
Capstone.md 5/6/2022

1 / 2

Section 1: Program
A zip file of the source code is included in this directory in source.zip.

Section 2: Teamwork
For the capstone project, our team separately used test driven development to develop separate recursive
descent parsers. Both partners also wrote the technical documentation for the other partner's project. We
each wrote tests to assist each other in writing a fully complete parser. My partner's tests are provided in
src/test/java/edu/montana/csci/csci468/demo/PartnerTests.java.

Section 3: Design pattern
The Memoization Pattern is used to memoize calls to CatScriptType#getListType(). If we are creating a
list we don't want to store the type of each element with the element itself more than we have to, so instead
we use our design pattern. A hash map is used as a cache to store different variants of list types. This frees up
memory and sufficiently implements the Memoization Pattern

static HashMap<CatscriptType, ListType> cache = new HashMap<div>();
 public static CatscriptType getListType(CatscriptType type) {
 ListType listType = cache.get(type);
 if(listType == null){
 listType = new ListType(type);
 cache.put(type,listType);
 }
 return listType;
 }

Capstone.md 5/6/2022

2 / 2

Section 6: Design trade-offs
We used a handwritten recursive descent instead of a parser generator to develop our catscript parser. Parser
generators are the typical method for creating a parser in a compilers course. All they require is an input
grammar, and most of the course would have been dedicated to developing that. It's simple to write a
specification if the input format is close to normal. The end result is typically easily maintainable and
understood. These parsers are also faster than hand written ones, but not in the case of handwritten recursive
descent parsers. However, parser generators can sometimes reject grammars so research into the specific
generator must be done before hand.

A handwritten recursive descent parser comes with many advantages. The programmer gains a deeper
understanding of all components, the parser is faster because it begins at the start symbol of the program
with no back tracking, the output creates a parse tree, a incredibly useful and fast data structure. However, all
the code had to be handwritten, and the complexity of the project was high. A tokenizer, parser, evaluator,
and bytecode generator all had to be implemented which took significant effort. This method is also less
space efficient than other methods due to the large amounts of function calls and recursion.

Section 7: Software development life cycle model
We are using Test Driven Development (TDD) for this project. TDD is a software development approach where
test cases are created to specify and validate every small functionality of the program. Tests are tested first,
and if they fail new code is written to fulfill them. At the beginning of the project having so many tests to pass
was daunting. Even finding where to start was troublesome. However, after the first checkpoint this is our new
favorite life cycle model. What was unclear and insurmountable and the beginning became a task list of little
check boxes. Easily allowing us to isolate a specific piece of code to implement correctly before tackling the
rest of the project. Had the development model been more traditional to university courses having to write
the thousands of lines of code required would have been impossible.

