

1

Montana State University

Compilers Capstone Project

Philip Gehde

Moiyad Alfawwar

Compilers – CSCI 468

Spring 2022

2

Section 1: Program

Please include a zip file of the final repository in this directory.

See following URL: https://github.com/codephilip/csci-468-spring2022-

private/tree/master/src

Section 2: Teamwork

Students worked on their capstone projects independently. The objective was to

work effectively with the existing codebase and pass the test suite.

Our teamwork was effective because we had an ongoing discourse about the

concepts involved, while working on code independently. The objective for both

team members was to understand the principles behind the application, and the

manner of our collaboration, helped us to achieve this goal.

An estimate of hours spent on the capstone project is around 90 hours;

approximately 6 hours per week.

Based on discussions with team member 2, I believe that he spent a similar amount

of time.

Team member 2 provided me with several tests, all of which were passed by my

program. Team member 2, also provided documentation for Catscript which is

helpful to anyone interested in using Catscript.

 public class PartnerTests extends CatscriptTestBase{

 @Test

 public void functionForLoopTest() {

3

 assertEquals("2\n3\n4\n5\n6\n", executeProgram("var a : int = 1\n" +

 "function func(var1 : int) {\n" +

 "for(x in [1,2,3,4,5]){\n" +

 "print(var1+x)}\n" +

 "}\n"+

 "func(1)"));

 assertEquals("8\n9\n10\n11\n12\n", executeProgram("var a : int = 1\n" +

 "function func(var1 : int) {\n" +

 "for(x in [1,2,3,4,5]){\n" +

 "print(var1+x+2)}\n" +

 "}\n"+

 "func(5)"));

 }

 @Test

 public void ifStatementAndPrintingTest() {

 assertEquals("11\n", executeProgram("var x = 1\n" +

 "if(x != 2){\n" +

 "print(x+\"1\")\n" +

 "}\n"));

 assertEquals("x is smaller than 2\n", executeProgram("var x = 1\n" +

 "if(x > 2){\n" +

 "print(\" x variable is larger than 2\")\n" +

 "} else {\n" +

 "print(\"x is smaller than 2\")" +

4

 "}"));

 }

 @Test

 public void arithmeticWithParenthesisTest() {

 assertEquals("12\n", executeProgram("2*(3+3)"));

 assertEquals("6\n", executeProgram("(2*(3+3))/2"));

 assertEquals("7\n", executeProgram("(2*2)+3"));

 // negative values

 assertEquals("-100\n", executeProgram("100*-1"));

 }

 }

Section 3: Design pattern

I chose to discuss the Memoization Design Pattern because I enjoy optimization

problems. Memoization is an optimization technique used to speed up computation

by caching expensive function calls and returning the cached result when the same

inputs occur. In our compilers class this design pattern concerned algorithmic

optimization, which ends up saving us processing power. More specifically, our

program cached data types so they could be used efficiently throughout the

program. The drawback is that we require additional memory space while

computational time is improved. When it comes to Memoization we want to

determine where in our program its application is most relevant. For example, if

we can reduce the duration of an operation by some small amount, but this

5

operation is executed many times over, this may significantly improve

performance. Caching variable types is a good example of this.

Here is an example of Memoization demonstrated in my Capstone project:

 // TODO memoize this call

 static final HashMap<CatscriptType, ListType> cache = new HashMap<>();

 public static CatscriptType getListType(CatscriptType type) {

 ListType potentialMatch = cache.get(type);

 if (potentialMatch == null) {

 ListType listType = new ListType(type);

 cache.put(type, listType);

 return listType;

 } else {

 return potentialMatch;

 }

 }

This snippet is part of ParserType file located at:

src/main/java/edu/montana/csci/csci468/parser

Section 4: Technical writing. Include the technical document that

accompanied your capstone project.

6

In this project we developed a statically typed programming language called

Catscript. In a Statically typed programming language, variable types are known at

compile time. Oftentimes, variable types will need to be expressly declared, while

some languages offer mechanisms for type inference, meaning that the type-system

can deduce the type of a variable.

Advantages of Static type checking include the early detection of errors at compile

time, rapid execution, and development cycles, and much more.

Our final project includes several features like type inference, mathematical

operations, list literals, syntax error handling and more. Of course, the complexity

of catscript does not compare to a higher-level programming language, but it was

fascinating to see how these features could be implemented, nonetheless.

