Montana State University
CSCI - 486 Compilers Capstone Portfolio
Spring 2022

John Jubenville
Ryan Kraus

Section 1 : Program

See the attached sourcecode.zip for source code. The source code can be compiled using
the IntelliJ IDE.

Section 2 : Teamwork

Team Member 1:

Team Member 1 was the primary developer for the project. Team Member 1 used the test
scripts provided by the professor and Team Member 2 to write the Java code necessary to create
a functional compiler for the Catscript language. Team member 2 started with developing the
parser, then moved on to developing the statements and expressions for the language, and finally
the bytecode compiler.

Estimated Time: 190 Hours
Estimated Percentage: 95%

Team Member 2:

Team Member 2 was the primary test and documentation writer for the project. Team
Member 2 wrote a small suite of tests to test the compiler written by Team Member 1. Team
Member 2 also provided the technical documentation for the project. The technical
documentation broke down the Cat Script language usage and defined the Catscript statements
and expressions.

Estimated Time: 10 Hours
Estimated Percentage : 5%

Section 3 : Design Pattern

One design pattern that was used was the Memoization Pattern. The purpose of the
Memoization Pattern (also called the flywheel pattern) is to limit the amount of new objects
being created or processes being run by caching objects that will be called repeatedly. By
caching frequently called objects, a program saves the processing time that goes into creating the
objects. Memoization also saves memory by only creating a single instance of an object, instead
of one for every time that it is called.

In this case the Memoization Pattern was applied to the “getListType” function in the
CatscriptType Class. The function returns a ListType object that corresponds to the parameter
CatscriptType. Prior to applying the Memoization Pattern, the function would initialize a
ListType every time it was called. This function is called frequently so the initialization of the
ListType could add substantial time and memory to a program run.

To apply the Memoization Pattern, a static HashMap was created in the class that holds a
CatsciptType and the corresponding ListType. When a new type is run through the getListType
function, a ListType is initialized and then stored in the HashMap. In any subsequent calls to the
getListType function, the value of the ListType is pulled from the HashMap, rather than
reinitialized in the function. This saves the program the time and memory required to initialize
the ListType.

A copy of the getListType function is included here for reference:

static HashMap<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType (CatscriptType type) {
ListType listType = cache.get (type);
if (listType == null) {
listType = new ListType (type):;
cache.put (type, listType);
}
return listType;

Section 4 : Technical Writing

Catscript Guide

Introduction

Catscript is a statically typed scripting language. Here is an example:

var x = "Hello World"
print(x)

Output : Hello World

Features

Identifier Expressions

Objects of any type can be assigned to identifier variables:

var x =1
print(x)

Integer Literal Expressions

Integer Assignment:

int x = 1

String Literal Expressions

String Assignment:

string x = “Hello”

Boolean Literal Expressions

Boolean Assignment:

bool x true
bool y = false

List Literal Expressions

Lists contain objects of any type in Catscript:

list x = [1, 2, 3]
list y = [“hi”, “there”]
list z = [true, false]

Null Literal Expressions

Catscript allows for null assignment:

var x = null

Additive Expressions

Catscript allows for integers to be added or subtracted. Strings can be concatenated:

var x =1 + 1
var y =1 -1
string s = “Hello” + “ World”

Factor Expressions

Catscript allows integers to be multiplied or divided:

1*1
1/1

var x
var y

Comparison Expressions

Comparing integers in Catscript:

bool x =1 > 2
bool y =1>5>=1
bool z =1 < 2
bool a =1«<=1

Equality Expressions

Catscript allows for equality testing with any type:

bool x
bool y

(1==1)
(ﬂ'HiJl fy— “'Hi)))

Unary Expressions

Integers can be negative or negated

int x = -1
bool y = not true

Parenthesized Expressions

Catscript allows for parenthesized expression:

int x = (-1 +3) / 2

Function Call Expressions

Define functions and optionally include parameters:

function add(x, y) {
return x + vy

}
var x = add(1, 1)

Assignment Statement

Variables can be assigned

var x =1

For Statement
Catscript allows for the use of the logical For loop:
for(x in [1, 2, 3]){

print(x)
}

Functional Call, Function Definition and Return Statements

Define a function with optional parameters and define a return value:

function add(x, y) {
return x + vy

}
var z = add(1, 1)

function subtract(x : int, y : int) : int {
return x -y

}
int z = subtract(1, 1)

If Statement
Catscript allows for the use of the logical If/Else loop:
int x =5
if(x > 0){
print(“x is positive”)
} else {

print(“x is negative”)

}

Print Statement

Print statement to console

for(x in [1, 2, 3]){

print(x)
}
Output:

1

2

3

Variable Statement

Variable statements assign type based on implied type:

var x =1

Section 5 : UML

WariableStatement

ForStatement

FunctionCallStatement

EqualityExpres=ion

| SyrtaxErrorExpressian |

UnaryExpresszion

| CamparizonExpression
t

| FunctionCalExpreszian |

[itStatement | | FunctionDefintionStatemert |

| IntegerLiteralExpression |

| SyritacErrorStatement |

Return=tatement

PrirtStatement

AT A,
[k ;
| 5 Statemert R CatSoriptProgram
v
ParseElement
P
o [Epressin |
r‘,’#‘ﬁfﬂﬁ'fﬁ AdditiveExpression
| StringliteralExpression |
| ParerthesizedExpression |
IdertifierExpression
TypeLiteral
FactorExpression BooleanExpression
——— 1

| MullLiteralExpression | |Li31LiteraIExpression |

Section 6 : Design Trade-offs

The major design tradeoftf in this project was the choice to use Recursive Descent over
Parser Generation for the compiler. This choice was ultimately made by the professor, but it had
large implications on the development of the Catscript compiler.

Parser Generators are complicated to write, and the code can be highly obfuscated. They
also become slower as the amount and variety of what can be parsed increases. It is difficult to
implement error handling and multi-line commenting using a parser generator, which can make
things difficult for the end user as well. Parser Generators can make small projects quicker, but
use of a parser generator is likely not allowed in a compilers class as it removes too much from
the education of how parsers and compilers work.

Recursive descent is more widely used in industry, and has a more intuitive design and
process flow. It is the ideal method for education as it teaches students about the fundamentals of
language design and provides a clearer picture of what parsing and compiling are. For these
reasons, Recursive Descent was chosen as the design for the compiler.

Section 7 : Software Development Life Cycle Model

The primary development model used in this project was the Test Driven Development
model. The Test Driven Development model works by converting software requirements to test
cases, and then writing the code necessary to pass the tests. In this case the tests were developed
by the professor and Team Member 2, then Team Member 1 worked to complete all of the tests.

One advantage of the Test Driven Development model is that it breaks large projects,
such as this one, into much smaller and manageable chunks. The developer is forced to focus on
solving one test at a time, making large projects more doable. It also can lead to more efficient
code, since they are only writing enough code to pass the tests. Another advantage is that it leads
to finer debugging, since each test can test a single component in code, rather than the whole
project put together.

Disadvantages of Test Driven Development include the need to write full coverage tests
prior to developing the program. In cases where the software requirements are vague or
unknown, this can be almost impossible. In the case of the compiler however, the input and
output of each compiler component is well defined and fairly easy to get full coverage on. Also
this step was taken care of by the professor.

From an education standpoint, following the Test Driven Development model was a great
way to learn the ins and outs of a compiler without getting overwhelmed by the complexity of
such a large project.

