CAPSTONE PORTFOLIO

COMPILERS 468
SPRING 2022

DARSHAN DIAMOND
JAY FORBES
MARNIE MANNING

Section 1 — Source Listing:

Source Code

All project source code and files are contained within the included in a zip file.

https://github.com/darshandiamond/csci-468-spring2022-

private/blob/master/capstone/portfolio/capstoneportfoliosource.zip.

Development Environment

Catscript was compiled using a Maven script with JDK 14 and developed within the Intellij Idea

IDE ecosystem.

Section 2 — Teamwork:

This project was divided into four sections, a tokenizer, parsing, evaluation, and bytecode. The
code creation for this was done by each individual person. The teamwork was from each partner two
submit tests to validate each other’s code. Along with submitting technical documentation for each
other’s portfolios. In this case, we had to work in a team of three because someone drop the class and
failed to inform their team member about it. We each completed three tests and the technical

documentation and exchanged it with one other person in the group.
Member 1: Darshan Diamond
Primary software developer, code management.

Estimated hours: 120 hours

Member 2: Jay Forbes

Technical documentation, software test.

Estimated Hours: 1-hour writing tests, 3 hours of technical documentation
Member 3: Marnie Manning

Technical documentation, software test.

Estimated Hours: 1-hour writing tests, 3 hours of technical documentation

Total Estimated Hours: 128 Hours

Section 3 — Design Pattern:

The Memoization pattern was the primary pattern used in the Catscript creation. This pattern
was used to increase the efficiency of the “getListType” function and reduce the number of projects
being created. Only one ListType is generated for each corresponding Catscript, this improves runtime
speed by removing the need for redundant object creation, as well as lowering overall memory usage.
To code, this function involves creating and storing a new ListType as well as performing unnecessary

comparison operations to determine the proper ListType to create.

The Momoization Pattern can be found at CatScriptType.java located at ~\csci-468-spring2022-
private\src\main\java\edu\montana\csci\csci468\parser\CatscriptType.java. This comprises the entire
function, control flow, and static final HashMap used to store CatscriptTypes with their ListType

equivalents.

static final HashMap<CatscriptType, ListType> CACHE = new HashMap<>();

public static CatscriptType getlListType(CatscriptType type) {
ListType listType = CACHE.get(type);
if (listType == null) {
listType = new ListType(type);
CACHE.put(type, listType);
}

return listType;

Section 4 — Technical Documentation

Introduction

Catscript is a statically typed scripting language that compiles to JVM bytecode featuring both evaluation
and compilation. It takes features from Java and combines them with features from other languages in
order to have an improved language to work with.

Features

Comments
Introduction

Catscript is a language very similar to Java. We implemented tokenization, parsing, evaluation, and
bytecode using memoization to create a functioning programming language.

Features
Types

Basic data types that allow for arithmetic and data storage. These are:

String - A series of characters
Int — 32-bit number
Boolean - True or False value
Null - Data of type null
Object - Flexible data type
List - Data container
Print
This takes an input from the user and is returned to the output area of the console.
print("Hello World") //Will output "Hello World" to console.

var foo ="" print(foo)
//Will output empty string initialized under variable foo to console.
Print will concatenate two like variables or two unlike variables.
var fool ="A"
var foo2 ="B"
print(fool+foo2) //Outputs "AB" to console
var fool ="A"
var foo2 =1
print(fool+foo2) //Outputs "A1" to console
Commenting Code
Commented code is not evaluated by the program. To generate a single line comment use: //
//This is a single line comment
For multi-line comments use: /* */
/*
This is a multiple
line comment
*/
Expressions for Evaluation
Equality Expression: Compares two terms, either with == or != and results in a boolean.

1==1// Output: True

1!=2// Output: True
Unary: Negation of a term, can be done multiple times
-1 // Output: -1
--1// Output: 1
Additive Expression: Adding or subtracting two terms. Terms do not have to be of the same data type.
1+2//Output: 3
1-2//Output: -1 3 + "Hello World" // Output: 3Hello World
Factor Expression: Multiplication and division of two terms.
1*2//Output: 2
1/2//Output: 1/2
Parenthesized Expression
2(1) // Output: 2

Comparison Expression: Compares two terms, returns a boolean value. You can compare with greater
than or equal to.

1> 2 // Output: false
1>=1// Output: true
Null Expression: tests to see if term is equal to null data type
var testNum =1;
testNum != null // Output: true
Variable Decloration

Variables that are initialized and then manipulated throughout the program to hold the desired data
values. You can initialize a variable of any data type. In fact, you must in order to use the variable in
Catscript.