Catscript uses lexical scoping, a convention used by most modern programming

languages, which means that the scope of a variable may only be referenced within

the block in which it was defined. The scope is determined at compile time. Our

Catscript language uses if statements, and iterative statements like for loops,

recursion, and functions.

This Capstone project was effectively divided into 4 parts: Parsing, Tokenization,

Evaluation, and Bytecode. Our efforts in studying each of these sections

culminated in passing the test suite in our project directory associated with each

topic.

The following Documentation was provided by Team Member 2:

Here we see examples of implementations for various expressions and statements

used in Catscript as well as descriptions thereof.

7

Introduction

Catscript is a simple, and easy to learn high level statically typed programming

language. Catscript is made to be readable and has a small type system. Catscript

compiles and run in Java Virtual Machine.

Features

Arithmetic Operators

Plus symbol is used for the Addition operator `+`

Minus symbol is used Substraction operator `-`

Astrik symbol is used for Multiplication operator `*`

Forward Slash is used for the Division operator `/`

``` 

print(10+10) 

print(10-10) 

print(10*10) 

print(10/10) 

``` 

Output:

``` 

20 

0 



 
 

8 
 

100 

1 

``` 


Type System

* int - a 32 bit integer

* string - a java-style string

* bool - a boolean value

* list<x> - a list of value with the type 'x'

* null - the null type

* object - any type of value

Variables

NOTE: ```javascript is for syntax highlighting.

Declaring and assigning a string variable, to specify that it is a string type add `:`

after the variable name. As follows:

```javascript 

var x : string = "Hello, Cats!" 

var x = "Hello, Cats!" // this should also work 

``` 


9

Declaring and assigning an integer variable as follows:

```javascript 

var x : int = 1 

var x = 1 // this also works. 

``` 


Lists

Declaring and assigning lists.

Assigning a list without declaring a type. The type of the list would default to the

type of its content. For example, a list containing only integers would be an integer

list. If there are different types the list would default to an object type list.

```javascript 

var intLst = [1,2,3] // list of integers 

var lst = [1,"apple", 3] // list of objects 

``` 


Integer lists

```javascript 

var lst : list<int> = [1,2,3] // identical to the one above  

``` 


String lists

```javascript 

var stringLst : list<string> = ["apple", "orange", "huckleberry"] 

 

``` 


10

Object list

```javascript 

var objLst : list<object> = ["apple", true, 1, "object"] 

``` 


For loops


```javascript 

for(x in [1,2,3,4]) { 

  print(x) 

} 

``` 

the for loop should output

``` 

1 2 3 4 

``` 


Decision Making / Comparison

Catscripts supports Equality expressions, Comparison expressions

Equality operators:

Equal `==` and Not Equal `!=`

```javascript 



 
 

11 
 

var myBool1 : bool = (10==10) 

var myBool2 : bool = (10!=10) 

print(myBool1) 

print(myBool2) 

``` 


Outputs:

```javascript 

true 

false 

``` 

Comparison operators:

Greater than `>`, Greater than or Equal `>=`, Less than `<`, and Less than or Equal

`<=`


```javascript 

var myBool0 : bool = (10>9) 

print(myBool0) 

var myBool1 : bool = (10>10) 

print(myBool0) 

var myBool2 : bool = (10>=10) 

 

var myBool3 : bool = (9<10) 

print(myBool0) 

var myBool4 : bool = (10<10) 

print(myBool0) 

var myBool5 : bool = (10<=10) 



 
 

12 
 

print(myBool0) 

``` 

Output:


``` 

true 

false 

true 

 

true 

false 

true 

``` 

If statements


```javascript 

var x : int = 42 

var y : int = 42 

if(x == y){ 

    print("x and y are the same") 

} else if(x != y) { 

    print("x and y are not the same") 

} else { 

    print("else") 

} 

``` 

Output:

13


``` 

x and y are the same 

``` 


Printing

Catscript uses a simple syntax for the print function similar to python's print

function


```javascript 

print("Hello, Cats!") 

