
CSCI 468 - Compilers
Spring 2022

Prof. Carson Gross
Jacob Conelly, Wyatt Wright



Section 1: Program

A zip file of the final repository is included in this directory.

https://github.com/wyatwrig/csci-468-spring2022-private/blob/master/capstone/portfolio/source.z
ip

Section 2: Teamwork

The teamwork section of this project required each member to create documentation for
the catscript programming language. This language was created for the compilers class where
the goal was to build a compiler that could compile catscript down to Java byte code. Each
partner submits the other person's documentation, so my partner's documentation is in Section
4 of this document. Additionally, we were required to generate a test suite of 3 Java tests that
evaluated some part of the compiler's ability to work with catscript. My partner chose to test that
comparison, additive, and factor expressions worked together, functions could be called inside
functions, and booleans within for statements evaluated properly. The first test I submitted for
my partner tested his compiler's handling of order of operations, negative integers, and the
rounding up or down of fractional division results. The next two tests were examining variable
scope within functions and checking that conditional statements behave correctly when chained.
I’d estimate that we both spent about 5 hours writing tests and putting together documentation,
and the effort was split equally both ways since we were exchanging work. Additionally, in the
past we had both helped each other debug our code.

Section 3: Design pattern

The design pattern we used in this project is called flyweight and it optimizes the
getListType method within the catscript type class. This pattern is a type of memoization and its
goal is to reduce expensive function calls and limit object generation, saving time and memory.
This is accomplished by implementing a simple caching system where, when a list is created in
a program, instead of simply creating a new list type object for each new list, first we check our
cache to see if a prior list has been instantiated with the same type. If it has, we reuse that list
type object for the new list.

https://github.com/wyatwrig/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip
https://github.com/wyatwrig/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip


Section 4: Technical writing.

CatScript Documentation

The CatScript Type System

CatScript is a strongly typed language. Meaning once a variable is declared
the variable retains its type. For example, if you declare an int you cannot
assign that variable to a Boolean type of true.

CatScript Types:

int – a 32 bit integer

string – a java-style string

bool – a boolean value

list – a list of values with a type ‘x’

null – the null type

object – any type of value

Variables can be declared by inferring types or explicitly declaring the type
outlined below. When a variable is declared without an explicit type it will be
inferred based on the data type found on the right-hand side.



Note: A variable of type object must be explicitly declared otherwise
CatScript will infer the type from the right-hand side.

CatScript List Type:

The CatScript list type can be declared in multiple ways. You can declare a
list with an implicit type or with an explicit type. It is also possible to create
a list of objects that does not need to contain the same type. A list declared
as an explicit type must be composed solely of that type. For example, if a
list is declared as type int it cannot contain a boolean value.

CatScript Boolean Operators

Operator Description

== (equal to) Checks if the value of two operands are equal and
returns true if equal and false if not equal.



!= (not equal to) Checks if the value of two operands are not equal
and returns true if they are not equal or false if they
are equal.

> (greater than) Checks if value on the left-hand side is greater than
the value of the right-hand side, if yes it will evaluate
to true.

>= (greater than
or equal to)

Checks if value on the left-hand side is greater than
or equal to the value on the right-hand side. If yes
return true.

< (less than) Checks if value on the left-hand side is less than the
value on the right-hand side. If yes return true,
otherwise return false.

<= (less than or
equal to)

Checks if the value on the left-hand side is less than
or equal to the value on the right-hand side. If yes
return true.

Example:



CatScript Negation:

The CatScript “not” expression is used to negate a boolean value.
For example, if var x is set to true and we negate x with the “not”
expression, then x would become false.

Example:

CatScript If-Else Logic

Like most other languages CatScript can perform Boolean logic using
If-Else statements. CatScript does not support an Else-If statement.
Instead, an If-Else statement can be imbedded in another If-Else
statement.

If Statement:

Use the If statement to specify a block of code to be executed if the
condition is true.

Example:



Else Statement:

Use the Else statement to specify a block of code to be executed if the
condition is false.

Example:

CatScript Functions



A CatScript function is a block of code that runs when it is called. Data
called parameters can be passed into the method. Methods can also return
a value to be used where the function was called.

Functions consist of five parts the keyword function, the function name,
zero to many parameters, a return type or void for no return, and the
function body. Refer to the function outline below.

Example:

The function foo is declared with two parameters of type string and called
with two strings passed in on line 15. When foo is called it concatenates the
strings and prints the result. It has a return type of void which is denoted by
not adding a return type like in the add function.



CatScript For Loop

The for loop is used to iterate/traverse over lists. CatScript allows you to
iterate over a list declared in the for loop or over a variable referencing a
list.

Example:

Both these for loops print out “1 2 3”. The loop will iterate over the list and
execute the code within loop and when complete move onto the next index
in the list.

Additive and Factor Expressions

CatScript supports the addition (+), subtraction (-), multiplicative (*), and
division (/) operators.

Note: The addition operator is also overloaded to support string
concatenation.



Example:

String Concatenation

Like many other languages CatScript overloads the plus (+) operator to
perform string concatenation. To concatenate string simply put a plus (+)
operator between the two values you wish to concatenate.

Note: Concatenation will still work if a string is concatenated with a
boolean, null, or int value.



Section 5: UML.



This UML class diagram shows the structure of the parse elements. Each parse element
is created by the Catscript parser based on tokens read in by the tokenizer. Mirroring the
grammar, there are two sections of parse elements that inherit from either the statement or
expression classes. These elements are the implementations of the individual statements or
expressions and they implement different methods depending on their type. The most common
methods for the statements are validate, execute and compile. The most common methods for
the expressions are validate, evaluate, and compile. In order to keep the uml simple and
readable I chose not to include getters and setters in the class functions. I also did not show
associations to the catscript type or the parent expression or statement classes for the same
reason. Additionally LucidChart restricts the amount of associations that can be placed with a
paywall. Most classes behave similarly so I’ll only walk through one example. The function
definition statement has a type variable that references the catscript type class which would be
a 1 to 1 association. It also has a list of catscript types called arguments which would be a 1 to
many association with the catscript type class and a list of statements which would also be a 1
to many association with the statement class.

Section 6: Design trade-offs

One of the major design tradeoffs for this project design was the overall method of
implementation for the compiler. The method we used in this class is called recursive descent.
This algorithm takes advantage of the recursive nature of language grammars and makes the
process of creating parse trees intuitive. The alternative is generative parsing which is more
commonly taught. A generative parser is much less hands on since this method uses tools that
take a language specification and generates the different parts of a compiler like a lexer and a
parser. Choosing this approach would have required less infrastructure, but it would have
resulted in less hands-on work coding the compiler and less intuition about what’s actually
happening under the hood. Additionally, while generative parsing is common in an academic
setting, recursive descent parsing is more widely used in-industry.

Section 7: Software development life cycle model

For this project we used test driven development. The idea with test driven development
is to write tests before creating any actual code. If you’re implementing a piece of program
functionality, you would begin by writing a test asserting the expected output of that functionality.
Then you would write the code and get the test to pass. I personally liked using test driven
development for a few different reasons. The first reason was that it was explicitly clear what
was expected from the program. The second reason was that it is easy to maintain motivation
with this development model since the test suite gives a visual indication of development
progress. Running a test and having everything pass is very satisfying. Additionally, having the
tests in place is a major help for debugging since it allows a developer to see if any new
changes break a piece of functionality that was previously working. One of the big downsides
with test driven development is that the quality of the program is based largely on the quality of
the tests. It’s possible to implement a solution that will pass the test but not result in the correct



behavior all the time or cause issues down the road when implementing other parts of the
program.


