
Montana State University

Caden Fong

Tester: Kaylee Fong

Semester: Spring 2022

Course Name/Number: Compilers / CSCI 468

Section 1: Program
https://drive.google.com/file/d/1GQH7O6r25QLMSZ8jthPOy4UOfPnT-3Jd/view?usp=sharing

Section 2: Teamwork

This team consisted of two team members, team member 1 and team member 2.

Team member one was in charge of writing the compiler and this capstone document.

Team member one was the primary creator for this project since this was mostly an

individual project. Team member 2 was tasked with writing three tests to test the

compiler's code and also writing the documentation for the catscript language. Team

member two was the tester for this project and did their own capstone where they were

the primary creator. Around 180 hours were spent on this project in total. Team member

1 spent over 150 hours on this capstone assignment. Team member two, the testing

member, spent around 30 hours on this assignment.

Total Project Time: 180 hours

Team Member 1 (Primary Creator):

Primary contributions: Writing the compiler and this capstone document.

Percentage of Time Spent: 85% (150/180 hours)

Team Member 2 (Tester):

Primary contributions: Writing three tests in the “PartnerTests.java” in the test

directory for the compiler and the documentation for catscript.

Percentage of Time Spent: 15% (30/180 hours)

Section 3: Design Pattern

private static Map<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

ListType listType = cache.get(type);
if (listType != null) {

return listType;
} else {

ListType newListType = new ListType(type);
cache.put(type, newListType);
return newListType;

}
}

For the design pattern to be implemented in this project, I chose to use the

flyweight design pattern. In the project directory “src/main/java/edu/montana/

csci/csci468/parser/”, the design pattern is implemented in the file “CatscriptType.java”.

The code above is the implementation of the flyweight design pattern. This pattern was

chosen for two design reasons. The first reason being memory efficiency, without this

pattern every time this method is called a ListType object is created using up more

space than necessary since there are only so many different ListTypes, many being

used more than once. Also, given larger programs, the speed of compiling and

interpretation becomes faster as later calls to the method only perform a search in a

hashmap rather than creating a new object. Therefore, the flyweight design pattern is a

better choice than just coding in the method.

Catscript Technical Documentation

Introduction
Catscript: a programing language that operates as laid out in this documentation. The EBNF for this language
is seen below:

catscript_program = { program_statement };

program_statement = statement |
function_declaration;

statement = for_statement |
if_statement |
print_statement |
variable_statement |
assignment_statement |
function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
'{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
{ statement },

'}' ['else', (if_statement | '{', { statement }, '}')];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,
 [':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
[':' + type_expression], '{', { function_body_statement

}, '}';

function_body_statement = statement |
return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

Section 4: Technical Writing

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression
};

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")
additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list_literal | function_call | "(", expression, ")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,
type_expression, '>']

Features

Comments

Catscript comments can be written with two forward slashes that comments out the rest line they are on.

// This is a Catscript comment

Variables

Variables in Catscript are values that can be of type list, int, bool, string, or null. Explicit type can be given or
omitted.

var variable : string = "foo"
variable = "bar"
or
var variable = "foo"
variable = "bar"

Lists

Lists are an immutable type in Catscript, and can be component wise list, int, bool, string, and null.

var catScriptList : list <string> = ["Cat", "Script"]
or
var catScriptList = [0, 1, 2]

Mathematical Operators

Addition in Catscript uses int addition and is overloaded to allow string concatenation.

1 + 2
or
1 + "foo"
or
"foo" + "bar"

Subtraction is similar to addition for ints.

1 - 1

Multiplication and division using basic mathematical factoring.

1 * 1
and
1 / 1

Unary Operator for negating ints and bools.

-10
and
not false

Print Function

The Catscript print function sends string output to a buffer that then will use the JVM out system to print to
the standard output.

print("foo")
print(true)

print([0, 1, 2])

For Statements

Catscript uses an iterable list for looping functionality and can consist of many statments in the body, ending
when there are no more items in the provided list.

for (i in ["Say", "Hello", "to", "CatScript"]) {
 print(i)
}

Equality and Comparison

CatScript comparison has the following operators less than, greater than, less than or equal to, and greater
than or equal to.

