Jacob Connelly
CSCI 468
May 1, 2022
Capstone Submission
Section 1: Program
Program source code can be found in src.zip located in the same directory of this document.

GitHub Link: https://github.com/Jacob-Connelly/csci-468-spring2022-

private/tree/master/capstone/portfolio

Section 3: Teamwork

The teamwork portion of this project was to write three unit tests and CatScript documentation
for each team member. My team consisted of a single teammate I will refer to as team member 1.
I will be turning in team member one’s unit tests located at
../test/java/edu.montana.csci.csci468/TeamMemeberTests.java and the documentation he wrote
located in section four of this document. Team member one spent approximately 5 hours writing
the documentation and unit tests. I also spent about 5 hours writing the documentation and unit

tests for him. Developing CatScript and getting all tests to pass took me about 20 hours.

Section 3: Design Pattern

https://github.com/Jacob-Connelly/csci-468-spring2022-private/tree/master/capstone/portfolio
https://github.com/Jacob-Connelly/csci-468-spring2022-private/tree/master/capstone/portfolio

@Override

String toString()

Cat
Objects.equals

hashCode ()
Objects.hash (

Class getJavaType ()

ListType CatscriptType

CatscriptType
ListType (CatscriptType componentType) {
(+ componentType.toString () +

= componentType

@Override

isAssignableFrom(CatscriptType type)
(type ==) |

(type ListType)
ListType otherList = (ListType)
.1sAssig

CatscriptType getComponentType ()

@Overr
String toString()
.toString () +

One design pattern we used during the development of CatScript is the Memoization pattern.
This is a pattern that is used for program optimization where the results of an expensive call are
stored in a cache for quick lookup when needed. When the method is called again with the same
input, the results are returned from the cache instead of invoking the method again. In CatScript
Memoization happens in the CatscriptType class on lines 36-44 in the getListType method. This
method returns a CatscriptType object by invoking a static class called ListType. Before
Memoization a new instance of ListType would be called and operations performed to get the
correct CatscriptType for the list. Memoization is implemented by creating a HashMap where
CatscriptType is the key and ListType is the value. This global HashMap is considered the
cache. Every time getListType is called we will attempt to find the CatscriptType from the cache
and return it if found, otherwise a new ListType will be made and inserted into the cache.
Memoization efficiently optimizes the getListType method by only creating a new ListType if
that CatscriptType has not been used before. It cuts down on the amount of object creations thus

optimizing the application.

Section 4: Technical Writing

Catscript Documentation

Catscript Documentation 3
Introduction 4
Comments 5
Type System 6

Types 6
Variable Type Inference 6
Lists 7
Operations & Expressions 7
Equality Expression 7
Comparison Expression 8

Additive Expression 8

Factor Expression

Unary Expression

Primary Expression
Functions & Control Flow

For Statement

If Statement

Print Statement

Variable Statement

Assignment Statement

Functions

Introduction

10
10
10
10
11
11
12
12

Catscript is a simple scripting language. It was created for educational purposes and is intended to be
used by students who are creating recursive descent compilers to compile Catscript to Java bytecode in
the CSCI 468 compilers course. The complete catscript grammar is included for reference below.

statement };

(nin
{ ("=

= additive

"null"

list_literal | function_ca

statement = 'print’', '

ment =

statement = function_call;

t_statement = IDENTIFIER, '='

‘string’ | 'bool" | 'object' | 'list' [, '¢

parameter_list = [parz
parameter = IDENTIFIER [, ':'

return, ment = 'return’ [, ex

Comments

Comments are an important part of development and allow for inserting explanations or notes into the
code. Anything on the same line after the // symbol is ignored.

var num 16

print(num)

Type System

Types

Catscript has six types:

int: 32 bit integer

string: a java style string

bool: a boolean value, true or false

list: a sequence of values

null: a type representing the absence of a value

object: any type of value

Variable Type Inference

Catscript supports two kinds of variable type assignment, explicit and implicit. Explicit typing is done by
following the variable name with a colon and then one of the catscript type reserved keywords seen
above. Implicit typing assigns the variable the type of the right hand side expression. Variables are
statically typed and cannot be assigned to a different type.

var num = 10
var num2 : int = 10

num "10"
num2 "10"

Parse Errors Occurred:

Line 4:num = "18"

N

Error: Incompatible types

Line 5:num2 = "18"

N

Error: Incompatible types

Lists

A list is a statically typed variable which contains a collection of expressions. They can be explicitly
declared or infer their type from the type of the items in the list. List items must be all of the same type.
Object types can be used to store values of different types.

var mylList:list<int
var mylist2:1list<string

var mylList3 = [1, 2, 3]

Operations & Expressions

Expressions are symbols and operations that evaluate to a value.

