Capstone Portfolio
William Walkuski
Tester: Jack Tetrault
CSCI 468: Compilers
Spring 2022

Professor: Carson Gross

Section 1: Program

The source code is found in source.zip in the same directory. It is written in Java
using the IntelliJ IDE. The codebase was continually managed using GitHub.

Source code found at:
/Users/WillW/csci-468-spring2022-private/capstone/portfolio/source.zip

Or

https://github.com/willwalkuski/csci-468-spring2022-
private/blob/master/capstone/portfolio/source.zip

https://github.com/willwalkuski/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip
https://github.com/willwalkuski/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip

Section 2: Teamwork

Member Contributions

Team member 1 was responsible for programming and implementing full
functionality of the project. Features implemented include tokenization, parsing, eval,
and compilation of the Catscript language. Functions were implemented to satisfy the
provided test suites.

Team member 2 provided additional tests to run the program against to ensure
functionality in cases not originally covered in the base tests and to continue to add to
the test-driven development cycle. They also provided the full technical documentation
of the Catscript language which is included in the next section.

Time Estimates

Team member 1: 80 hours (~89%)
Team member 2: 10 hours (~11%)

Section 3: Design Pattern

A design pattern included in this project is memoization. Memoization is a
technique used to optimize a program by reducing expensive function calls. To
eliminate these function calls, a cache is created with a map. If the function is called and
the desired result is already stored in the cache, that value is returned. Otherwise, the
cache is updated. Our implementation was not designed to be safe with multiple

threads.

This implementation can be found in the CatscriptType.java class beginning on line 38.
This file is found in src/main/java/edu.montana.csci.csci468/parser. The code block is also

included below.

// Memoization implementation
static Map<CatscriptType, CatscriptType> CACHE = new HashMap<> () ;
oublic static CatscriptType getListType (CatscriptType type) {
CatscriptType potMatch = CACHE.get (type);
if (potMatch !'= null) { // check if the type already exists
return potMatch;
} else { // if not, add the new type
ListType listType = new ListType (type)
CACHE.put (type, listType):

return listType;

Section4: Technical Writing

Catscript Technical Documentation

Introduction

This documentation will follow the grammar of CatScript providing descriptions and
examples of each element that CatScript consists of.

Features

CatScript Types

CatScript is a statically typed language with a simple type system. This means that once a
type is defined it cannot be changed. The types include:

e int-a32 bitinteger

e string - java-style strings

e bool - boolean value

e list - alist of value with type ‘X’
e null - the null type

e object - any type of value

Error Handling

Error handling within CatScript is similar to what you would expect from other languages.
Line numbers and line offsets are stored to give specific feedback on where an error occurs.

Comments

Commenting in CatScript is identical to commenting in Java. Comments begin with ‘//’ and
anything after will be ignored by the compiler.

ex:
// some comment

Expressions

Expressions evaluate to some value, either object or literal types.
Type Expressions

As defined in the grammar:

type_expression = 'int' | 'string' | 'bool' | ‘'object' | 'list' [, '<' , type

_expression, '>']

Integer Literal

Integer literals, as listed above, are 32 bit integers. CatScript does not support a decimal
type like floats.

ex:
50
String Literal

String literals are arrays of characters of any length. String literals must be enclosed in
double quotes. String concatenation falls under the additive expression.

ex:
"Hello world"
Boolean Literal

Boolean literals behave very similarly to other languages. they evaluate to either true or
false.

ex:

true
false

Null Literal

Null literal expressions are objects with no value.

ex:

null

List Literal Expressions

As defined in the grammar:

list literal = '[', expression, { ',', expression } ']';

List literals are very similar to arrays, they can contain values of any type supported by
CatScript. They must be enclosed in brackets and values must be delimeted by commas.

ex:
[1, 2, 3, 4, 5]

Lists may contain values of varying types.
ex:

[1, "Hello", true, 2, "World", false]

Parenthesized Expressions

Parenthesized expressions are any expression surrounded by parentheses. Because of the
recursive nature of the grammar, expressions can be surrounded by any number of
parentheses pairs and will evaluate to the same value.

