CSCI 468 - Spring 2022
Portfolio

Zach Wadhams

Kai Dockens - Tester

Section 1: Program: Codebase zip file: (Will also be attached in submission with this
document inside)

https://drive.google.com/file/d/1t5yphEq7e6nuAoQEw60BGnV-SSYiDp i/view?usp=sharing

Section 2: Teamwork:

Although this course was primarily individual based, for some final testing documentation ideas I
worked with Kai Dockens as my capstone partner. Kai provided three tests that can be found in
PartnerTestsKai.java in the above codebase. These three tests examine my Catscript
implementation’s functionality with return statements within functions, functions that compare
greater than statements, and examine scoping. These three tests passed when they were given to
me, indicating that this functionality was implemented correctly.

Section 3: Design Pattern:

This Catscript implementation utilizes the Memoization method as its design pattern. This can be
found in the class ‘CatscriptType’. This pattern is used primarily to ensure that methods are not
run more than absolutely necessary. It accomplishes this by storing the values they would return
in a lookup table. This lookup table can be searched by providing a key as an argument. This
saves time and resources by storing values rather than running methods repeatedly.

Section 4: Technical Writing / Documentation
B CSCI468Documentation.pdf

https://drive.google.com/file/d/1zKNqok1uhpa6mXU2cwfxqspQSLJ-EL7B/view?usp=sharing

Catscript Documentation

Zach Wadhams, Kai Dockens
5/6/2022

1 Introduction

Catscript is a statically typed programming language that compiles to JVM
Bytecode. It utilizes a recursive descent parser and can work with type
inference, objects and primitives, as well as other features discussed in this
documentation.

2 Expressions

Catseript utilizes an abstract Expression class from which all other expres-
sion types inherit. An expression is a piece of code that eventually evaluates
to some value, such as an integer., a string, or a boolean. The abstract
Expression class utilizes an abstract method called getType(), which is im-
plemented in the expression classes, and returns the type that an expression
will evaluate to.

2.1 Primary Expression

The base expression is the Primary Expression, which may be any of the
following:

¢ [dentifier

¢ String literal

Integer literal

Boolean literal

Null literal

List literal

Parenthesized expression
¢ Function call

Any expression or statement containing another expression will eventually
become some form of a primary expression.

2.2 Identifier Expression

The Identifier Expression is how Catscript implements variables. The identi-
fier expression holds a string as the variable name, along with the variable’s
type due to the fact that Catseript 15 a statically typed language. The vari-
able name is used to look up its corresponding value in the symbol table.

2.3 Unary Expression

The Unary Expression is the way Catseript implements the not and negative
operators, which are not” and -'. The following are valid Catscript unary
EXPressions:

-1
not true
not not foo

2.4 Factor Expression

The Factor Expression is the way Catscript implements the multiplication
and division operations, which are "*’and '/". The following are valid Catscript
factor expressions:

foo = -1
10 / -5
(foo — bar) / &

2.5 Additive Expression

The Additive Expression is the way Catscript implements the addition and
subtraction operations, which are '+’ and -’ respectively. The '+ operator
is also overloaded to support string concatenation. The following are valid
Catseript additive expressions:

X+ 6B
3-2
foo + "bar"

2.6 Comparison Expression

The Comparison Expression is the way Catscript implements the relational
operations: strictly greater than "=, strictly less than "<, greater than
or equal to ">=", and less than or equal to '<=". The following are valid
Catseript comparison expressions.

foo > 2
foo + 3 > 10
foo / 2 <= bar * 3

2.7 Equality Expression

The Equality Expression is the way Catscript implements the equal to '=='

and not equal to '!=" operations. The following are valid Catscript equality
EXPTESSIONS:

foo == bar

foo ==

x I=v

foo - bar == x * y

2.8 Expressions Conclusion

This was an overview of how Catseript implements and uses expressions.
Next, we will discuss Catscript Statements.

3 Statements

In the same way that Catscript expressions inherit from an Expression class,
Catscript statements also inherit from a Statement class. While Catscript
expressions evaluate to a value, Catseript statements instead change the pro-
oram’s state.

3.1 Print Statement

A very basic statement is the Print Statement. The print statement is called
with the 'print’ keyword, followed by an expression. After evaluating the
expression, the print statement then prints the value to the program’s stan-
dard output. The print statement must have only expressions passed to it. A
statement does not need to give a value, and that makes it not a valid input
to the print statement. The following are valid Catscript print statement
calls:

print("foo")
print(foo)
print(foo + "bar")

3.2 Variable Statement

The Variable Statement is used to declare and assign a new variable. It is
not possible in Catseript to declare a new variable without also giving an
expression to be assigned as a value. The following demonstrates what is
required for a Catscript variable declarations and assignments:

1. A required 'var’ keyword
2. A required variable name
3. A required '=" symbaol
4. A required expression

If a type is specified, Catscript verifies that the type is assignable from the
type meant to be returned by the expression’s getType() method. If not,
the program throws an Incompatible Tvpes error. If a tvpe is not specified,

the variable type is inferred from the expression’s getType() method. The
following are valid Catscript variable statements:

var foo : int = 3
var foo : object = 5
var foo = 2

3.3 Assignment Statement

The Assignment Statement is used to modify the value of an existing variable.
This syntax for a Catscript assignment statement is as follows:

