
Catscript Documentation

1 Introduction

Catscript is a simple scripting language. Here is a basic hello world example:

1 var x = "hello world"

2 print(x)

Catscript overall is fairly simple, but it does offer basic functionality of a scripting language. For
instance, there are for and while loops, branching control (if), and functions. Catscript is built on
Java, and has many similarities with the Java language.

It is possible to do comments in Catscript, where “//” starts a single line comment and “/* */” is a
multi line comment.

1 var x = "hello world" // this is a single line comment

2 /* if we want a multi line comment

3 we can use this.

4 This is useful for code documentation in Catscript */

5 print(x)

2 Datatypes in Catscript

Catscript is statically typed, but it supports type inference with the ‘var’ keword.

� int - a 32 bit integer

� string - a java-style string

� bool - a boolean value

� list - a list of values of any Catscript type. 1

� null - null value

1List objects in Catscript are immutable. Meaning after creation their values cannot be changed.

1

Catscript Documentation Page 2

� object - any catscript type

The example below are both valid Catscript examples, both x and y evaluate to type string. Where
y is given the explicit type string, and x infers the type based on the right hand side of the equation.

1 var x = "hello world"

2 var y : string = "hello world"

In this example, variable x (line 1) compiles correctly as it would infer type int, but variable y would
error because you cannot assign an int to an explicitly typed string.

1 var x = 1

2 var y : string = 1

3 Language and Examples

3.1 Statements

3.1.1 For Statement

In catscript it is possible to make a for loop to iterate over objects. Basic syntax is as follows.

1 for(x in [1, 2, 3]){

2 print(x)

3 }

In general it follows the form of ‘for (VARIABLE in EXPRESSION)’ where VARIABLE is any variable
name (must not be declared elsewhere) and EXPRESSION is a list literal or an expression that returns
a list (i.e a function call that returns a list).

3.1.2 If Statement

If statements are used for logical branching. They are similar to java if statements. There is no
logical and nor logical or in Catscript, so this functionality has to be handled through nested if, else if,
else statements. In Catscript it is possible to do if (BOOLEAN EXPRESSION), else if (BOOLEAN
EXPRESSION), else.

1 if (x == 1){

2

3 } else if (x == 2){

4

5 } else {

6

7 }

2

Catscript Documentation Page 3

Where the else if and else statements are optional, but they cannot appear alone. I.e it is not possible
to have an else or else if without first an if statement.

3.1.3 Print Statement

The print statement is a simple method that prints output onto standard out. It is equivalent to
System.out.println in java, meaning that it always contains a newline character at the end of the
print.

1 print("Hello world") // causes "Hello World\n" to print to console

2 print (1) // prints "1" to the console

3 print([1, 2, 3, 4]) // prints "[1, 2, 3, 4]" to the console

4 print(null) // prints "null" to the console

5 print(true) // prints "true" to the console

3.1.4 Variable Assignment

Variable Declaration

Variables are declared with the ‘var’ keyword Variables can either be implicitly typed or explicitly
typed during declaration.

1 var x = 1 // implicitly typed as int

2 var y : int = 1 // explicitly typed as int

As noted in Section 2, giving an explicitly typed variable the wrong datatype causes an error because
Catscript is statically typed.

Variable Assignment

Similar to most languages it is possible to assign or update a variable’s value using ‘=’

1 var x = 1 // implicitly typed as int

2 x = 2

3.1.5 Function Declaration and Calls

Function Declaration

The following lists a possible function declaration in Catscript.

1 function add(x, y : int) : int {

2 return x + y

3 }

3

Catscript Documentation Page 4

In general, a function declaration follows: ‘function’ FUNCTION NAME + (any number of typed or
untyped parameters, separated by ‘,’) + a return type (if no type is given, it is assumed void) + ‘{’ +
function body + ‘}’

More function examples:

1 function add(x, y) : int {

2 return x + y

3 }

4

5 function concat(x: int , y: string) : string {

6 return x + y

7 }

8

9 function printList(x: list) {

10 for (y in x){

11 print(y)

12 }

13 }

Function Calling

It is simple to call functions in Catscript. Simply just use the function name, and list the parameters
surrounded by parenthesis.

1 function add(x : int , y : int) : int {

2 return x + y

3 }

4 add(1, 1) // output 2

3.2 Operations

3.2.1 Addition

Mathematical: Integer addition works the same as elementary math, it adds the left and right hand
side together if they are both integers.

