-
ally, when declaring a function’s parameters, the programmer may choose to give each parameter
an explicit type. If they choose not to do so, the parameters default to type object. The parameter
list is used only for declaring function parameters, and consists of a list of identifiers, each fol-
lowed by an optional “:” symbol and parameter type. A Catscript function can be constructed as

follows:
1. A required “function” keyword
2. A required identifier to serve as the function name
3. A required “(” symbol
4. A parameter list’

5. A required “)” symbol

6. An optional “:” symbol followed by the function’s return type

7. A required “{” symbol
8. A series of statement to be executed

9. A required “}” symbol

Below is an example of a valid Catscript function definition:

“Note that the program verifies whether the expression is a list or not. If not, it throws an Incompatible Types error.
>Note that the parameter list is not required if the function doesn’t need to take any arguments.



function foobar (foo : int, bar : int) : int {
return foo + bar

3.7 Function Call Statement

Once a function had been defined, a programmer can then call it with the Function Call Statement.
The program verifies that the number and type of arguments match those defined in the function’s
definition. Additionally, the program verifies that there is a function with the same name that has
been registered in the symbol table. The function call can be constructed as follows:

1. A required function name
2. A required “(” symbol

3. An argument list

4. A required “)” symbol

Below is an example of a valid Catscript function call:

foobar (foo, bar)

3.8 Return Statement

The final statement is the Return Statement, which is used to exit a function, and (if necessary)
return a value. Note that the program ensures a return statement can only be executed from within
a function. If a return statement is parsed outside of a function, the program throws a Syntax error.
A return statement is structured as follows:

1. A required “return” keyword
2. An expression to be returned®

Please see Section 3.6 for an example of a return statement within a function definition statement.

3.9 Statement Conclusion

This has been a comprehensive overview of Catscript’s most interesting features, the statements.
The next and final section details the Catscript type system.

®Note that this expression is only valid if the function has an explicit return type.



4 Type System
Catscript features a simple type system. The types are as follows:
* int - A 32 bit integer

* string - a Java-style string

bool - a boolean value

"

list<x>- a list of values with type “x

null - the null type
* object - any type of value

Note that Catscript types have a function called isAssignableFrom(), which works within the type
hierarchy. Any type is assignable from null, and an object is assignable from any type. String,
bool, and int are all of equal status.



