
 Catscript Tokenizer
 Csci468
 Spring 2022

 Brian Keith
 Armand LaPlume

 Section 1: Program
 I have included a zip file of the complete project

 Section 2: Teamwork
 Teammate 1 was the primary coder, they wrote most of the code for the project and satisfied all
 the given tests, they made up about 95% of the time spent on this project. Teammate two was
 the tester, They provided tests that ensured the project met the requirements. Teammate 2 also
 provided the documentation, they made up about 5% of the time spent on this project

 Section 3: Design pattern
 In this project we used the Flyweel design pattern, sometimes called memoization. It is used to
 increase efficency by reusing objects instead of creating new ones. A great example of this
 design being used in the code is in the getListType method of CatcsriptType. located specifically
 at lines 37-45 in CatscriptType.java, the code snippet isincluded below.
 static HashMap<CatscriptType , ListType> cache = new HashMap<>() ;
 public static CatscriptType getListType (CatscriptType type) {

 ListType listType = cache .get(type) ;
 if (listType == null){

 listType = new ListType(type) ;
 cache .put(type , listType) ;

 }
 return listType ;

 }

 Section 4: Technical writing
 The following is the technical document for the Catscript Project

 Introduc�on
 Catscript is a simple scrip�ng language. Here is an example:

 var x = "foo"

 print(x)

 Features
 Expressions
 Expressions in Catscript always evaluate to a value. They follow an order of precedence of unary, factor,
 addi�ve, comparison, and equality where unary expressions are the first ones evaluated and equality
 expressions are the last ones evaluated. There are also primary expressions which are the lowest level
 expressions and each one is either an iden�fier, string, integer, boolean true or false, null, list, func�on
 call, or it can be a parenthesized expression which will then recursively parse another expressison.

 Unary Expression
 The unary expression is used to invert a boolean or an integer. A unary expression is the word “not” or
 the “-“ symbol followed by a boolean or an integer respec�vely. Here is an example where the result
 printed is -5:

 var x = -5

 print(x)

 Factor Expression
 The factor expression is a mul�plica�ve expression. It’s syntax is an integer followed by either a “*” or
 “/” followed by another integer. Here is an example where the result of x would be 28:

 var x = 4 * 7

 Addi�ve Expression
 An addi�ve expression can either be a mathema�cal expression where to integers are being added or
 subtracted or it can be string concatena�on. An addi�ve expression is an expression followed by either a
 “+” or “-“ followed by another expression. Here are two examples where x would be the integer 14 and y
 would be the string “Catscript”:

 var x = 8 + 6

 var y = “Cat” + “script”

 Comparison Expression
 A comparison expression evaluates to true if one integer is greater than, greater than or equal to, less
 than, or less than or equal to another integer, depending on which operator is used. A comparison
 expression is an expression followed by a “>”, “>=”, “<”, or “<=” followed by another expression. Here are
 two examples where x is true, and y is false:

 var x = 4 >= 1

 var y = 7 < 4

 Equality Expression
 An equality expression compares two objects to see if they are equal or not equal depending on the
 operator used. An equality expression is an object followed by a “==” or “!=” followed by another object.
 Here are two examples that are both true.

 var x = 1 == 1

 var y = true != null

 Statements
 Print Statement
 This prints the contents of the print statement exactly like print statements in other languages. A print
 statement is the keyword print followed by a “(“ followed by the expression to be printed followed by a
 “)”. Here is an example where 5 is printed:

 Var x = 5

 Print(x)

 Variable Statement
 A variable statement creates a new variable and assigns it a value. A variable can have its type explicitly
 defined or it can infer it from its assigned value. A variable statement is the var keyword followed by the
 name of the variable op�onally followed by a “:” and a type followed by a “=” followed by an expression.
 Here are some examples of var statements:

 var x = 10

 var y = true

 var z = “Catscript”

 Assignment Statement
 An assignment statement assigns a new value to a variable. An assignment statement is the name of the
 variable followed by a “=” followed by the new value. Here is an example where the value 1 would be
 printed:

 var x = 2

 x = 1

 print(x)

 For Statement
 A for statement in Catscript is like a for statement in any other language. It executes a set of statements a
 certain number of �mes. A for statement the keyword for followed by a “(“ followed by the name of a
 variable local to the for loop (typically i) followed by the keyword in followed by a list followed by a “)”
 and “{“ followed by any number of body statements followed by a closing “}”. Here is an example that
 would print 1, 2, 3:

 for(x in [1, 2, 3]) { print(x) }

 If Statement
 An if statement is used to execute a block of code if the expression in it evaluates to true. An if statement
 is the keyword if followed by a “(“ followed by an expression followed by a “)” and “{“ followed by the
 statements to be executed followed by a closing “}”. An if statement can op�onally be followed by an
 else if or else statement to either check if another expression evaluates to true and execute a list of
 statements or to uncondi�onally execute a list of statements if the expression in the if statement did not
 evaluate to true. Here is an example where “if statement” is printed:

 var x = 5

 if (x == 5){

 print(“if statement”)

 } else { print(“else statement”) }

 Func�on Defini�on Statement
 A func�on defini�on statement in Catscript defines a func�on with a given number of parameters which
 each can op�onally be assigned a type, an op�onal return type, and a body of statements to be
 executed. Here are some example defini�ons:

 func�on foo(x) { print(x) }

 func�on foo1() : int {

 var x = 42

 return x

 }

 func�on foo2(x : int) : int {

 return x + 1

 Section 5: UML.
 A Class diagram for the class ParseElement and its related classes is shown below

 Section 6: Design trade-offs
 For this project one of the biggest design tradeoffs was Using a recursive descent structure
 instead of a parser generator. This decision was made because writing a recursive descent
 parser gives a much better understanding of what is actually happening as opposed to a parser
 generator handling which does most of the more technical stuff automatically, leaving the
 programmer with larger chunks of generated code that they did not write and may not be able to
 understand. The tradeoff is that using recursive descent does require the programmer to write
 more code by hand, and parser generators tend to be more standard in a university setting.

 Another design decision was not using a visitor pattern, everything was done directly in
 the relevant Class. Not using the visitor pattern creates a simpler end product that is more
 streamlined to write, however, it would be harder to maintain for a growing system. because the
 Catscript project was a relatively small project it made sense to not use the pattern in exchange
 for simplicity and ease of coding and debugging.

 Section 7: Software development life cycle model
 This project was guided by test-driven development. The primary coder was given an extensive
 test suite and the goal was to get the project to pass all the tests. This was accomplished using
 progressive development of building blocks, first tokenizing, then parsing, then finally compiling.