€Xx:

(expression)
(50)

("Hello world")
((((50))))

Equality Expressions
As defined in the grammar:

equality_expression = comparison_expression { ("!=" | "==") comparison_expres
sion };

Equality expressions check if two expressions are equivalent or not and return a boolean
value based on the result. ‘=="is used for checking if two expressions are equal and ‘!="is
used for checking if two expressions are not equal.

ex:

R R PRR

These evaluate to:

true
false
false
true

Comparison Expressions

As defined in the grammar:

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") addi

tive_expression };

Comparison expressions check a condition and return a boolean value based on the result.

«) ()«

Comparisons can be ‘<’, >’, ‘<=’, or >=’.
ex:

1< 2
1>2

1<
1

1
>= 1

These evaluate to:

true
false
true
true

Additive Expressions

As defined in the grammar:

additive expression = factor_expression { ("+" |) factor_expression };

Additive expressions include adding or subtracting integer values. String concatenation can
also be done with this expression using the ‘+’ operator with a string on the left, right or
both sides. Parentheses can be used to enforce precedence.

€x:

1+1

1+1+1

2 -1

(1+3) -2

"Hello " + "world"
"Hello world" + 1

These evaluate to:

2

3

1

4

Hello world
Hello world 1

Factor Expressions

As defined in the grammar:

factor_expression = unary_expression { ("/" | "*") unary_expression };

Factor expressions behave very similarly to additive expressions but encompass
multiplication and division. Parentheses can again be used to enforce precedence.

ex:
1%*2
1*2*3

6/2
2 * 8/(2 + 2)

These evaluate to:

2
6
3
4
Unary Expressions

As defined in the grammar:

unary expression = "not" " unary expression rimary expression;
— —_ —_ 3

Unary expressions precede values and typically convert to opposites using ‘-’ or ‘not’. ‘-’ is
used before integers and ‘not’ is used before booleans. These can be stacked many times.

ex:

-50

--50

not true

not not true

These evaluate to:

-50
50
false
true

Primary Expressions

As defined in the grammar:

primary expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null

list_literal | function_call | "(", expression, ")"
Function Call

As defined in the grammar:

function_call = IDENTIFIER, '(', argument_list , ')’

Function calls consist of an identifier (name) followed by an argument list surrounded by
parentheses.

ex:
foo(1, 2, 3)
Argument Lists

As defined in the grammar:

argument_list = [expression , { ',' , expression }]
Argument lists are any number of expressions delimited by commas.

ex:

1, 2, 3
Statements

For Statement

As defined in the grammar:

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
{', { statement }, '}’;

For statements traverse lists with iteration. They follow the following format.

ex:

for(varName in list) {
// body
}

In practice:

for(x in [1, 2, 3, 4, 5]) {
print(x)
}

Outputs:
12345

If Statement

As defined in the grammar:

if_statement = 'if', '(', expression, ")', '{',
{ statement },
'}' ['else', (if_statement | '{', { statement }, '}') 1;

If statements execute specific code blocks based on a conditional value. they follow the
following format.

ex:

if(expression) {
// execute this code if condition is met

}

In practice:

var x = 10
if(x == 10) {
print(x) // x would be printed since it meets the condition

}

If statements can also have else clauses that follow.
ex:

if(expression) {
// execute this code if condition is met
} else {
// execute this code if condition is not met

}

In practice:

var x = 10
if(x == 10) {
print("x is 10")
} else {
print("x is not 10")

}

Print Statement

As defined in the grammar:

print_statement = 'print', '(', expression, ')’

Print statement use the print command directly followed by parentheses. Whatever is
inside the parentheses will be output.

