Montana State University
Caden Fong
Tester: Kaylee Fong
Semester: Spring 2022

Course Name/Number: Compilers / CSCI 468

Section 1: Program

https://drive.google.com/file/d/1GQH706r25QLMSZ8jthPOy4UOfPnT-3Jd/view?usp=sharing

Section 2: Teamwork

This team consisted of two team members, team member 1 and team member 2.
Team member one was in charge of writing the compiler and this capstone document.
Team member one was the primary creator for this project since this was mostly an
individual project. Team member 2 was tasked with writing three tests to test the
compiler's code and also writing the documentation for the catscript language. Team
member two was the tester for this project and did their own capstone where they were
the primary creator. Around 180 hours were spent on this project in total. Team member
1 spent over 150 hours on this capstone assignment. Team member two, the testing

member, spent around 30 hours on this assignment.

Total Project Time: 180 hours

Team Member 1 (Primary Creator):
Primary contributions: Writing the compiler and this capstone document.

Percentage of Time Spent: 85% (150/180 hours)

Team Member 2 (Tester):

Primary contributions: Writing three tests in the “PartnerTests.java” in the test
directory for the compiler and the documentation for catscript.

Percentage of Time Spent: 15% (30/180 hours)

Section 3: Design Pattern

private static Map<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {
ListType listType = cache.get(type);
if (listType != null) {
return listType;
} else {
ListType newListType = new ListType(type);
cache.put(type, newListType);
return newListType;

}
}

For the design pattern to be implemented in this project, | chose to use the
flyweight design pattern. In the project directory “src/main/java/edu/montana/
csci/csci468/parser/”, the design pattern is implemented in the file “CatscriptType.java”.
The code above is the implementation of the flyweight design pattern. This pattern was
chosen for two design reasons. The first reason being memory efficiency, without this
pattern every time this method is called a ListType object is created using up more
space than necessary since there are only so many different ListTypes, many being
used more than once. Also, given larger programs, the speed of compiling and
interpretation becomes faster as later calls to the method only perform a search in a
hashmap rather than creating a new object. Therefore, the flyweight design pattern is a

better choice than just coding in the method.

Section 4: Technical Writing

Catscript Technical Documentation

Introduction

Catscript: a programing language that operates as laid out in this documentation. The EBNF for this language
is seen below:

{ program_statement };

statement |
function_declaration;

= for_statement |
if_statement |
print_statement |
variable_ statement |
assignment_statement |
function call statement;

= '"for', '(', IDENTIFIER, 'in', expression ')',
"{'", { statement }, '}';
= "if', '(', expression, ')', '{',
{ statement },
"}' ['else', (if_statement | '{', { statement }, '}') I;

= 'print', '(', expression, ')’

variable_statement = 'var', IDENTIFIER,

[':", type expression,] '=', expression;

= function_call;

IDENTIFIER, '=', expression;

"function', IDENTIFIER, '(', parameter_list, ')' +
[':" + type_expression], '{', { function_body_statement

= statement |
return_statement;

= [parameter, {',' parameter }];
= IDENTIFIER [, ':', type_expression];

= 'return' [, expression];

= equality expression;

= comparison_expression { ("!=" "==") comparison_expression
}s
= additive_expression { (">" | ">=" " e="")
additive expression };
= factor_expression { ("+" | "-") factor_expression };
= unary_expression { ("/" | "*") unary_expression };
= ("not" | "-") unary_expression | primary_expression;
= IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list _literal | function_call | "(", expression, ")"
list literal = '[', expression, { ',', expression } ']';
= IDENTIFIER, '(', argument_list , ")’
argument_list = [expression , { ',' , expression }]
type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,

type_expression, '>']

Features

Comments

Catscript comments can be written with two forward slashes that comments out the rest line they are on.

// This is a Catscript comment

Variables

Variables in Catscript are values that can be of type list, int, bool, string, or null. Explicit type can be given or

omitted.
var variable : string = "foo"
variable = "bar"
or
var variable = "foo"

variable = "bar"

Lists

Lists are an immutable type in Catscript, and can be component wise list, int, bool, string, and null.

var catScriptList : list <string> = ["Cat", "Script"]
or
var catScriptList = [0, 1, 2]

Mathematical Operators

Addition in Catscript uses int addition and is overloaded to allow string concatenation.

1+ 2

or

1 + "foo"

or

"foo" + "bar"

Subtraction is similar to addition for ints.

Multiplication and division using basic mathematical factoring.

1 *1
and
1/1

Unary Operator for negating ints and bools.

-10
and
not false

Print Function

The Catscript print function sends string output to a buffer that then will use the JVM out system to print to

the standard output.

print("foo")
print(true)

print([e, 1, 2])

For Statements

Catscript uses an iterable list for looping functionality and can consist of many statments in the body, ending
when there are no more items in the provided list.

for (i in ["Say", "Hello", "to", "CatScript"]) {
print(i)

Equality and Comparison

CatScript comparison has the following operators less than, greater than, less than or equal to, and greater
than or equal to.