1. A required identifier
2. A required '=" symhaol
3. A required expression

The following are valid Catseript assignment statements:

foo = "bar"
foo = bar
foo =1+ 3

3.4 If Statement

The Catseript If Statement is nearly identical to the if statement in other
programming languages such as Java. It is used to determine whether or not
to run the statements below 1t. Catscript’s if statement 1s created as follows:

1. A required 'if’ keyword
A required (" symbol
A required expression
A required ')’ symbol

A required '{" symbol

o o e w1

A required series of statements to execute

5

7. A required '}’ symbol
#. An optional 'else’ keyword

(a) An optional if statement or
(b) A required '{" symbol
(¢) A required series of statements to run

(d) A required '}’ symbol

The following is a valid Catseript if statement:

if (foo == "bar") {
print("foo")
} else if (foo == "foo") {
print("bar")

}

3.5 For Statement

The syntax of the For Statement in Catscript uses an 'in’ keyword. The for
statement only supports iterating through a list. It cannot count up to a
certain value

int 1 =0; 1 < b; 1i++
or as they would in Python with
i in range 5

Catscript’s for statement can be created as follows:

—

. A required 'for’ keyword
2. A required (" symbol

3. A required variable name
1

. A required 'in’ keyword

[

. A required expression

6. A required ')’ symbol
7. A required '{’ symbol
8. A required series of statements to evaluate
9. A required '}’ symbol

The follow is a valid Catseript for statement:

for (x in [1, 2, 31) {
print{x + " foo")

}

3.6 Function Definition Statement

The Function Definition Statement is used to define functions that can be
called elsewhere. Functions may have an explicit return type, or return void
if no type is specified. If a return type is declared, the program checks that
15 does return that specific type. The parameter list 1s to declare function
parameters as a list of names, each followed by an optional ;" symbol and
type. Catscript’s function can be created as follows:

1. A required function’ keyword
2. A required function name

A required (" symbol

A parameter list

A required ')’ symbol

An optional 2" symbol followed by the function’s return type

e

A required '{’ symbol
8. A series of statement to evaluate
9. A required '}’ symbol

The following 1s a valid Catscript function definition:

function ab (a : int, b : int) : int {
return a + b

}

3.7 Function Call Statement

Onee a function had been defined, 1t can be called with a Function Cal
Statement. The program verifies that the number and type of arguments
match the function’s definition. The program also checks that there is a
function that exists with the same name that has been added in the symbol
table. Catscript’s function call can be created as follows:

1. A required function name
2. A required (" symbol

3. A list of arpuments

4. A required ')’ symbol

Below is an example of a valid Catscript function call:

ab(za, b)

3.8 Return Statement

The Return Statement is used to exit a function, and potentially return a
value. It can only be ran within a function. If a return statement is found
outside of a function. the program throws a Syntax error. Catscript’s return
statement is created as follows:

1. A required ‘return’ keyword
2. An expression to be returned

Below is an example of a valid Catseript return statement inside of a function:

function ab (a : int, b : int) : int {
return a + b

}

4 Type System
Catscript utilizes a simple type system. The following are valid types:
e int - Any 32 bit integer
e string - a Java-similar string
¢ bool - a boolean value (True/False)
e list<x>- a list of values with type “x* (must be same type)
e null - the null type

e object - any type of value

Section 5: UML: None needed because design was selected by professor. However, I will
Include and discuss one below for reference.

This specific UML diagram shows how the different types of expressions are connected to the
different types of statements in Catscript. At the center of the top larger balloon is the general
‘Expression’ class that has all other types of expression connected to it. Some of these include
‘AdditiveExpression’, ‘FactorExpression’, and ‘ListLiteralExpression’. The center ‘Expression’
class is also connected to ‘ParseElement’ which itself if connected to the lower smaller balloon
with ‘Statement’ in it’s center. The ‘Statement’ class is connected to all the different types of
statements contained within Catscript. Some of these are ‘ForStatement’, ‘IfStatement’, and
‘PrintStatement’.

Section 6: Design Trade-offs

The biggest design trade-off was the fact that Catscript implements a parser with a recursive
descent algorithm rather than a parser generator. The main reason this was chosen was because
recursive descent closely mirrors the recursiveness of grammars. It was also chosen because it is
fairly easy to implement and modify quickly. By using recursive descent, | felt that [got a more
in depth understanding of how recursion works in a large program such as Catscript. I believe it
was also useful because it helped me get a better understanding of how some real world
languages work such as C# and Java that implement recursive descent themselves.

Section 7: Software Development Life Cycle

For Catscript, a Test-Drives Development (TDD) model was used. TDD is a software
development process in which test cases are written before implementing required features,
which gives the programmer a pass or fail case to test their code. When new features are to be
added to the project, the first step is to write a test case that passes only if the required feature’s
specifications are met. This test should always fail before the feature is implemented. The
programmer then writes code to pass this test. Although the first solution is most likely not the
most efficient, the code can then still be refined while checking to see if the test is still passing.

