
Section 1: Program
Included in the directory.



Section 2: Teamwork
My partner, Jander, provided three rather thorough tests that covered parts of the
Catscript grammar that my other tests did not cover. He was also very quick to
respond to my suggestions to make updates and was available to hop on a video
conference to go over his documentation when requested (I had him add a few
more examples).

Further, his documentation included quite a few examples with details about how
they work. He did include quite a few details that I did not include which inspired
me to also include the sections that he did.

Finally, his tests are included as the file jander_tests.txt



Section 3: Design pattern
I used memoization in CatscriptType.java on line 36. I used memoization
because we return a new ListType everytime getListType is called. This can
make the software run slow and thus provide a subpar user experience.

I used memoization to cache the ListTypes so we are not creating a new time
everytime it is called. Depending on the application it is parsing this can save a
lot of time and remove one of the biggest bottlenecks (recursive descent parsers
are slower than parser generators in general).

Below is the memoization that I included in my code.

static ConcurrentHashMap<CatscriptType, ListType> cache = new

ConcurrentHashMap<>();

public static CatscriptType getListType(CatscriptType type) {

ListType returnType = cache.computeIfAbsent(type,

catscriptType -> new ListType(type));

return returnType;

}



Section 4: Technical Writing
Included as file technical_writing.md



Section 5: UML
https://lucid.app/lucidchart/8d3919aa-e19f-496d-b94c-e70508931443/edit?invitati
onId=inv_f640348f-2bf7-4040-8d4a-ed7b7143e4a7

https://lucid.app/lucidchart/8d3919aa-e19f-496d-b94c-e70508931443/edit?invitationId=inv_f640348f-2bf7-4040-8d4a-ed7b7143e4a7
https://lucid.app/lucidchart/8d3919aa-e19f-496d-b94c-e70508931443/edit?invitationId=inv_f640348f-2bf7-4040-8d4a-ed7b7143e4a7


Section 6: Design trade-offs
We used a recursive descent parser compared to a parser generator. Although
this decision was made for me by Carson, I am glad he made this decision.
Having taken this class previously with a different parser design that was much
more difficult to learn, the recursive descent parser we made this semester not
only helped in my understanding of parsers and got me excited to develop.

Some of the benefits of recursive descent are that the code is typically easier to
understand and debug. The error messages are easier to make descriptive and
to add to the parser.



Section 7: Software development life cycle model
We used Test Driven Development and it has been my favorite way to work on a
project and I am slightly disappointed I had to wait till my senior year to
experience it in a class.

Not only was I able to debug my program starting with the test to see exactly
what the test was expecting, but it made it clear what each function was
supposed to do. It also made it very clear what my grade would be when I turned
in the project because I could run the tests myself to see if I was happy with the
grade (the amount of tests passing).


