Catscript Documentation

Expressions

Type Literal Expression:
Catscript uses type literals to represent data within its language. This data is stored in
tokens and the type is recognized by the tokenizer. The parser will then store the data in a data

structure to evaluate and compile at runtime.

Examples of type literals in Catscript:

int literal

boolean literal
/ 1ist literal

Additive Expression:

The additive expression consists of both a right-hand side and a left-hand side
expression. The order of evaluation is left-hand side to right-hand side followed by the operator
(‘+or ‘).

Examples of additive expressions:
1 + 2

3 - 4

Factor Expressions:

The factor expression is similar to additive expression since it also consists of a
right-hand side and a left-hand side. Both sides are evaluated and then the operator (*’ or /') is
applied from left to right on the expressions.

Examples of factor expressions:
1 = 2
3/ 4

Unary Expressions:

In Catscript the unary expression can be used to represent a negative integer or negate
a boolean value. Either (-’ or ‘not’) is a valid input for unary expressions.

Examples of unary expressions:

Equality and Comparison Expressions:

Equality expressions are very similar to comparison expressions except comparison
expressions have a higher precedence than equality. Both of these expressions contain a left
side and right side. These expressions both return a boolean value after evaluation.

" evaluates to false

evaluates to trug
evaluates to trug
evaluates to false

evaluates to false

Identifier and Function Call Expressions:

Function call expressions are an identifier that stores a value after evaluating the
invoked method following the function name. Identifiers alone will simply be stored within the
expression by the parser, where the function call will parse and store the arguments as well.

add(1,2 //function call
' add 1s the identifier

1 and 2 are the arguments

Statements

Print Statement:

Print statements are recognized in Catscript as “print(‘expression’)”. The parser will
evaluate the expression inside the parentheses and call an internal print command.

Examples of Print statement:
print (2+2)

If Statements:

Catscript recognizes If and else statements. Else-if statements are not implemented within the
language. If statements take a boolean expression along with a block body that gets stored with
the If statement as true statements. When the If statement evaluates to true, the list of true
statements then are evaluated. Otherwise Else statements are evaluated.

Examples of If Else statements:

For Statements:

For statements in Catscript are only designed to iterate through lists using the ‘in’
keyword. The process of the for loop will continue to store values as long as there is a “has
next” element in the list. Catscript can not iterate on conditions given a boolean value such as
(index < list.size).

Examples of for statements:
var myList : list<int> = [1,2,3]
for(var x in myList) {

do something

Variable and Assignment Statements:

Variables are identified by the ‘var’ keyword in Catscript. The parser will store the expression to
the identifier that follows ‘var’. Scoping is also associated with assignment statements, where
variables are pushed in scope and popped when there is a change in scope. Global variables
are stored in a field that is maintained throughout the life of the program.

Examples of Assignment Statements:
var x : int = 3

x = x+1

Return Statements:

The return statement in Catscript acts as expected. Once the parser hits the keyword
‘return’ it will halt all execution, evaluate expressions and assign the return value to its function
definition. All local variables will be popped off the stack.

Examples of Return Statement'
function add(x

Function Definition Statement:

Function definition statements will begin with the keyword ‘function’ where the identifier
is stored along with the argument identifiers and types followed by the statements inside the
block body. Functions are stored as objects at runtime and once a return statement is executed
the value of that return is stored and the function definition completes or a closing ‘}’ is matched.

Examples of Function Definition Statement:
function add(x : int, y : int) : int{

Catscript Keywords:

- else

- false

- function
- for

catscript_program = { program_statement };

program_statement = statement |

function_declaration;

statement = for_statement |
if_statement |
print_statement |
variable_statement |
assignment_statement |

function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
‘{"', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
{ statement },
"} ['else', (if_statement | '{', { statement }, '}') 1;

print_statement = ‘print', '(', expression, ')’

variable_statement = 'var', IDENTIFIER,

[':", type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;
function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
[':' + type_expression], '{', { function_body_statement }, '}';

function_body_statement = statement |

return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };
comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive expression };
additive_expression = factor_expression { ("+" | "-") factor_expression };
factor_expression = unary_expression { ("/" | "*") unary_expression };
unary_expression = ("not" | "-") unary_expression | primary_expression;
primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"
list_literal | function_call | "(", expression, ")"
list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')’

argument_list = [expression , { ',"' , expression }]

type_expression = 'int' | 'string' | 'bool' | ‘'object' | 'list' [, '<' , type_expression, '>']

CatScript Types

CatScript is statically typed, with a small type system as follows

int - a 32 bit integer

string - a java-style string

bool - a boolean value

list - a list of value with the type 'x'
null - the null type

object - any type of value

