CSCI 468 — SPRING 2022
PORTFOLIO
ISABELLE BENNETT
ANDREW CILKER

Section 1: Program.

Find the program attachment in the source.zip file

Section 2: Teamwork.

Describe how your team worked on this capstone project. List each team member’s
primary contributions and estimate the percentage of time that was spent by each team
member on the project. ldentify team members generically as team member 1, team
member 2, etc.

e Team Member 1: Isabelle Bennett
e Team Member 2: Andrew Cillker

Team Member 1 contributed the source code for the implementation of Catscript.
Approximately 100 hours were spent coding this project, this contributes 95% of the
project. Member 2 contributed 5% of the project creating additional tests and
documentation for the language. Team Member 2’s contributed unit tests are located in
src/test/mytests/MyTests.java

Section 3: Design pattern.

The design pattern used in Catscript was the Memoization pattern. It is located in the
getListType() method in the following path:
src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java

static HashMap<CatscriptType, ListType> cache = new
HashMap<CatscriptType, ListType>();
public static CatscriptType getListType (CatscriptType type) {
ListType listType = cache.get (type):;
if(listType == null) {
listType = new ListType (type)
cache.put (type, 1listType) ;
lelse{
ListType newListType = new ListType (type)
}
return new cache.get (type);
}
Implementing this design pattern helps limit the amount of times methods with
expensive computations are run. The pattern uses a HashMap to store results in a
cache. Now, the act of running many computations can be replaced by a minimal

lookup.

Section 4: CATSCRIPT DOCUMENTATION

Include the technical document that accompanied your capstone project.

What is Catscript:

Catscript is a statically typed programming language with a small type system. It was
developed with a recursive-descent parser. The language features tokenization,
parsing, evaluation, and compilation to bytecode. It is syntactically similar to popular
languages like Java, C, and Python with some of its own unique and interesting
features.

CONTROL STRUCTURE IN CATSCRIPT

Like most programming languages, Catscript supports decision logic using for, if, and
else statements. Below is an example of different ways these statements could be
defined and some examples of them in use.

if (expression) {
statement

lelse{
Statement}

for(x in expression) {
statement

}

CATSCRIPT'S TYPE SYSTEM

These are the primary types/terminal elements that other complex elements of the
language evaluate to.

int — 32-bit integer
string — java-style string
bool- Boolean value
null — null type

object — any value

PRIMARY EXPRESSIONS IN CATSCRIPT
This expression type can be directly evaluated to any of the literal types as well as:

identifiers
list literals

parenthesized expressions
and function calls

MATHEMATICAL EXPRESSIONS IN CATSCRIPT

Like most languages, Catscript has the ability to perform mathematical computations. Its
implementation is also syntactically similar to most programming languages. Here are
some examples of the different mathematical expressions possible in Catscript.

ADDITIVE EXPRESSION

These expressions handle subtraction and addition operations. The ‘+’ and ‘—* operators
are used to separate expressions by their left and right-hand side. The ‘+’ symbol is also
overloaded for string concatenation which this expression is also responsible for
evaluating.

Xty
4-1

"Hi" + name

EQUALITY EXPRESSION

The equality expression determines the equality relationship of two sides of the
expression. The operators in this method include: ‘==", and ‘1=".

x == 3

x != value

COMPARISON EXPRESSION

The comparison expression handles evaluating the relationship of two sides of an
expression. The four operators used in this method include: >'’<’/'<="">=",

5 < 3

result+2>4

FACTOR EXPRESSION

The factor expression handles division and multiplication using the™ and ‘/’ operators.
The precedence of operations can also be controlled by using parentheses.

4*4
4/2
(5-3)/2

VARIABLES IN CATSCRIPT

IDENTIFIER EXPRESSION

This expression creates variables and stores additional information about the variable
type.

VARIABLE STATEMENT

These statements define and initialize variables. To define a variable, the var keyword is
needed as well as a variable name to identify it. To initialize the variable's value, follow
the declaration by an optional " and the variable’s type, an equal sign, and the
right-hand expression.

var name : String = “Bob”
FUNCTIONS IN CATSCRIPT

FUNCTIONAL CALL STATEMENT

The function call statement is used to call the function and trigger the function’s
execution.

FUNCTION BODY STATEMENT

The function body statement holds the statement that the function call will execute. It is
optionally followed by a return statement.