Concatenation: The ‘+’ operator can also be used for concatenation. This is when two strings are
joined together for one string. If one side of the ‘+’ operator is any Catscript type while the other
side is a string, then the other value is cast to a string and string concatenation is performed.

1 1 + 1 // outputs integer 2

2 "hello " + "world" // "hello world"

3 "trial number: " + 1 // "trial number: 1"

4

Catscript Documentation Page 5

3.2.2 Subtraction

Subtraction can be performed between two integer values. It performs the elementary subtraction
operation between the two values.

1 5 - 3 // 2

Also, for numeric operations. The ‘-’ operator is overloaded to negate the number on the right hand
side.

1 var x = -3 // -3

2 -x // 3

3.2.3 Multiplication and Division

These operations multiplication ‘*’ and division ‘/’ perform the elementary multiplication and sub-
traction operations between two values. Special note for division, since integers are the only supported
numeric type in Catscript, integer division is performed. This means that any decimal value is rounded
down to the nearest integer.

1 2 * 2 // 4

2 8 / 2 // 4

3 9 / 2 // 4

3.2.4 Boolean

A number of boolean logic operators are supported. The most simple is the ‘not’ operator which flips
any boolean value to its opposite. Also supported are a variety of equality and inequality operators.

� Equality: =: ‘==’

� Not Equal to: 6=: ‘!=’

� Greater Than: >: ‘>’

� Greater Than or Equal to: ≥: ‘>=’

� Less Than: <: ‘<’

� Less Than or Equal to: ≤: ‘<=’

1 not true // false

2 not false // true

3 1 == 1 // true

4 1 == 2 // false

5

Catscript Documentation Page 6

5 1 != 1 // false

6 1 != 2 // true

7 1 > 1 // false

8 2 > 1 // true

9 1 >= 1 // true

10 2 >= 1 // true

11 1 >= 2 // false

12 1 < 1 // false

13 1 < 2 // true

14 1 <= 1 // true

15 2 <= 1 // false

16 1 <= 2 // true

3.2.5 Order of Operations

Catscript follows order of operations in mathematical expressions. I.e it evaluates multiplication and
division first, then addition.

1 2 * 2 + 3 * 4 // 18

Optionally, Catscript supports parenthesis to enforce order of operations, being the value within the
parenthesis is evaluated first and then other operations continue.

1 not (1 > 2) // true

2 3 * (2 + 2) // 12

3 3 * 2 + 2 // 8

4 Catscript Grammar

The Catscript grammar is formally defined (in EBNF) as:

catscript_program = { program_statement };

program_statement = statement |

function_declaration;

statement = for_statement |

if_statement |

print_statement |

variable_statement |

assignment_statement |

function_call_statement;

for_statement = ’for ’, ’(’, IDENTIFIER , ’in ’, expression ’)’,

’{’, { statement }, ’}’;

if_statement = ’if ’, ’(’, expression , ’)’, ’{’,

{ statement },

6

Catscript Documentation Page 7

’}’ [’else ’, (if_statement | ’{’, { statement }, ’}’)];

print_statement = ’print ’, ’(’, expression , ’)’

variable_statement = ’var ’, IDENTIFIER ,

[’:’, type_expression ,] ’=’, expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER , ’=’, expression;

function_declaration = ’function ’, IDENTIFIER , ’(’, parameter_list , ’)’ +

[’:’ + type_expression],

’{’, { function_body_statement }, ’}’;

function_body_statement = statement |

return_statement;

parameter_list = [parameter , {’,’ parameter }];

parameter = IDENTIFIER [, ’:’, type_expression];

return_statement = ’return ’ [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")

additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|

list_literal | function_call | "(", expression , ")"

list_literal = ’[’, expression , { ’,’, expression } ’]’;

function_call = IDENTIFIER , ’(’, argument_list , ’)’

argument_list = [expression , { ’,’ , expression }]

type_expression = ’int ’ | ’string ’ | ’bool ’ | ’object ’ | ’list ’ [, ’<’ ,

type_expression , ’>’]

7

	Introduction
	Datatypes in Catscript
	Language and Examples
	Statements
	For Statement
	If Statement
	Print Statement
	Variable Assignment
	Function Declaration and Calls

	Operations
	Addition
	Subtraction
	Multiplication and Division
	Boolean
	Order of Operations

	Catscript Grammar

