Catscript Tokenizer
Csci468

Spring 2022

Brian Keith
Armand LaPlume

Section 1: Program

I have included a zip file of the complete project

Section 2: Teamwork

Teammate 1 was the primary coder, they wrote most of the code for the project and satisfied all
the given tests, they made up about 95% of the time spent on this project. Teammate two was
the tester, They provided tests that ensured the project met the requirements. Teammate 2 also
provided the documentation, they made up about 5% of the time spent on this project

Section 3: Design pattern

In this project we used the Flyweel design pattern, sometimes called memoization. It is used to
increase efficency by reusing objects instead of creating new ones. A great example of this
design being used in the code is in the getListType method of CatcsriptType. located specifically
at lines 37-45 in CatscriptType.java, the code snippet isincluded below.

cacne

~=2~he

Section 4: Technical writing

The following is the technical document for the Catscript Project

Introduction

Catscript is a simple scripting language. Here is an example:
var x = "foo"

print(x)

Features

Expressions

Expressions in Catscript always evaluate to a value. They follow an order of precedence of unary, factor,
additive, comparison, and equality where unary expressions are the first ones evaluated and equality
expressions are the last ones evaluated. There are also primary expressions which are the lowest level
expressions and each one is either an identifier, string, integer, boolean true or false, null, list, function
call, or it can be a parenthesized expression which will then recursively parse another expressison.

Unary Expression

The unary expression is used to invert a boolean or an integer. A unary expression is the word “not” or
the “-“ symbol followed by a boolean or an integer respectively. Here is an example where the result
printed is -5:

varx=-5
print(x)

Factor Expression

The factor expression is a multiplicative expression. It’s syntax is an integer followed by either a
“/” followed by another integer. Here is an example where the result of x would be 28:

“uxn

or

varx=4%*7

Additive Expression

An additive expression can either be a mathematical expression where to integers are being added or
subtracted or it can be string concatenation. An additive expression is an expression followed by either a
“+” or “-“ followed by another expression. Here are two examples where x would be the integer 14 and y
would be the string “Catscript”:

varx=8+6

vary = “Cat” + “script”

Comparison Expression

A comparison expression evaluates to true if one integer is greater than, greater than or equal to, less
than, or less than or equal to another integer, depending on which operator is used. A comparison

expression is an expression followed by a “>”, “>=", “<”, or “<=" followed by another expression. Here are

two examples where x is true, and y is false:
varx=4>=1

vary=7<4

Equality Expression

An equality expression compares two objects to see if they are equal or not equal depending on the
operator used. An equality expression is an object followed by a “==" or “I=" followed by another object.
Here are two examples that are both true.

varx=1==

vary = true !=null

Statements

Print Statement

This prints the contents of the print statement exactly like print statements in other languages. A print
statement is the keyword print followed by a “(“ followed by the expression to be printed followed by a
“)”. Here is an example where 5 is printed:

Varx=5

Print(x)

Variable Statement

A variable statement creates a new variable and assigns it a value. A variable can have its type explicitly
defined or it can infer it from its assigned value. A variable statement is the var keyword followed by the

name of the variable optionally followed by a “:” and a type followed by a “=” followed by an expression.
Here are some examples of var statements:

varx =10
vary = true

var z = “Catscript”

Assignment Statement

An assignment statement assigns a new value to a variable. An assignment statement is the name of the
variable followed by a “=” followed by the new value. Here is an example where the value 1 would be

printed:

varx=2
x=1

print(x)

For Statement

A for statement in Catscript is like a for statement in any other language. It executes a set of statements a
certain number of times. A for statement the keyword for followed by a “(“ followed by the name of a
variable local to the for loop (typically i) followed by the keyword in followed by a list followed by a “)”
and “{“ followed by any number of body statements followed by a closing “}”. Here is an example that
would print 1, 2, 3:

for(xin [1, 2, 3]) { print(x) }

If Statement

An if statement is used to execute a block of code if the expression in it evaluates to true. An if statement
is the keyword if followed by a “(“ followed by an expression followed by a “)” and “{“ followed by the
statements to be executed followed by a closing “}”. An if statement can optionally be followed by an
else if or else statement to either check if another expression evaluates to true and execute a list of
statements or to unconditionally execute a list of statements if the expression in the if statement did not
evaluate to true. Here is an example where “if statement” is printed:

varx=5
if (x ==5){
print(“if statement”)

} else { print(“else statement”) }

Function Definition Statement

A function definition statement in Catscript defines a function with a given number of parameters which
each can optionally be assigned a type, an optional return type, and a body of statements to be
executed. Here are some example definitions:

function foo(x) { print(x) }
function fool() : int {

var x =42

return x

}

function foo2(x : int) : int {

returnx +1

Section 5;: UML.