ex:
print("Hello world")
This evaluates to:
Hello world

Variable Statement

As defined in the grammar:

variable statement = 'var', IDENTIFIER,

[':"', type_expression,] '=', expression;
Variable statements assign a variable name to a value. They follow the following format.

ex:

var x : int = 10

Notice the type (following the colon) can be omitted and an object type will be assigned by
default.

ex:
var x = 10

Function Call Statement

As defined in the grammar:

function_call statement = function_call;

Function call statements are the same as function call expressions.
Assignment Statement

As defined in the grammar:

assignment_statement = IDENTIFIER, '=', expression;
Assignment statements assign a new value to an existing variable

ex:

var x = 10
X = 22
print(x)

This evaluates to:

22

Note that CatScript is statically typed so variable types cannot change throughout
execution. The following example is invalid and would result in a parse error.

ex:

var x = 10
X = "Hello"
print(x)

Function Declaration

As defined in the grammar:

function_declaration = 'function', IDENTIFIER, '(', parameter list, ')' +
[":' + type_expression], '{', { function_body state
ment }, '}';

Functions are good for easily calling specific code blocks that will be repeatedly used. To
declare a function the format is as follows.

ex:

function funcName(parameters : parameterType) : returnType {
// body of function

}

In practice:

function helloWorld(x : string){
print(x)
}

helloWorld("Hello world")

Note that a function can have zero or more parameters. Parameters and return may or may
not have a defined type. If the return type is omitted, ‘void’ is implied by default.

Function Body Statement

As defined in the grammar:

function _body statement = statement |
return_statement;

The body contained in a function consists of statements or expressions.
Parameter List

As defined in the grammar:

parameter_list = [parameter, {',' parameter }];

A parameter list is a list of parameters delimited by commas.
Parameter

As defined in the grammar:

parameter = IDENTIFIER [, ':', type_expression];
A parameter is an identifier optionally followed by a colon and a type.
ex:

X : string

Return Statement

As defined in the grammar:

return_statement = 'return’' [, expression];

Return statements return specified values from functions.

ex:

function funcName(parameters : parameterType) :

// body of function
return returnval

}

In practice:

function helloWorld(x : string) : string{
return X

}
a = helloWorld("Hello world")
print(a)

This would output:

Hello world

returnType {

Section 5;: UML

BooleanLiteralExpression

AdditiveExpression

ComparisonExpression

TypeLiteral

ListLiteralExpression

-operator : Tok
rightHandSide : Expressior

type : CatscriptType

values : List<Expression=
type : CatscriptTyp

IdentifierExpression

IntegerLiteralExpression

FactorExpression

ParenthesizedExpression

nt

StringLiteralExpression

NullLiteralExpression

UnaryExpression

:

Expression

Statement all statement

AssignmentStatement

ForStatement

IfStatement

FunctionCallStatement

variableName : Strir

Xpression
FunctionCallExpression

PrintStatement

ReturnStatement

SyntaxErrorStatement

VariableStatement

expression : Expressio
functic

unctionDefinitionStatement

CatScriptPragram

There was no UML creation prior the start of this project based on the way the
class was formatted. Above is an expansive class diagram stemming from the
ParseElement class. It illustrates how elements to be parsed fall under either an
expression or a statement. From there it shows all the different expressions/statements
that could be executed upon along with their respective attributes. While this is only a
fraction of the codebase, it covers the bulk of the most important part of the compiler. All
together they provide the framework for the parsing stage. These classes also include
evaluate or execute, transpile, and compile methods as mentioned in the notes.
Obviously more detail could have been included for each class but at this scale it was
omitted for readability reasons and to allow a broader view of this portion of the

codebase.

Section 6: Design Tradeoffs

Recursive Descent

Prior to beginning work on this project, the decision was made to use a recursive
descent parsing algorithm, the method used for most production compilers, as opposed
to a parser generator. As with any choice like this, there are pros and cons to each
option. This section will cover why recursive descent was chosen as the preferred
design choice.