``` 


You can concatenate strings with integers to output a string

```javascript 

var strX : string = ("Hello, Cats! ") 

var intY : int = 42 

 

print(strX + intY) 

``` 

this would output:

``` 

Hello, Cats! 42 

``` 


Printing boolean expressions:

```javascript 



 
 

14 
 

print(10==10) 

print(20>20) 

print() 

``` 

This would output:

``` 

true 

false 

``` 


Functions

There are two ways to declare a function definition with parameters

First method without specifying types of parameters:

*Not Recommended: it could make the user input incorrect values

```javascript 

var x = "Hello, Cats!" 

 

function foo(str) { 

    print(str) 

} 

``` 


Second Method declaring the types of the parameters:

*Recommended : It is easier to read and understand the types of the parameter.

```javascript 

var x = "Hello, Cats!" 



 
 

15 
 

 

function foo(str : string) { 

    print(str) 

} 

``` 


Function call:

```javascript 

foo(x) 

``` 


Outputs:


``` 

Hello, Cats! 

``` 


Function without any parameters:


```javascript 

function foo(){ 

    print("A function without parameters") 

} 

 

foo() 

``` 


16

Output:


``` 

A function without parameters 

``` 


Comments

Catscript supports comments. To comment a line or write a comment use `//`

before the line or start typing.


``` 

// Catscript Comment 

``` 


Let us go into more detail concerning some of the Features of Catscript, which are

graphically represented in the UML diagram in Part 5:

Type Literals

Our Catscript language implements a variety of data types including bool, null, int,

string, and object. These are statically declared when used with functions. If no

return type is declared, our function will return type void. As previously

mentioned, we use static typing when declaring our variables.

Syntax Error Handling

Catscript provides us with error handling, letting us know, where syntax errors are

located. For example, we may receive typecasting errors, or errors for using

undefined variables, just like we would in any higher level language.

17

Expressions

Expressions in programming are the product of combining functions and values,

that are combined and interpreted by the compiler to create new values. We can

evaluate expressions to either literal or object values, including Boolean, int, or

string values.

In Catscript, we deal with the following types of expressions:

Integer Literal Expressions

These expressions represent 32 bit integer value. Catscript does not support floats

or double.

String Literal Expressions

Defined as arrays of characters, string literal expressions can be represented by as

few or many characters as desired. We use double quotes (“example”) to define

string literal expressions.

Boolean Literal Expressions

Evaluates to either True or False. Declared as true, or false.

List Literal Expressions

This is how we represent a list value in our program, similar to Arrays in Java.

Lists in Catscript can contain as many elements as desired. We represent our list in

the following syntax:

[1,2,3]

In Java, Arrays are mostly read from, and behave covariantly, but may present

problems when we try to write to them.

18

Unlike Java, the type-system of Catscript is considered sound, and therefore allows

us to use covariant list types, like java, but unlike java our list is immutable

meaning that we cannot write to it.

Parenthesized Expressions

We can use as many or as few parenthesis as we want, as long as they are logically

valid.

For example: (((1))) evaluates to 1.

Additive Expressions

This includes addition and subtraction of integers and string concatenations. For

example: Value1 + Value2 is valid just as 1+1 is valid. Parenthesized additive

expressions are valid and follow basic order of operations. For example: Value

Unary Expressions

In our Catscript we can utilize these expressions to convert values from positive to

negative. For example, we might convert -7 to 7 by writing - - 7. Similarly we may

perform this operation with Booleans or variables.

Comparisson Expressions

Just like in Algebra class, comparison expressions allow variable values to be

compared with variables, constants, or regular expressions. In Catscript, we may

use to following operators to do this: <, >, <=,>=.

Ex. 9>10 equates to false.

Many of these expressions are self-explanatory and so I will list them here without

an explanation for the sake of brevity. These include:

19

Equality Expressions

 public Object evaluate(CatscriptRuntime runtime) {

 if (operator.equals("==")) {

 return getLeftHandSide() == getRightHandSide();

 } else {

 return getLeftHandSide() != getRightHandSide();

 }

 }

Factor Expressions

 @Override

 public Object evaluate(CatscriptRuntime runtime) {

 Object rhsValue = rightHandSide.evaluate(runtime);

 Object lhsValue = leftHandSide.evaluate(runtime);

 if (operator.getType().equals(TokenType.STAR)) {

 return (Integer) lhsValue * (Integer) rhsValue;

 }

 else {

 return (Integer) lhsValue / (Integer) rhsValue;

 }

 }

Function Call Expressions

 @Override

 public Object evaluate(CatscriptRuntime runtime) {

20

 FunctionDefinitionStatement function = getProgram().getFunction(name);

 List<Object> argList = new ArrayList<>();

 for (Expression argument : arguments) {

 argList.add(argument.evaluate(runtime));

 }

 return function.invoke(runtime, argList);

 }

Null Literal Expressions:

The null literal evaluates to the null value,

Identifier Expression:

return runtime.getValue(name);

Syntax Error Expression:

Ex. “Bad Token”

Let’s Have a look at some the Statements in Catscript:

Statements

According to Wikipedia, In computer programming, a statement is a syntactic unit

of an imperative programming language that expresses some action to be carried

out.