1 < 1
1 > 1
1 <= 1
1 >= 1

Equality compares object value and reference.

var reference1 = ["foo", "bar"]
var reference2 = reference1
reference1 == reference2
or
1 == 1
or
true != true

If Statements

Catscript supports conditional code blocking and allows for multiple else if linking as well as nesting if
statements.

var foo = "bar"
var i = 1
if (foo == "bar") {
 if (i == 1) {

print("bar 1")
 } else {

print("bar" + i)
 }

} else if (i == 2) {
 print("not bar 2")
} else {
 print(foo + i)
}

Function Definitions and Calls

Catscript supports function definitions using unique identifiers and can use any amount of parameters in
definition. Return type can be explicitly give or defaulted to void.

function foo(bar:bool):bool{
 if (bar) {

return false
 } else {

return bar
 }
}

// Function Call Example
foo(true)

ParseElement

parent : ParseElement

registerFunctions(symbolTable : SymbolTable)

verify()

validate(symbolTable : SymbolTable) Statement

execute(runtime : CatscriptRuntime)

IdentifierExpression

name : String

type : CatscriptType

FunctionCallExpression

name : String

arguments : Sequence(Expression)

type : CatscriptType

ComparisonExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isLessThan()

isLessThanOrEqual()

isGreaterThanOrEqual()

isGreater()

BooleanLiteralExpression

booleanValue : Boolean

NullLiteralExpression

ReturnStatement

expression : Expression

function : FunctionDefinitionStatement

ParenthesizedExpression

expression : Expression

AssignmentStatement

expression : Expression

variableName : String

PrintStatement

expression : Expression

CatScriptProgram

output : StringBuffer

statements : Sequence(Statement)

functions : OrderedSet(FunctionDefinitionStatement)

expression : Expression

print(v : Object)

IfStatement

expression : Expression

trueStatements : Sequence(Statement)

elseStatements : Sequence(Statement)

IntegerLiteralExpression

integerVal : IntegerStringLiteralExpression

stringValue : String

ListLiteralExpression

values : Sequence(Expression)

type : CatscriptType

FactorExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isMultiply()

FunctionCallStatement

expression : FunctionCallExpression

UnaryExpression

operator : Token

rightHandSide : Expression

isMinus()

isNot()

TypeLiteral

type : CatscriptType

ForStatement

expression : Expression

variableName : String

body : Sequence(Statement)

getComponentType()

EqualityExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isEqual()

SyntaxErrorStatement

SyntaxErrorStatement(start : Token)

AdditiveExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isAdd() FunctionDefinitionStatement

name : String

type : CatscriptType

argumentTypes : Sequence(CatscriptType)

argumentNames : Sequence(String)

body : Sequence(Statement)

invoke(runtime : CatscriptRuntime, args : Sequence(Object))

getDescriptor()

Expression

evaluate(runtime : CatscriptRuntime)

transpile(javascript : StringBuilder)

compile(code : ByteCodeGenerator)

SyntaxErrorExpression

SyntaxErrorExpression(consumeToken : Token)

VariableStatement

expression : Expression

variableName : String

explicityType : CatscriptType

type : CatscriptType

isGlobal()

*

children

1

Section 5: UML

Section 6: Design Trade-offs

A design decision made at the beginning of this project was deciding the

implementation method of the parser. The recursive descent algorithm was chosen for

modeling my parser rather than a parser generator for a few different design reasons.

First and foremost, one of the benefits of choosing recursive descent over a parser

generator is the more simplistic implementation. Simply put, recursive descent is easier

to implement because it is more concise when modeling a grammar as opposed to a

parser generator, this is due to the fact that recursive descent is modeled more closely

after the recursive nature of grammars. However, despite the simplicity, recursive

descent requires more physical effort in creating a parser versus a parser generator, as

it requires a more granular implementation of different parts. Another trade-off in

choosing recursive descent is the education factor as recursive descent gives a more

intuitive understanding of grammars rather than a parser generator's abstracted

implementation. In conclusion, the best design trade-off decision for this project, in

terms of creating a parser, is using recursive descent over a parser generator as it gives

a more simplistic yet deeper understanding of grammars and parsing in general.

Section 7: Software development life cycle model

The software development life cycle model used in this project was the Test

Driven Development or TDD for short, where tests are used to drive development. For

this project, we were given a set of tests that we needed to get passing to finish the

compiler. This TDD style of development was very helpful in this project as it gave us

goals to work towards, direction if we got stuck on something, and ultimately got us to

the goal of finishing the project. Overall this TDD style of development was a great tool

for learning more from this project and seeing what each unit of the compiler phases

required.

	CadenFong-capstone.pdf
	CadenDocumentation.pdf
	cadenfong_capstoneUML (1).pdf
	CadenFong-capstone

