Capstone Portfolio
CSCI:468

Project Name:

Catscript

Team Members:
Christopher Danielson

Bandon Marceau

Instructor:

Carson Gross (Sponsored by JetBrains)

Section 1 - Code:

The code will be attached in a zip file

Section 2 - Teamwork:

The way that I worked with my team member is Brandon made tests for the project and
made documentation for Catscript. I contributed all of the code for the tokenizer, parser,
evaluations, and compilation of Catscript. I also contributed tests and documentation for Brandon
Catscript project. The amount of time that I spent developing the code for Catscript was around
200 hours this semester. The amount of time that I spent making tests and documentation for
Brandon’s code was around 10 hours. The amount of time that Brandon spent making tests and

documentation for my code base around 10 hours.

Section 3 — Design Pattern:

A design pattern that was used in the project was the memorize pattern. This pattern is
used in the CatscriptType class in the parser directory in the project. The reason that I used this
pattern was to get rid of a bunch of function calls to get a type and instead cache the types so
they could be looked up faster. I put a comment above the design pattern pointing it out and

included the code below.

Code:

ListType> = HashMap<> ()
iptType getListType (CatscriptType type) {
e = .get (type)
(listType ==) |

listType = ListType (type)
.put (type, listType)

listType

Section 4 — Documentation (Technical Writing):

Introduction:

Catscript is a simple statically typed language, meaning that when a type is declared for a
variable it remains that type through the execution of the program. Boolean expressions, 32-bit
integers, java style strings, the null type, and objects are all featured types in Catscript. Catscript
also has lists that can be of mixed type and contain any of the types, even allowing for lists
containing lists. Doubles and Floats are types that are not included in Catscript. Catscript has a
variety of statements and expressions available in the language that will be discussed in further
detail below.

Catscript allows for mathematical operations such as addition, subtraction, division, and
multiplication as well as the ability to parenthesis mathematical expression to force order of
operations. The plus operator can also be overloaded to allow for string concatenation. Catscript
also has equality checking using two equals signs, as well as checking for non-equality with the
bang-equal (!=) operator. Catscript does not include a modulus operator.

Catscript allows for commenting out sections of code by using two forward slashes (//)
followed by whatever comments need to be written. Commented out sections of code will be
ignored by the compiler. The following is an example of a comment.

Expressions:

Expressions in Catscript evaluate to some value. They may be evaluated to a literal value
or an object value. Integers, Strings, Booleans, the Null type, and Lists are all types that can be
evaluated to a literal. Each of these literal types are documented below.

Integer Literal Expressions:

Integer literals are a 32 bit value. Integers can be easily implemented in Catscript by just
typing in an integer. The following examples is a program that will evaluate to an integer literal:

This will evaluate to 1.

Note that a decimal number as follows will NOT evaluate in Catscript.

DOES NOT EVALUATE
String Literal Expressions:

String literal expressions are a series or array of characters. A string literal expression
could be a single character, a word, a sentence, or several sentences. To implement a string in

Catscript it must begin with double quotations and then be closed with double quotations (single
quotations will NOT work). Following are examples of how to implement a string.

Will evaluate to A

Will evaluate to This is a string.
Boolean Literal Expressions:

Boolean literal expressions are evaluated to either true or false. Following is an example
of Boolean literal expression.

Will evaluate to true.
Null Literal Expressions:

Null literal expressions have no value to them and can be declared with the null keyword.
The following is an example of a null literal expression.

Will evaluate to null.
List Literal Expressions:

List literal expressions are similar to lists in the Python programming language, or arrays
in other programming languages. Lists are made using a left square bracket to start the list and a
right square bracket to terminate the list. Elements within lists are separated by a comma. Values
could be integers, strings, Booleans, the null type, or even a list inside the list. The following is
an example of a list with all values of the same type, integers in this case.

[]
Will evaluate to [1, 2, 3]

A list could also include mixed data types as in the following example that contains an integer, a
string, a null type, and a Boolean all within the same list. Catscript will assign list typing for
mixed lists based on the highest order of elements within the list. The following will be seen by
Catscript as a list of objects.

—
[—

Will evaluate to [1, string, null, true]
A list can also have lists within it as the following example shows.

[[1, [1]
Will evaluate to [[1, 2, 3], [this, string]]

Unary Expression:

Unary expressions are expressions that only contain a single operand, “-, in front of an
integer. This allows for the creation of negative values integers. It also allows for a user to negate
truth values by using the “not” keyword. The following examples shows how the unary
expression is used.

Will evaluate to -1.

not
Will evaluate to false.

