
CSCI 468 - Spring 2022
Portfolio

Zach Wadhams

Kai Dockens - Tester

Section 1: Program: Codebase zip file: (Will also be attached in submission with this
document inside)

https://drive.google.com/file/d/1t5yphEq7e6nuAoQEw6OBGnV-SSYiDp_i/view?usp=sharing

Section 2: Teamwork:

Although this course was primarily individual based, for some final testing documentation ideas I
worked with Kai Dockens as my capstone partner. Kai provided three tests that can be found in
PartnerTestsKai.java in the above codebase. These three tests examine my Catscript
implementation’s functionality with return statements within functions, functions that compare
greater than statements, and examine scoping. These three tests passed when they were given to
me, indicating that this functionality was implemented correctly.

Section 3: Design Pattern:

This Catscript implementation utilizes the Memoization method as its design pattern. This can be
found in the class ‘CatscriptType’. This pattern is used primarily to ensure that methods are not
run more than absolutely necessary. It accomplishes this by storing the values they would return
in a lookup table. This lookup table can be searched by providing a key as an argument. This
saves time and resources by storing values rather than running methods repeatedly.

Section 4: Technical Writing / Documentation
CSCI468Documentation.pdf

https://drive.google.com/file/d/1zKNqok1uhpa6mXU2cwfxqspQSLJ-EL7B/view?usp=sharing

Section 5: UML: None needed because design was selected by professor. However, I will
Include and discuss one below for reference.

This specific UML diagram shows how the different types of expressions are connected to the
different types of statements in Catscript. At the center of the top larger balloon is the general
‘Expression’ class that has all other types of expression connected to it. Some of these include
‘AdditiveExpression’, ‘FactorExpression’, and ‘ListLiteralExpression’. The center ‘Expression’
class is also connected to ‘ParseElement’ which itself if connected to the lower smaller balloon
with ‘Statement’ in it’s center. The ‘Statement’ class is connected to all the different types of
statements contained within Catscript. Some of these are ‘ForStatement’, ‘IfStatement’, and
‘PrintStatement’.

Section 6: Design Trade-offs

The biggest design trade-off was the fact that Catscript implements a parser with a recursive
descent algorithm rather than a parser generator. The main reason this was chosen was because
recursive descent closely mirrors the recursiveness of grammars. It was also chosen because it is
fairly easy to implement and modify quickly. By using recursive descent, I felt that I got a more
in depth understanding of how recursion works in a large program such as Catscript. I believe it
was also useful because it helped me get a better understanding of how some real world
languages work such as C# and Java that implement recursive descent themselves.

Section 7: Software Development Life Cycle

For Catscript, a Test-Drives Development (TDD) model was used. TDD is a software
development process in which test cases are written before implementing required features,
which gives the programmer a pass or fail case to test their code. When new features are to be
added to the project, the first step is to write a test case that passes only if the required feature’s
specifications are met. This test should always fail before the feature is implemented. The
programmer then writes code to pass this test. Although the first solution is most likely not the
most efficient, the code can then still be refined while checking to see if the test is still passing.