Implicit Declaration: Does not provide a data type during initialization
var testVar=1
Explicit Declaration: Provides data type during initialization
var testVar: Int=1
If Statements

If statements use a comparison to determine how to evaluate a certain attribute. You can use the
keywords "if", "else", and "else if". "if" will execute the following code if the parenthesized expression is

true. "else if" will execute the following code if the previous if statement is not true and the following
parenthesized expression is true. "else" will execute if the previous "if" and "else if" statements did not
result in true.

var testOne =1
var testTwo =2

// This will result in the "else if" case evaluating to true and executing the print statement.
Output: Case 2

if(testOne > testTwo){
print("Case 1");

} else if (testOne < testTwo){
print("Case 2");

} else{

print("Case 3")

}

For Statements
For statements are used for iteration. They can traverse a data type, commonly used for searching.
testNums =[1,2,3,4,5]
// For loop traverses testNums. Output // 1\n 2\n 3\n 4\n 5
for(i in testNums){
print(i); }
Functions/Return Statements

Functions have a name, parameters, code to execute, and return statement. Parameters are not
required. By default a function will return void, the user must state what they want the return type to be
if a specific type is desired. A return statement does not print to the console, rather it is saved to that
function call. The output of a function call can be saved to a variable

function someFunction(int param1, int param2) : Int {

if(param1 > param2){

return parami; } else {

return param2; } var biggerNumber = someFunction(3, 4);

print(biggerNumber) // Output: 4

Section 5 - UML

This did not require us to create a UML before starting this project. The entire project was built for us,
so all we had to do was fill in the necessary code in order to get all the tests to pass. Below is a UML

diagram that was provided in the past. This explains how each component is related to the other.

In this diagram, the Parse Element is divided into two categories: statements, and expressions. All the
children fit into one of these categories.

@« ReturnStatement

© « AssignmentStatement

N/

\

@« ForStatement e
~
. W
~.

\
~

@ « Functioncallstatement

VariableStatement
,/))
Y ;
T
T
Statement e

CatScriptProgram
~T A T
.,-"')'- N \ B ~

PrintStatement A

\ S
/ \ ~_
\ —
@ Tsfatenent ~
\
\‘ e
\
\
\

FunctionDefinitionstatement

e

/

\
/ \
/ \
¥
€« ParseElement
© .« UnaryExpression

& .« SyntaxErrorStatement

\ /
@« StringLitefalExpression
€ AdaitiveExpression
3

/= ListLiteralExpression

/f'
~ \\ /
~

\'\
© « TypeLiteral \\
38 \

SynpdxErrorExpression
T

\ /
\\
N/
~ ‘i
Taa ¥/ KA
FactorExpression € Expression e ComparisonExpression
—W
— Fyaht e
_— yas
IntegerLiteralExpression

/o »

®+ IdentifisrExpression

Booleal)tera"Elur‘ sion

A

[\ N\
N . < EqualityExpression

NullLiteralExpressipn

\

\

\
\

FunctionCallExpression

e

\
@ - ParenthesizedExpression

The next diagram is a very simple sequence diagram that shows a little of the process of
recursive descent. It is not a fully fleshed-out diagram but shows some of the basic processes of this
program.

CatscriptTestBase.compile()

»

This is a basic example of a sequence diagram

CatscriptTestBase Parser Program BytecodeGenerator
<<Create>>		
>		
ll parse(String source): Program >: : :		
I		
I	<<Create>>	I
	>	
I | |

arsedProgram
lg - - - PansedTegEm d |
I | |
I | Verify() . |
I f L |
I | |
l l <<Create>>
I |
I
I
I
I
I
1

] P

Section 6 — Design Trade-Offs

The decision to use recursive descent was the primary tradeoff for this project. Recursive
descent parsers have several pros and cons compared to other parsing solutions. For one, recursive-
descent parsers are not the fastest method available, and they make error message generation difficult.
On the other hand, recursive descent parsers have a very simple implementation, and full-featured
parsers can be generated quickly. Another pro is it’s exceptionally easy to add features within the

parser.

Recursive descent parsers also express the natural recursive nature of a programming
language’s grammar, making that grammar almost parallel with the execution of the parser. This makes
it easier for any programmer who can interpret a language’s grammar to understand the parser’s
functions. A recursive descent parser contains a generated parse tree, making it easy to determine the
nature of any bugs and how to fix them. This kind of parser has a relatively fast execution while
featuring simple implementation and expansion, which makes them an ideal choice for a time-

constrained project like this one.

Section 7 — Software Development Life Cycle Model

This project was developed using iterative test development. The development was divided
into four main sections: tokenization, parsing, evaluation, and bytecode generation. The completion of
each of these was measured by numerous Junit tests intended to determine the integrity of our
software solution. Each individual test featured a section of Catscript source code, which was then

passed through the appropriate Catscript functions and tested for validity.

The iterative test development model significantly aided this project by allowing the team to
proceed at its pace while ensuring that each step of implementation was performed correctly. Having

the availability to work on the project when it is most available to each team member, makes it easier

Avoiding cramming to get something done increases productivity and allowed for the completion of

other coursework.

10