Equality Expression

The equality expression evaluates to a boolean true or false value depending on the equality of the
comparison of the left and right hand side expression and the operator used.

True Expressions are not equal Expressions are equal

False Expressions are equal Expressions are not equal

Comparison Expression

The comparison expression evaluates to a boolean true or false value depending on the comparison of

the left and right hand side expression and the operator used.

> < >= <=
True Left greater than Left smaller than Left greater or Left smaller or
right right equal to right equal to right
False Left smaller or Left larger than Left smaller than Left greater than
equal to right right right right

Additive Expression

The additive expression is used to add integer values using the + operator and subtract them using the -
operator. The + operator is also overloaded to combine strings. If the + is overloaded to concatenate a

string with a null, boolean, or integer value, the other type value will be converted to a string and

combined.

var num

num - num
print(num)

num = num
print(num)

var hello "hello™
var world "world™

print(hello + world)

Factor Expression

The factor expression is used to multiply integer values using the * operator or divide them using the /
operator. Note that floats are not supported so the returned value is rounded up or down.

Unary Expression

var num 8

num = num
print(num)

num num

print(num)

print(38/5)

The unary expression is a one sided expression which uses the not operator to negate the expression.

var alwaysTrue true

print(not alwaysTrue)

Primary Expression

Primary expressions are the lowest level of the expression grammar and include identifiers, string
literals, integer literals, the boolean literal true and false values, the null literal value, list literals,
function calls, and parenthesized expressions.

"hello™
1

null
varName
[1, 2, 3]
(1> 2

3

Functions & Control Flow

Statements perform an action. They have side effects which interact with the execution environment.

For Statement

The for statement is a statement that is used for looping. It is useful for iterating through lists or
performing a statement or expression located in the body of the loop a number of times.

If Statement

The if statement is a conditional gate. The expression in the if statement needs to be true for the
statement or expression in the body to be executed.

var a 1
var b 2

(@ > b) {
print(“Hello™)

(a < b) {
print(“World")

The If statement also has an optional else clause that will execute the code within its body if the if
expression is false. While else-if statements are not natively supported, you can achieve the same effect
by chaining if statements.

var a il
var b 2

(a > b) {
print(“Hello™)
} r

}

1
print("Hi ™)

(a < b) {
print(“World™)

Print Statement

The print statement is a simple statement that sends the expression inside its surrounding parentheses
to the standard output.

Variable Statement

The variable statement associates a value with an identifier. The type of the variable can be inferred or
explicitly defined. For more information see the type system section.

num 5
num2:int 5

str = "hello"
str2:string - "hello"

boolean true
boolean2:bool true

obj = "This is an object”
obj2:object = "This is an object"]

mylList [0, 1, 2, 3
mylList2:1list<int

Assignment Statement

The assignment statement is used for reassigning a variable to another value.

var one
one
print(one)

Functions

A function is a piece of code that you want to reuse. There are two parts to a function, declaring it and
calling it. Declaring a function is where you define what the function does and what it’s called and is
dictated by the function definition statement. Calling a function is where the code is actually executed
and it is dictated by the function call statement, which is the identifier of the function followed by values
you want to pass in to the function. The placeholder for these values in the function definition are called
parameters. Each parameter can specify a specific type. The return type of the function can also be
specified by adding : type after the function identifier. Additionally, the return statement will return a
value back to the point in executing the program where the function was called.

var one 4
var two &
function myFunc(inl:int, in2:int){

inl in2

h

print(myFunc(one, two))

Section 5: UML

I created the below UML diagram to represent the parse elements of this project. As depicted,

ParseElement is an abstract class containing the CatScriptProgram and various methods required

to parse and run the program. Expression and Statement are both abstract classes that inherit

from ParseElement. Each different Expression and Statement defined in the CatScript grammar

are concrete implementations that inherit from Expression and Statement respectively.

