
Design Pattern

The made design trade off that was made was to use the recursive descent algorithm instead of parser
generators. The recursive descent algorithm is in some ways more simple and easy to understand. It
also meshes well with the EBNF definition of the grammar. The EBNF grammar is defined recursively
so it fits naturally and intuitively with recursive descent. The primary reason for our choice in the
recursive descent algorithm was the ease of understandability of the method.

One drawback of recursive descent is that we have to write more lines of code by hand. This increases
the technical complexity of the project as more lines of code have to be written. We thought that
this is balanced by the greatly improved comprehensibility of recursive descent. Another drawback of
recursive descent is that parser generators are more standard. Parser generators are taught more in
universities and are often used in industry (although recursive descent is prevalent in industry). This
is another major drawback and is something worth considering, but we still thought it was worth the
tradeoffs.

In order to better understand the tradeoffs, we first should understand what parser generators are
and how they work. Essentially, a parser generator is something that you can program to generate all
the key elements of a compiler (lexer, parser) automatically. The lexer essentially works with defining
regular expressions (regex) that match a given lexical element. For example, comments:

1 COMMENT

2 : ’//’ ~(’\n’|’\r’)* ’\r’? ’\n’ {skip();}

3 | ’/*’ ( options {greedy=false ;} : . )* ’*/’ {skip();}

4 ;

Make sense? That essentially selects everything up to the new line character for the ’//’ and everything
until the next ’/*’ as the comment. The next is the parser. This makes a parse tree and has some
specific headers, but after that there are some components that resemble the EBNF that the grammar
is defined by. For example with addition,

1 addExpr

2 : ID

3 | INT

4 | STRING

5 ;

In general, lots of the syntax is very obscure and it is not an intuitive implementation of the EBNF
grammar. For this reason, we chose to use recursive descent algorithm instead.

1