In Catscript, We can use the following Statements:

21

Assignment Statement:

Changes the value of a variable. Variables need to be declared before they can be

assigned. Given that Catscript is a statically typed language, variables can not be

changed dynamically and will produce a parse error if we attempt to turn a variable

declared as a string into an integer.

Print Statement

Just like in OOP, we can use our print statement in Catscript to take an input of any

type and output this to the console.

Print(exampleVar) or print(1)

Other Statements used in Catscript include:

• For Statement:

• Function Call Statement:

• Function Definition Statement

• If Statement

• Return Statements

• Syntax Error Statements

• Variable Statements

We can see some of these statements implemented in the documentation of

Member 2.

22

Section 5: UML.

Design was handled by professor, who consequently provided the UML for this

project. ParseElement is a public abstract class that is extended by both expressions

and Statements. All other classes are public.

I know that there has been a heavy emphasis on UML this year, and I would just

like to say that I have found it invaluable. In my experience, UML diagrams have

allowed me to quickly adopt to the workflow and organization of production level

applications, especially when it comes to databases.

I believe that an emphasize on architecture and design is a core concept of a

comprehensive computer science education and distinguishes our university

curriculum from a being a technical vocation.

The UML below, clearly illustrates how our ParseElement Class relates to both

expressions and statements which are extended by public classes in turn.

ParseElement is an example of recursive descent.

23

24

Section 6: Design trade-offs

In this class we decided to use recursive descent parsing over a parser generator,

which represent two of the most popular ways of writing compilers.

Recursive descent is a top-down parsing technique that constructs the parse tree

from the top and the input is read from left to right [Tutorialspoint.com]. Recursive

descent parsing might not be as popular in academia, but it is highly performant.

Perhaps the straightforward, simplistic manner of recursive descent parsing is a

reason for its absence in academia. It is easy to debug, in fact, far easier, and this

was a primary factor in terms of design choice. Furthermore, recursive descent is

how most commercial parsers are built. A metaphor provided by Bob Nystrom,

author of https://craftinginterpreters.com/, describes recursive descent as follows:

1. We begin at a low level of individual source code characters

2. We ascend up the mountain to the point that we have a high-level

understanding of the program

3. We then descend down to bytecode or machine code. [Carson, Lecture

Notes].

This method makes it very obvious as to how the grammars work.

A parser generator takes a grammar as input and automatically generates source

code that can parse streams of characters using the grammar

[https://web.mit.edu/6.005/www/fa15/classes/18-parser-generators/].

I believe that for an introductory class, recursive descent allowed us to implement

features more easily and was therefore more fun to use. Parser generators can be

https://craftinginterpreters.com/

25

tricky to work with when it comes to implementing new features and less flexible

when working with different grammar.

Therefore, the recursive descent parser was the better choice for an introduction to

compilers.

Section 7: Software development life cycle model

Describe the model that you used to develop your capstone project. How did this

model help and/or hinder your team?

We are using Test Driven Development (TDD) for this project. The objective for

our project was to satisfy our test suite. This was an excellent tool to work with, as

we could quickly test whether our program was meeting the requirements. It was a

pleasant experience because the tests were already written, so we knew exactly

what was expected of our program, and did not have to define these ‘success

parameters’. Oftentimes, there is ambiguity in the expectation of how a program

needs to perform, and writing appropriate tests can be a challenging task, as one

needs to clearly identify all test criterias. This in itself has made me reflect more

carefully on how testing criteria is to be determined in order to meet objectives,

and define success.

The testing suite also empowered us to learn more about the debugging tools in our

IDE. This was incredibly useful and has made me a much better programmer as a

result. In combination with my software architecture class, this experience has led

me to better understand software design, debugging, and testing.

I wish that more of our classes were based around coding projects like this,

because the expectations are clear.