A Class diagram for the class ParseElement and its related classes is shown below

FactorExpression

IdentifierExpression

“name:string
“type:CatscriptType

~operator: Token
“leftHandside - Expression
~rightH andi

+getName(): String

le: Expression

‘+getleftHandSide() Expression
+getRightHiandside)Expression
+isMultiply()-bookan

—

EqualityExpression

“operator: Token
leftHandside: Expression
- ide: Expression

FunctionCallExspression

-

+getName(:String

“name: string
-arguments: List<Expresion>
“type: CatscriptType

+getArguments()List<Expresssion>

Comparision Expression

+EetL
+getRightHandSide(Expression
+isEqualljboolean

ParenthesizedExpression

“operator: Token
-leftHandside: Expression
—rightttandside: Expression

+islessThan()boolean
islessThanOrEqual}:boole an
+isGreate rThanOrEquall):bookean
+isGreate rThan(}:boolean

~expression: Expression

+getExpression(): Expression

Expression

BooleanLiteralExpression

-memberName

+getTypel):CatscriptType

“evaluate(rt: CatscriptRuntime): Obje ct

-booleanValue: boolean

AdditiveExpression

+getValue(}bookean

-operator: Token

Expression
-rightHandside: Expression

“getleftHands de)-Expression
+getRightHandS de() Expre ssior
+isAdd():Boslean

n

Type Expressions

IntegerliteralExpression

-intege rVal int

ListLiteralExpression

+getvalue(): int

“values: List<Expression>
“type: CatsriptType.

lues(): L

StringLiteralExpression

-stringValue: String

+getValue(): String

UnaryExpression

-operstor: Token
-rightHandside: Expression

“getRightHandsi
+isMinuts(): boolean
+isNot(): boolean

(| Expression

Parse Element

“+Validate(st: SymbolTable)- void
+Transpile(sb: Stringuilder): void
+compile(code: Byte

)2 we

AssignmentStatement

~expression: Expression
~variableName: String

getExpression|]: Expression
+setExpression(Expression|: void
+getvariableName():String
+setVariableName (String): void

ForStatement

~expression:Expression
-variableName: String
-body: List<State ment>

+getExpression(): Expression
+set Expression(Expre:
+getvariableName():String

+setVariableName (string): void
+getBody(): List<State ment>
+set Body|List<Statement=]: ve

Statement

VariableStatement

-expression: Expression
~varidbleName: String
~explict Type: CatseriptType
_-type: CatscriptType
“getExpression|): Expression

)z void

FunctionCallStatement

+execute(rt: CatscriptRuntimel: v

“+getExpression(): Expression

ression(Expression): void

+setvarizbleNamestring]: void ReturnStatement
+getExplicitTypel): CatscriptType
+setExplicitType(Cat scriptType - void expre o Expremion
function: F
+setExp
PrintStatement

expression: Expression

+getExpression(): Expression

+setExpression|Expression|: void
~expression: FundonC:
-name: string FunctionDefinitionStatement ffStatement
; =
+getNamel):String

“name: String

-type: CatseriptType
-argumentTy pes: List<Cat scriptType s>
-argumentNames: List<String>

-body: LinkedL ist<Statements>

~expression: Expression
trueStatements: List<Statement>
Listestatement>

Feethame(string): void

“+getName(): String

+getType(): CatscriptType
+setType(TypeLteral): void
+eddparamete st ring, TypeL teral]: void
+getparameteriame(int): String
+getParameterType(int): CatscriptType
“+getParemeterCount}: int
+setBody(List<statement>: void
“+getBody(): List<Statement>
~validateReturnCove rage (List<Stament>): void

+invoke(CatscriptRuntime, List<Object>): Object

+getDescriptor(): String

+getExpression(): Expression
+setExpression(Expression]: void
+getTruestatements(): List<Statement>
+setTruestatements|List<Statment>): void
+getElseStatementsi): List<Statement>
+setElseSt at ements[List<Statment>]: void

Section 6: Design trade-offs

For this project one of the biggest design tradeoffs was Using a recursive descent structure
instead of a parser generator. This decision was made because writing a recursive descent
parser gives a much better understanding of what is actually happening as opposed to a parser
generator handling which does most of the more technical stuff automatically, leaving the
programmer with larger chunks of generated code that they did not write and may not be able to
understand. The tradeoff is that using recursive descent does require the programmer to write
more code by hand, and parser generators tend to be more standard in a university setting.

Another design decision was not using a visitor pattern, everything was done directly in
the relevant Class. Not using the visitor pattern creates a simpler end product that is more
streamlined to write, however, it would be harder to maintain for a growing system. because the
Catscript project was a relatively small project it made sense to not use the pattern in exchange
for simplicity and ease of coding and debugging.

Section 7: Software development life cycle model

This project was guided by test-driven development. The primary coder was given an extensive
test suite and the goal was to get the project to pass all the tests. This was accomplished using
progressive development of building blocks, first tokenizing, then parsing, then finally compiling.