1<1
1>1
1<=1
1>=1

Equality compares object value and reference.

var referencel = ["foo", "bar"]
var reference2 = referencel

referencel == reference2
or

1==1

or

true != true

If Statements

Catscript supports conditional code blocking and allows for multiple else if linking as well as nesting if

statements.
var foo = "bar"
var i =1
if (foo == "bar") {
if (i ==1) {
print("bar 1")
} else {

print("bar" + i)

} else if (i == 2) {
print("not bar 2")
} else {
print(foo + i)

Function Definitions and Calls

Catscript supports function definitions using unique identifiers and can use any amount of parameters in
definition. Return type can be explicitly give or defaulted to void.

function foo(bar:bool):bool{

if (bar) {
return false
} else {

return bar

// Function Call Example
foo(true)

Section 5: UML

NullLiteralExpression

TypelLiteral

type : CatscriptType

StringLiteralExpression

stringValue : String

ParseElement

Expression

parent : ParseElement

evaluate(runtime : CatscriptRuntime)
transpile(javascript : StringBuilder)
compile(code : ByteCodeGenerator)

—_—_’______,,,_—t> verify()

registerFunctions(symbolTable : SymbolTable)

validate(symbolTable : SymbolTable)

/”\/“\z%;/’\/“\lls

BooleanLiteralExpression

booleanValue : Boolean

ParenthesizedExpression

expression : Expression

AdditiveExpression

operator : Token
leftHandSide : Expression
rightHandSide : Expression

isAdd()

UnaryExpression

operator : Token
rightHandSide : Expression

isMinus()
isNot()

FactorExpression

operator : Token
leftHandSide : Expression
rightHandSide : Expression

AN,

isMultiply()

Statement

<

1 execute(runtime : CatscriptRuntime)

IdentifierExpression

name : String
type : CatscriptType

IntegerLiteralExpression

integerVal : Integer

EqualityExpression

operator : Token
leftHandSide : Expression
rightHandSide : Expression

isEqual()

ComparisonExpression

operator : Token
leftHandSide : Expression
rightHandSide : Expression

isLessThan()
isLessThanOrEqual()
isGreaterThanOrEqual()
isGreater()

ListLiteralExpression

values : Sequence(Expression)
type : CatscriptType

FunctionCallExpression

name : String
arguments : Sequence(Expression)
type : CatscriptType

children

ReturnStatement

expression : Expression
function : FunctionDefinitionStatement

IfStatement

expression : Expression
trueStatements : Sequence(Statement)
elseStatements : Sequence(Statement)

CatScriptProgram

output : StringBuffer

statements : Sequence(Statement)

functions : OrderedSet(FunctionDefinitionStatement)
expression : Expression

print(v : Object)

FunctionDefinitionStatement

name : String

type : CatscriptType

argumentTypes : Sequence(CatscriptType)
argumentNames : Sequence(String)

body : Sequence(Statement)

invoke(runtime : CatscriptRuntime, args : Sequence(Object))

getDescriptor()

SyntaxErrorExpression

SyntaxErrorExpression(consumeToken : Token)

PrintStatement

expression : Expression

AssignmentStatement

expression : Expression
variableName : String

ForStatement

expression : Expression
variableName : String
body : Sequence(Statement)

getComponentType()

VariableStatement

expression : Expression
variableName : String
explicityType : CatscriptType
type : CatscriptType

isGlobal()

SyntaxErrorStatement

SyntaxErrorStatement(start : Token)

FunctionCallStatement

expression : FunctionCallExpression

Section 6: Design Trade-offs

A design decision made at the beginning of this project was deciding the
implementation method of the parser. The recursive descent algorithm was chosen for
modeling my parser rather than a parser generator for a few different design reasons.
First and foremost, one of the benefits of choosing recursive descent over a parser
generator is the more simplistic implementation. Simply put, recursive descent is easier
to implement because it is more concise when modeling a grammar as opposed to a
parser generator, this is due to the fact that recursive descent is modeled more closely
after the recursive nature of grammars. However, despite the simplicity, recursive
descent requires more physical effort in creating a parser versus a parser generator, as
it requires a more granular implementation of different parts. Another trade-off in
choosing recursive descent is the education factor as recursive descent gives a more
intuitive understanding of grammars rather than a parser generator's abstracted
implementation. In conclusion, the best design trade-off decision for this project, in
terms of creating a parser, is using recursive descent over a parser generator as it gives

a more simplistic yet deeper understanding of grammars and parsing in general.

Section 7: Software development life cycle model

The software development life cycle model used in this project was the Test
Driven Development or TDD for short, where tests are used to drive development. For
this project, we were given a set of tests that we needed to get passing to finish the
compiler. This TDD style of development was very helpful in this project as it gave us
goals to work towards, direction if we got stuck on something, and ultimately got us to
the goal of finishing the project. Overall this TDD style of development was a great tool
for learning more from this project and seeing what each unit of the compiler phases

required.

	CadenFong-capstone.pdf
	CadenDocumentation.pdf
	cadenfong_capstoneUML (1).pdf
	CadenFong-capstone

