Catscript Documentation

Zach Wadhams, Kai Dockens
5/6/2022

1 Introduction

Catscript is a statically typed programming language that compiles to JVM
Bytecode. It utilizes a recursive descent parser and can work with type
inference, objects and primitives, as well as other features discussed in this
documentation.

2 Expressions

Catscript utilizes an abstract Expression class from which all other expres-
sion types inherit. An expression is a piece of code that eventually evaluates
to some value, such as an integer, a string, or a boolean. The abstract
Expression class utilizes an abstract method called getType(), which is im-
plemented in the expression classes, and returns the type that an expression
will evaluate to.

2.1 Primary Expression

The base expression is the Primary Expression, which may be any of the
following:

e Identifier
e String literal
e Integer literal

e Boolean literal



Null literal

List literal

Parenthesized expression

Function call

Any expression or statement containing another expression will eventually
become some form of a primary expression.

2.2 Identifier Expression

The Identifier Expression is how Catscript implements variables. The identi-
fier expression holds a string as the variable name, along with the variable’s
type due to the fact that Catscript is a statically typed language. The vari-
able name is used to look up its corresponding value in the symbol table.

2.3 Unary Expression

The Unary Expression is the way Catscript implements the not and negative
operators, which are 'not’” and ’-’. The following are valid Catscript unary
expressions:

-1
not true
not not foo

2.4 Factor Expression

The Factor Expression is the way Catscript implements the multiplication
and division operations, which are *’and ’/’. The following are valid Catscript
factor expressions:

foo x -1
10 / -5
(foo - bar) / 5




2.5 Additive Expression

The Additive Expression is the way Catscript implements the addition and
subtraction operations, which are '+’ and ’-’ respectively. The '+’ operator
is also overloaded to support string concatenation. The following are valid
Catscript additive expressions:

x + 6
3 -2
foo + "bar"

2.6 Comparison Expression

The Comparison Expression is the way Catscript implements the relational
operations: strictly greater than ">’ strictly less than '<’, greater than
or equal to ">=", and less than or equal to '<=’. The following are valid
Catscript comparison expressions.

foo > 2
foo + 3 > 10
foo / 2 <= bar * 3

2.7 Equality Expression
The Equality Expression is the way Catscript implements the equal to '==’

and not equal to ’!=" operations. The following are valid Catscript equality
expressions:

foo == bar

foo == 5

x !l=y

foo - bar == x x y

2.8 Expressions Conclusion

This was an overview of how Catscript implements and uses expressions.
Next, we will discuss Catscript Statements.



3 Statements

In the same way that Catscript expressions inherit from an Expression class,
Catscript statements also inherit from a Statement class. While Catscript
expressions evaluate to a value, Catscript statements instead change the pro-
gram’s state.

3.1 Print Statement

A very basic statement is the Print Statement. The print statement is called
with the 'print’ keyword, followed by an expression. After evaluating the
expression, the print statement then prints the value to the program’s stan-
dard output. The print statement must have only expressions passed to it. A
statement does not need to give a value, and that makes it not a valid input
to the print statement. The following are valid Catscript print statement
calls:

print("foo")
print(foo)
print(foo + "bar")

3.2 Variable Statement

The Variable Statement is used to declare and assign a new variable. It is
not possible in Catscript to declare a new variable without also giving an
expression to be assigned as a value. The following demonstrates what is
required for a Catscript variable declarations and assignments:

1. A required ’var’ keyword
2. A required variable name
3. A required '=" symbol
4. A required expression

If a type is specified, Catscript verifies that the type is assignable from the
type meant to be returned by the expression’s getType() method. If not,
the program throws an Incompatible Types error. If a type is not specified,



the variable type is inferred from the expression’s getType() method. The
following are valid Catscript variable statements:

var foo : int = 3
var foo : object =5
var foo = 2

3.3 Assignment Statement

The Assignment Statement is used to modify the value of an existing variable.
This syntax for a Catscript assignment statement is as follows:

1. A required identifier
2. A required '=" symbol
3. A required expression

The following are valid Catscript assignment statements:

foo = "bar"
foo = bar
foo =1+ 3

3.4 If Statement

The Catscript If Statement is nearly identical to the if statement in other
programming languages such as Java. It is used to determine whether or not
to run the statements below it. Catscript’s if statement is created as follows:

1. A required ’if” keyword
2. A required ’(’ symbol
3. A required expression
4. A required ’)’ symbol
5. A required ’{’ symbol

6. A required series of statements to execute



7. A required '}’ symbol

8. An optional ’else’ keyword
(a) An optional if statement or
(b) A required ’{’ symbol
)
)

(c

(d) A required '}’ symbol

A required series of statements to run

The following is a valid Catscript if statement:

if (foo == "bar") {
print("foo")
} else if (foo == "foo") {
print("bar")
}

3.5 For Statement

The syntax of the For Statement in Catscript uses an ’in” keyword. The for
statement only supports iterating through a list. It cannot count up to a
certain value

int 1 = 0; 1 < 5; i++
or as they would in Python with
i in range 5
Catscript’s for statement can be created as follows:
1. A required ’for’ keyword
2. A required ’(’ symbol
3. A required variable name
4. A required ’in’ keyword

5. A required expression



6.
7.
8.

9.

A required ’)’ symbol
A required '{’ symbol
A required series of statements to evaluate

A required '}’ symbol

The follow is a valid Catscript for statement:

for (x in [1, 2, 3]) {

}

print(x + " foo")

3.6

The Function Definition Statement is used to define functions that can be
called elsewhere. Functions may have an explicit return type, or return void
if no type is specified. If a return type is declared, the program checks that
is does return that specific type. The parameter list is to declare function
parameters as a list of names, each followed by an optional ;" symbol and

Function Definition Statement

type. Catscript’s function can be created as follows:

1.
2.

8.
9.

A required ’function’ keyword

A required function name

. A required (" symbol

. A parameter list

. A required ")’ symbol

. An optional ’:” symbol followed by the function’s return type

. A required '{’ symbol

A series of statement to evaluate

A required '}’ symbol

The following is a valid Catscript function definition:



function ab (a : int, b : int) : int {
return a + b

}

3.7 Function Call Statement

Once a function had been defined, it can be called with a Function Cal
Statement. The program verifies that the number and type of arguments
match the function’s definition. The program also checks that there is a
function that exists with the same name that has been added in the symbol
table. Catscript’s function call can be created as follows:

1. A required function name
2. A required ’(’ symbol
3. A list of arguments

4. A required ’)’ symbol

Below is an example of a valid Catscript function call:

ab(a, b)

3.8 Return Statement

The Return Statement is used to exit a function, and potentially return a
value. It can only be ran within a function. If a return statement is found
outside of a function, the program throws a Syntax error. Catscript’s return
statement is created as follows:

1. A required 'return’ keyword

2. An expression to be returned

Below is an example of a valid Catscript return statement inside of a function:

function ab (a : int, b : int) : int {
return a + b

}




4 Type System

Catscript utilizes a simple type system. The following are valid types:

e int - Any 32 bit integer

string - a Java-similar string

bool - a boolean value (True/False)

U, G

list<x>- a list of values with type “x“ (must be same type)

null - the null type

object - any type of value