Eaelr

apeaan Token
ahiHanctsite
~righbandSide. £

1+ getemtsntSe(: xprasshn
 FRgRaS k(. B

[T E———

i)

e BteCodaConaratnr)

sLa\!'hanD'E\La(! bonjean
st TianOrcaus). bk

1 bacinan
e, SyrceTasle)
+ alyeat Gt 52

*reicieute

opu puseSenen

e

1

+ seshisceiuiine: CatssrpeRuncne) e

[—

Facartaprassion

arossol
B s Eeresen

+ gaLaMHaRSIoely Expression

opessior: T

Eagresaion
phbis il

+ geLamHESR: Suprassion

+ Ay

Expression

+isnumay
iy 5 SyreTasn
+Setynel) Gy

-+ comple{cace: yreCatetarersing

e

ot oo

et i

"“L 1

ParsaEement

Bosleanlters Cagresson

- angession, Expression

A Sy
il CuemRari)

Privstatenan

eTatie)

oSG B G a0

Fuetancalstamart

- axpressiun FuncionCalExprssion

MoassEprssion: Doression) [~ (| e LsaEpeesions

e ——
+ execuseilie: ColseralRurte)
R

Wsiatement

CarsenpPmgran

~ourut Smagemsr
e

ere
. Fans DS

= potenpe

Tnaesatenen
L g L

ooy Expsn
s Epressony
s(satemens iea—
Siaieens

enpeTvge) = walid

ol e e B0

e(syrnbolTatle. Sy

* gL
e

e —
b Tacie)
i)

+ s AsNTS; Cac RIS

- atteaniulue, bosker

CalSerplType

+ coruplefoo: DteCodGaneialct)

VarabieSaranant

exessin Eitesson

guiEmresson] Exgrszian
" Sitiienaneo. Soig

e
Lo o

o

rholeTable)
E—

e CaticrisRunine)
EyteCorteGoreraic

+ avsluatedrantine; Cacee e
 mpie{code! ook Generi)

1 veliceters

ATable SprbeTa)
pType

s

o CamerpTIR

(ST Tabk: SyrmbciTatle)

+oempile{cae: Byte CoeGevermicr)

oy Expression

- peramr Token
rataniSice: Expression

cairas{ele: By Co Gen W)

="

 sxpression Baprossion

© s Fugresion

pre———

iresaeakire

: SymbcieTatle)

= camai ofzods: Byte s Genuratar)

[ersr—

i T STl

H e st
+ samaifzode: Byt Generaia)

Satement -

+ sampiEiEd: SnCdsGEmE

FicnonbtienStacamant

- sy
e Gty

i

rumerehames List<Sing=
-

+ petExpresson). O
+ sesPapresancr
gL Sy
4 ittt g

- exgrassan
isbiehame Sy
bty LiteSiatament

[T ——— }

press casicn
furemn; FunglondetnsonStatement

Tt SyribcleTable]

re: CatscrpRanine)

BvieCadaGenaen

+ samams{rars: St

Section 6: Design Trade-offs

A design trade-off made while designing CatScript is the decision to create a recursive decent
parser by hand instead of using a parser generator such as ANTLR. While Carson Gross made
this decision for us, I believe he made the correct choice. Many modern-day languages use
recursive decent for their parsers such as C#. Handwriting a recursive decent parser allowed us to
fully understand how recursive decent worked by giving concrete examples. Many parser
generators create a recursive decent parser but with code that is near impossible to debug. In
class Carson Gross showed us a parser generated from ANTLR that contained multiple classes
with 1000+ lines. Many methods in these classes were extremely difficult to understand and used
variable names such as ‘a’ with no description of the methods operations. I believe Carson Gross
made the correct choice in having us hand write a recursive decent parser because it was simpler

to understand and much easier to debug.

Section 7: Software Development Life Cycle Model

Test Driven Development (TDD) was used when developing CatScript. TDD is a software
development model where software requirements are converted to test cases before any business
logic has been created. Throughout the development of the application, the tests are continuously
run against to the application to confirm that all requirements have been met. In the case of
CatScript Carson Gross gave us a test suite that covers most CatScript requirements. We
developed against these test cases until all tests passed. TDD is a very useful tool while
developing because I was able to understand the exact required result that each method/process
needed to return. It kept my code on the correct path and provided a valuable way to debug
problematic code. On the other hand, TDD comes with its faults. I found that the test suite did
not cover every scenario and I was able to get all tests to pass missing crucial portions such as
not implementing the AssingmentStatement execute() method. I believe that TDD can provide a
false sense of security when it comes to testing code. It can feel like every scenario and every
edge case has been covered but some bugs will inevitably fall through the cracks. This is why a
well laid out testing plan is required with TDD to find any issues that were not covered in the test

suite. When a new bug is found a test should be written for the new scenario in order to

continuously improve your test suite. Overall, I believe that TDD works very well in an

educational setting and helped me understand testing more in depth.

	Catscript Documentation
	Introduction
	Comments
	Type System
	Types
	Variable Type Inference

	Lists
	Operations & Expressions
	Equality Expression
	Comparison Expression
	Additive Expression
	Factor Expression
	Unary Expression
	Primary Expression

	Functions & Control Flow
	For Statement
	If Statement
	Print Statement
	Variable Statement
	Assignment Statement
	Functions