Additive Expression:

Additive expressions include both addition and subtraction. Addition can be done on
integer values, or it can be overloaded with strings to do string concatenation. Subtraction can
only be done if both the left hand and right hand side of the expression are integers. The
following example shows how integer addition evaluates.

‘

Will evaluate to 2.

Addition and subtraction can be used as many times as necessary to create a longer expression
that will evaluate from left to right as the following examples shows.

+ - + -
Will evaluate left to right consuming tokens until the final evaluation that will be 0.
The following shows a couple examples of string concatenation when the operator is overloaded.

One shows an integer concatenated to a string, and the other shows two strings concatenated
together.

‘

Will evaluate to Istring

‘

Will evaluate to thisstring

The following example shows the subtraction operator, which only works on integers.

Will evaluate to 0.
Factor Expression:

Factor expressions include the multiplication and division operations on integers. These
operations only work if the left-hand side and the right-hand side are both integers. The
following examples show how multiplication and division can be called and how the expressions
evaluate.

‘

Will evaluate to 5.

‘

Will evaluate to 2.

Multiplication and division can be used as many times as necessary to create a longer expression
that will evaluate from left to right as the following examples shows.

* / * /

Will evaluate left to right consuming tokens until final evaluation which will be 1.
Parenthesized Expressions:

Parenthesized expressions are expression with parentheses around them. Multiple sets of
parentheses can be used in an expression. This can allow for a user of Catscript to separate out
mathematical expressions to determine order of operations. There must be an equal number of
opening and closing parentheses in the expression for it to evaluate. The following examples
show uses of the parenthesized expression.

(CC(1))))
Will evaluate to 1.

(L + 2) *
Will evaluate to 9. The parenthesized part (1 + 2) will evaluate to 3, then it is multiplied by 3.

Equality Expression:

Equality expressions are used to determine whether two expressions are equivalent by
using the equal equal operator (==), or they can be used to determine if two expressions are NOT
equivalent using the bang equal operator (!=). Equality expressions will return either true or
false. The following examples show how this comparison can be done.

Will evaluate to true since the two integers are equal.

Will evaluate to false since this is asking if 1 is NOT equal to 1.

Boolean values and null types can also be compared.

Will evaluate to false.

Whereas this would evaluate to true since the Boolean true is not equal to null.
Comparison Expressions:

Comparison expressions check for a greater than, less than, greater or equal to, less than
or equal to condition using the >, <, >=, and <= operators. This expression can only be done on
the integer data type. The comparison expression will evaluate to a true or false based on the
expressions being compared. The following examples show the comparison expressions in
action.

‘

Will evaluate to true since 5 is greater than 1.

‘

Will evaluate to false since 1 is not greater than 5.

‘

Will evaluate to true since 1 is less than 5.

>=
Will evaluate to true. This is checking if 1 is greater than OR equal to 1.

L=
Will also evaluate to true. This is checking if 1 is less than OR equal to 1.

Function Call Expressions:

Function call expressions can be used in Catscript to call a pre-defined function. Function call
expressions can return a value that can be of any data type to a variable. There may be no return value.
Parameters need to be passed into a function if that function requires. Parameters passed into a
function using a function call expression will only be available in the scope of the function that is being
called. The following examples show some function calls.

x = foo (1)
The variable x will be set to the return value of the foo function

foo ()
The foo function is called with no parameters.

foo ()
The foo function is called, in this case there were parameters sent in.

Syntax Error Expressions:

Catscript can identify errors that occur in expressions and add the error type to the parse tree.
The following examples shows an unterminated list (missing a closing square bracket).

‘

An error type ErrorType.UNTERMINATED_LIST would be added to the expression.

Statements:
Print Statements:

Print statements in Catscript use the print keyword followed by parenthesis. The data that
is input inside the parathesis will be displayed on the console. The following example shows how
a string could be displayed to the console using the print statements.

print ()
Print this string will be displayed to the console as output.

A variable that has been assigned to a value can also be output to the console as shown in the
following example.

10 will be displayed to the console as output.

Variable Statements:

Variable statements in Catscript allow the assignment of a value to a variable that can be
named by the user. The value of variables can change throughout execution of a program.
Variable can be created with the ‘var’ keyword followed by a variable name of the user’s choice.
There are two ways that the data type of the variable will be assigned during variable declaration
as can be seen in the following examples.

var X @ =
In this example the variable x is explicitly set to the integer type.

var =
In this example the variable x is not explicitly stated as integer type, but it will be assigned the
integer type by referencing the right-hand side as determining that it is an integer.

Assignment Statements:

Assignment statements can be used to assign a different value to a variable that has
already been created. This will change the value that is stored in the variable. The example below
shows the assignment statement in action reassigning the value of a created variable.