Recursive descent is a Top-Down Parser meaning that it builds a parse tree from
the top and down. The grammar is traversed recursively starting from the top until a
terminal is hit. If non-terminals still exist, the top of the grammar is called again until all
branches are terminals. To do this, a grammar that eliminates left recursion and left
factoring is required. This technique fit well with the grammar that we were working with.

Recursive descent is known to be a simpler method of writing a compiler despite
there generally being more code required. Although there is more code, since it is
simpler than a parser generator the code ultimately is more readable, more
maintainable, and therefore also easier to debug. It also provides a better
understanding of the recursive nature of grammars. Parser generators are more
standard among classes like this at other universities, but recursive descent is more
applicable to production compilers.

Avoiding Visitor Pattern

A common technique that we decided to avoid is known as the Visitor Pattern.
This idea consists of placing new behavior or operations into a separate class rather
than introducing modifications to an existing object structure. Instead, we decided to put
eval, transpile, and compile directly onto the parse tree nodes. Generally, these very
different operations would be separated into their own classes. This choice was made
primarily to preserve as much simplicity as possible throughout the program. It keeps
everything in one place and makes implementation more fluid.

Section 7: Software Development Lifecycle

The software development lifecycle used in this project is test-driven
development (TDD). We were provided with several test suites to verify that our code
was producing the intended result to ultimately build a functioning compiler. There were
dedicated test suites for each checkpoint. The majority of tests were provided prior to
beginning work on the project however several more were included at the end by team
member 2 to further verify that the code behaved as intended.

How TDD Works

In theory TDD operates in 6 steps. These steps are as follows:

1. Add atest
0. Requires focusing on requirements before writing code
2. Run all tests (new test should fail)
0. Proves that new code is required for desired feature
3. Write the simplest code that passes the new test
4. All tests should now pass
0. If tests fail, revise the new code until they pass. This ensures new code meets
the requirements and does not break existing functionality.
5. Refactor as needed, using tests after each refactor to ensure functionality is preserved
0. This improves readability and maintainability without breaking functionality
6. Repeat

Our Experience with TDD

As mentioned above, the majority of tests were provided from the beginning as
opposed to adding them as we go. They were split into 4 sections. One for tokenization,
one for parsing, one for eval, and one for bytecode generation. These tests not only
verified that correct syntax passed but that incorrect syntax was also caught
appropriately. This ultimately was a clean and efficient way of doing things. It ensured
that all test cases were covered, while still maintaining functionality as we went through
the tests. We also found that having tests made debugging the functions much quicker
and intuitive. The tests provided valuable error handling within a controlled case. The
tests provided a clear direction for the project and promoted independent work. Having
a clear answer of when things were working correctly or not and when all requirements
were met made work rewarding and inspired confidence in the code being produced.

	William Walkuski
	Tester: Jack Tetrault
	CSCI 468: Compilers
	Spring 2022
	Professor: Carson Gross
	Section 1: Program
	Section 2: Teamwork
	Member Contributions
	Time Estimates

	Section 3: Design Pattern
	Section4: Technical Writing
	Catscript Technical Documentation
	Introduction
	Features
	CatScript Types
	Error Handling
	Comments

	Expressions
	Type Expressions
	Integer Literal
	String Literal
	Boolean Literal
	Null Literal
	List Literal Expressions

	Parenthesized Expressions
	Equality Expressions
	Comparison Expressions
	Additive Expressions
	Factor Expressions
	Unary Expressions
	Primary Expressions
	Function Call
	Argument Lists

	Statements
	For Statement
	If Statement
	Print Statement
	Variable Statement
	Function Call Statement
	Assignment Statement
	Function Declaration
	Function Body Statement
	Parameter List
	Parameter
	Return Statement

	Section 6: Design Tradeoffs
	Section 7: Software Development Lifecycle
	How TDD Works
	Our Experience with TDD