FUNCTION DECLARATION

A function in Catscript can execute statements and evaluate expressions. They can be
set to return specified values. To create a function in Catscript, begin with the function
keyword followed by a name to identify the function, then a list of O or more parameters
enclosed in parentheses— these parameter values can either have their types defined or
simply be filled with identifiers. Finally, add a function body statement enclosed in curly

brackets. Below are two examples of how you could implement a function declaration in
Catscript.

function x(a : object, b : int, ¢ : bool) {}

function x(a, b, c) {}

RETURN STATEMENT

A return statement is used within a function body statement to return the value of the
function evaluated. It is implemented using the return keyword followed by the
expression or value the function returns.

return x+y;
return “Hi” + name;

UNARY EXPRESSION

The Unary Expression handles negation and the negative symbol. The two operators it
uses are — and not.

not (func (x))

PRINT STATEMENT

This statement prints desired values to the program’s standard output. To create a print
statement in Catscript, call the print keyword and follow it by the expression you wish to
have evaluated and printed.

print (“Hello”)

Section 5: UML. Attach the UML design diagrams for your capstone project that were
created before you began coding your project.

AssignmentStatement

AdditivieExpression — ForStatement
Token
end ParseElement P
+ start:typeint 1 A
BooleantLiteralE: . + end:int - children;List<ParseElement> #parent
ocleanLiteralExpression— + linesint start -errors:List<ParseError> FunctionCallStatement
+ lineOffset:int I -variables:List<StringVariableStatement>
+ stringValue:String
+type:TokenType + registerFunction(SymbolTable symbolTable):void -
ComparisenExpression ——| + verify():void
+ validate(SymbolTable symbolTable):void .
+ transpile(StringBuilder javascript):void |———FunctionDefinitionStatement

+ compile(ByteCodeGenerator code):void
EqualityExpression ___| # box(ByteCodeGenerator code, CalscriptType type):void
unbox(ByteCodeGenerator code, CatscriptType type):void

— IfStatement

7

FactorExpression

Expression Statement — PrintStatement

FunctionCallExpression / - output: StringBulffer;

- statements:List<Statement>
- variables:List<String, Variable Statemnt>

————— ReturnStatement

+ print(Catscript runtime):void

IdentifierExpression ——

————— SyntaxErrorStatement

IntegerLiteralExpression CatscriptProgram

- output:StringBuffer ThrowStatement
- statements:List<Statement>
- variables:List<String, VariableStatemnt>

ListLiteralExpression ——| + print(Object v):void

+ getOutput():String ——— TryCatchStatement

NullLiteralExpression ——
L VariableStatement

Figure 1: UML Diagram

| created a UML class diagram that demonstrates the general way the compiler is
structured. | chose to go into more detail with the CatscriptProgram and left the other
statements at a higher level. The CatscriptProgram class is a pinnacle part of the
compiler as it is the starting point for any use of the Catscript Language.

Section 6: Design trade-offs. Describe a design trade-off decision (e.g. execution time
vS. space requirements or compile-time) in your capstone project and justify the design
decisions that you made.

The primary design trade-off in this project was the decision to use Recursive Descent.
Catscript implements a Recursive Descent Parser instead of the Parser Generator. The
benefit of this implementation is the simplicity. From a student’s perspective, recursive
descent helped me gauge a better understanding of the recursive nature of grammar.
The downside of recursive descent is it requires more handwritten code, and it is not
typically the industry standard.

Section 7: Software development life cycle model. Describe the model that you used
to develop your capstone project. How did this model help and/or hinder your team?

This project followed the Test-Driven Development life cycle model (TDD). Unit tests
were provided prior to development by my instructor. These tests verified the completion
of different required components of the compiler.

A major benefit of this development model is the reduction of bugs— they are directly
addressed throughout the development process. Since the test suite is designed to
consider edge cases, TDD produces a higher quality program with a higher percentage
of test coverage. It was also helpful to have a test suite for code maintenance. With this
structure, it is easier to run tests, later on, to ensure no modifications or bugs mess up
anything in the program. As a student with the primary goal of conceptualizing how a
compiler works, having the different components of the compiler broken down into
chunks of unit tests that | could step through the functionality of was very insightful and
encouraged active learning. Breaking functions of the code into unit tests also helped
enforce modularity ensuring a more organized and structured project.