The first instance of print(x) will show 10 on the console. When x = 20 is called, the value stored
in x will change to 20. The second instance of print(x) will then show 20 on the console.

Note that although variables can change, the data typing of the variable cannot be changed using
the assignment statement. The following example would NOT work in Catscript (Catscript is
NOT dynamically typed).

This will cause a parse error, because Catscript is statically typed!
For Statements:

For statements iterate through a list of values. For statements can be declared using the
‘for’ keyword followed by a list of values inside parathesis. After the closing parathesis an
opening curly brace is required to begin the body of the for statement. Following are a few
examples of for statements in Catscript.

(x in [

print (x)

(x in [

print (x)
The print statement will output foo bar for to the console.

Nested for loops are also allowed in Catscript as the following example shows.

(x in [

(y in [

print(x + vy)
The print statement will output 2 3 3 4 4 5 to the console.

If Statements:

If statements in Catscript allow for a given Boolean condition to be checked before
running a block of code contained within. If the condition is true, the code block within the if
statement body will be run, whereas if the condition is false, the code would not be run. If
statements can also have an else statement that accompanies them allowing for the code in the
else statement body to be run if the if conditional evaluates false. The else block will be ignored
if the if portion returns true. The following examples show how if / else statements work.

{
print ()}
Will print to the console x is less than 5 since the value of x is 4. The else portion runs since if portion is
false.

Function Call Statements:

Functions in Catscript can be created using the ‘function’ keyword followed by the name
of the function followed by opening and closing parentheses. Inside the parentheses are the
parameters that need to be taken in by the function. A function can have no parameters, one
parameter, or several parameters. When a function takes in parameters, those parameters then
only exist in the scope of that function. Function can also have a return value as well but having
a function return something is not necessary. Return statements will be described in the next
section. Following is an example of a function that does not have a return statement.

function isGreaterThanFive (x
(x > 5) |
print (
{

print (

isGreaterThanFive (

The bottom line isGreaterThanFive(10) sends the value 10 into the function as the parameter x. Since X is
given the value 10, the function would print Yes in this case.

Return Statements:

Return statements are statements that must reside at the end of a function. Return statements
return a value from the function that can be used elsewhere in the program. The return statement allows
for any Catscript type to be returned from a function. The return type should be specified in function
creation with a colon and return type after the list of parameters. The following example shows how a
function with a return statement works.

function returnString() : string {

}

print (returnString())

The colon string indicates a string will be returned from the function. The bottom line
print(returnString()) calls the function and then prints the return value from the function which is a string
returned.

The following would NOT parse correctly because indicated return value of type int is not being returned
form the function.

function returnString ()

}

print (returnString())
Will NOT parse and will cause an Incompatible Types error.

Syntax Error Statements:

Catscript also has error handling for statements like the error handling for expressions.
These errors Unexpected Tokens and Incompatible Types errors. Below are a couple examples of
errors Catscript can catch.

The data type of x became an int on the first line. Trying to reassign the type to string will cause a parse
error of Incompatible Types.

Parse Errors Occurred:

Line 4:x = "string"

A

Error: Incompatible types

In the following case, the variable y is never assigned a value before trying to reference it. This will be
caught by the parser with an error message that the symbol is not defined.

print (y)
Parse Errors Occurred:

Line 3:print(y)

A

Error: This symbol is not defined

Will have to zoom to see fully

Section 5 - UML

- nergervat it

Section 6 — Design Tradeoffs:

One of the design tradeoffs that were made for this project was to use a recursive descent
parse that was hand coded over a parser generator. The reason that recursive descent was chosen
is because it was easier to understand and allowed for the developer to find tune the parser in the
code and the dev could have more control over the parser. Also the use of regular expressions
was going to be overly complicated and it would be easier to write the parser by hand. Writing
the parser by hand also allowed for the code to be much more easy to debug and the code would

be much shorter than it would be with a parser generator.

Another design trade off was the use of abstract classes over interfaces. The reason that
we used classes is because it would be easier to make test classes. We also used classes because
it allowed for errors to be printed such as class needs to be implemented and this allowed to it
easy to find things wrong with the code. Having these errors printed make it easier to learn how

to do the parser.

Section 7 — Development Lifecycle:

The test-driven development cycle that we used for the project is test driven
development. Meaning that tests for the project were written before the code was written. This
was really helpful because it gave the developer goals to reach for and gave very clear guidelines
to what needed to be done. It also allowed for the developer to account for many different things
that could happen when Catscript code is given to the tokenizer, parser, and compilers. The test-
driven devolvement was also helpful because it allowed for testing of induvial parts of the

project made the devolvement of each piece much easier.

