Section 1: Program

Section 2: Teamwork

As team members, me and Justin Scarbrough wrote each others documentation and supplied
each other with 3 tests to further improve our compilers. My partner gave me tests to
confirm the ability of my code to perform nested for loops, string concatenation, and
variable assignment.

Section 3: Design pattern

The design pattern used in our project is memoized type access inside the
catscriptType file. When asked for a certain list type, a hashmap will be searched to
determine if there already exists a list type for the asked type. We used memoization
so that we aren't executing the same data multiple times.

Section 4: Technical Writing: Catscript
Guide

This document contains information and usage for the Catscript programming language.

Introduction

Catscript is a lightweight programming language which shares features with similar
scripting languages. Catscript is a strong (statically) typed language which supports
the following types:

e int - a 32 bit integer, such as 1

e string - a java-style string, such as "string"

¢ bool - a boolean value, such as true

e list - a list of value with the type 'x', such as [1,2,3]
e null - the null type

e object - any type of value

Features

Arithmetic

Math in Catscript follows a simple pattern:

e Additive Expressions: + or -

e Factoring Expressions: * or /
Assignment is denoted with = . Math in Catscript is normal, and follows normal
conventions of mathematics.

Null value

The null value in Catscript allows a user to create a variable or point to another
piece of data that has no value. This is done by using the null keyword.



Creating and Using Variables

Variables are made and used in Catscript by using a keyword, followed by a name and
value. These variables can then be accessed later by calling the name assigned during
creation. Variables can be initialized with explicit or implicit typing. To explicitly
declare a variable, use the following syntax: var x : int = 0 . To implicitly declare
a variable, use the following syntax: var x = 0 . Ideally using implicit typing should
not impose any disadvantage to explicit typing, but both options are provided to
accommodate user preferences. It is worth noting that while varibles are able to be
declared implicitly, they cannot be assigned to new types. For example, an integer
variable cannot be reassigned to become a string.

Print statements

Print statements are implemented into Catscript as they are in most other programming
languages by using print(message) . Print statements are also able to print variables
and other data that might change, and is not limited to hardcoded values. It should be
worth noting that print statements in Catscript will automatically add a new line
after the printed message.

String Concatenation

Catscript also supports string concatenation in the form of "value" + "value" . This
can be used to combine strings, or to combine other data types into strings. For
example, 1+2 will result in a value of 3 if used with arithmetic, but if the
expression is instead 1+"2" , the result will be 12, as 1 and 2 are concatenated
together, rather than added.

Comments

Catscript has commenting built into its syntax, which can be used with // . Comments
in catscript ignore anything after the comment token until the end of a line. If a
comment is placed in the middle of a line of code, any legitimate code in that same
line will also be ignored.

If Statements

If statements follow a standard format of if(condition){result} . These conditions can
be comparisons of equality, which includes mathematical equality as well as checking
object data, such as type and value.

For example:
if(1+1==2) is a valid condition. If a variable x exists, if(x==2) 1is also a valid
condition, but if x has not been initialized, the if statement will not be valid.

Comparisons and Equality

Comparisons in Catscript are standard and have no unique rules. Equalities are written
as follows:

e Equals: ==

e Greater Than: >

e Less Than: <

¢« Greater or Equals: >=

¢ Less Than or Equals: <=
¢ Not Equals: !=



Boolean Expressions in Catscript

Catscript boolean expressions are simple to use, and consist of true and false .
Like most other programming languages, the use of ! or not can be used to nullify
or reverse a boolean expression or condition. For example, if(1>2) will equate to
false , but if(!(1>2)) will equate to true . Similarly, !true will be false, and
Ifalse will be true.

For loops

For loops in Catscript are implemented similarly to if statements, and is made up of
the condition component as well as the body. A key difference between the if statement
and the for loop is that the for loop must have its condition be built up of x in vy,
where y is usually a list. An example of a for loops is as follows:

for (x in [1,5,10]) {
print(x) //this will print 1, 5, 10 with new lines between each number.

This for loop will iterate through the list of [1,5,10] and print out each value,
similar to a for each loop in other languages. For loops in Catscript can also be
nested, meaning multiple loops can run inside of each other and access the lists in
loops of higher order.

Functions

Functions can be declared and called in Catscript. To declare a function, use the
function keyword followed by a name and set of parameters. Calling a function only
requires the name and arguments to be passed in.

An example of defining and calling a function is as follows:

function func(x : int) {
return(x)

print(func(2)) //this will print '2'

This function simply returns a given input, meaning you can use it inside of a print
statement to print a given value. For example, print(func(5)) will print '5"'.
Functions in Catscript support recursion, and can reference themselves as many times
as a program demands.

Lists

A list in Catscript is a special data structure that is designed to store multiple
entries of data. A list can store any data type that other structures can store, but
lists cannot be changed after being initialized. A list in catscript appears as:
[index®, index1,index2,...] and is accessed by calling the respective index for a
given list. Lists can also be iterated through with for loops.

Error Parsing

Catscript is designed with an error parser, and should alert a user of improper syntax
and exceptions during compile time.



Section 5: UML

https://imgur.com/a/VHEIudy

Section 6: Design trade-offs

A design tradeoff made in this project is the use of recursive decent. Recursive
decent has been a great way to implement the language because of its recursive nature.
It's also very a useful way to learn. It's also more likely or us to see recursive
decent in the future compared to something like a parser generator. Although I'm happy
to have used recursive decent, a tradeoff to be mentioned is that a parser generator
is more of an industry standard, and it requires less code.

Section 7: Software development life cycle
model

Test Driven Development (TDD) was used for this project, and I believe it is the best
dev life cycle model I've used throughout my entire college career. I cannot think of
a single hindrance it has caused me on this project. I believe every class that TDD
would be applicable should be using it in some way. My highest ranking classes
throughout 4 years have used TDD.


https://imgur.com/a/VHEIudy

