
Introduction

Catscript is a simple scripting language created by Professor Carson Gross for the purposes of

the Compilers course at Montana State University. It is a statically typed language with lexical

scoping, along with a syntax and many features that are commonplace amongst C-like

programming languages, such as control flow, recursion, and functions.

In Catscript, the valid type literals are integers, booleans, strings, objects, lists, and null, all of

which are indicated in code by the var keyword.

Comments are also implemented in Catscript in a way identical to their implementation in Java.

That is, a single line comment is indicated with a double slash (//) and a block comment is started

with /* and ended with */.

Expressions

Literal Expressions

In Catscript it is possible to evaluate literals as expressions and the compiler will return the value

of said literal after compilation. A literal expression can be any type that is valid within

Catscript.

Integer Literal Expressions

Integer literal expressions in Catscript represent a 32-bit integer value.

The above program will evaluate to 17. Please note that Catscript does not support

floating-point numbers.

Boolean Literal Expressions

Boolean literal expressions in Catscript are indicated either by the keyword true or false.

The above programs will evaluate as true and false respectively.

String Literal Expressions

String literal expressions in Catscript are strings of any character surrounded by double

quotes.

The string in quotations will evaluate to the phrase contained within. For concatenating

strings, see Additive Expressions.

List Literal Expressions

List literal expressions in Catscript are lists of other literal expressions surrounded by

square braces, with each element separated by commas.

The above program will evaluate to [1,2,3,4,5].

Additionally, in Catscript not all elements in a list need to be the same element.

The above is a valid Catscript program and will evaluate to [1, true, “string”].

Null Literal Expression

The null literal expression is an object that has no value.

The above program will evaluate to null.

Unary Expressions

As the name implies, unary expressions are made of a single operand. In Catscript, there are two

such expressions: negative and not.

Negative

The negative unary expression in Catscript is indicated with the - operand. It will negate

the value of the following integer value.

The above program will evaluate to -42.

Interestingly, in Catscript multiple negative unary expressions can be used in succession.

The above program will evaluate to 42.

Not

Similar to the Negative unary expression, the Not unary expression is indicated with the

not keyword and will negate the value of the following boolean value.

The above program will evaluate as false.

Also like the Negative unary expression, multiple not keywords in succession will

continually negate the boolean value.

The above program will evaluate as true.

Additive Expression

In Catscript, additive expressions are used to either add or subtract integer values, or to

concatenate strings. The operators used in arithmetic are left associative.

Add

The above program will evaluate to 51.

Subtract

The above program will evaluate to 17.

In Catscript, multiple add and subtract additive expressions can be strung together to

create a valid program.

The above program will evaluate to 10.

Concatenation

The above program will evaluate to Hello World!.

Similar to the add and subtract, multiple concatenation additive expressions can be strung

together.

The above program evaluates to Itwasthebestoftimes,itwastheworstoftimes.

Factor Expression

In Catscript, factor expressions are used to either multiply or divide integer values. The operators

used in arithmetic are left associative.

Multiply

The above program will evaluate to 15.

Divide

The above program will evaluate to 4.

In the event that the result is not an integer, the result will be rounded down since floating

point values are not valid within Catscript.

Comparison Expression

Comparison expressions are used to compare two integer values and will return a boolean

depending on the result. The valid comparison operands in Catscript are >, >=, <, and <=.

Each line in the above program will evaluate to true, true, false, false, false, and true respectively.

Equality Expression

Equality expressions compare two expressions and return a boolean value depending on the

result. The valid equality expression operands in Catscript are = = and !=.

In the above program, each line will evaluate to true, false, false, and true respectively.

Parenthesized Expression

Parenthesized expressions are simply expressions of any type surrounded by parentheses.

The above program will evaluate to 1.

In Catscript, parenthesized expressions can have multiple pairs of parentheses.

The above program will also evaluate to 1.

Statements

Print Statements

Print statements print the string value of whatever they are given.

The above program will print out 1, Here is a string, and true on separate lines.

Variable Statements

Variable statements create a variable of a given type. If no type is given, the compiler will infer

its type.

Assignment Statements

Assignment statements are used to change the value of a variable during runtime.

Following line 2 of the program, the new value of x is 2. Please note that when assigning the

value of a variable, it must remain the type it was, otherwise it will cause a parse error.

For Loops

In Catscript, for loops iterate through lists.

In the above program, the for loop will iterate through the list of [1,2,3,4,5] and print each one,

resulting in 1 2 3 4 5 being printed to the console.

If Statements

In Catscript, if statements are used to branch to a different part of the program depending on the

value of a comparison expression.

In the above program, the value of the comparison expression in each statement will be

evaluated, and when neither the if or the else if evaluates to true, the else statement will be

entered the code within will be executed.

Functions

In Catscript, functions are used to enable the repeated usage of a block of code. Functions are

defined using the function keyword, along with its name, arguments, and return type. A function

can have none, one, or many arguments. If no return type is given, the function will have a return

type of void, meaning it doesn’t return anything.

In order to call a function that has already been defined, one must simply type the name and all

of the required arguments, as seen on line five of the above program.

Return Statements

In Catscript, return statements are used to return a value from a function.

In the above program, whatever is assigned to returnValue will return with the function call on

line five. The program can then use this value later to perform other tasks.

Grammar

catscript_program = { program_statement };

program_statement = statement |

function_declaration;

statement = for_statement |

if_statement |

print_statement |

variable_statement |

assignment_statement |

function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',

'{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',

{ statement },

'}' ['else', (if_statement | '{', { statement }, '}'

)];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,

[':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list,

')' +

[':' + type_expression], '{', {

function_body_statement }, '}';

function_body_statement = statement |

return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==")

comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" |

"<=") additive_expression };

additive_expression = factor_expression { ("+" | "-")

factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression

};

unary_expression = ("not" | "-") unary_expression |

primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false"

| "null"|

list_literal | function_call | "(", expression,

")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [,

'<' , type_expression, '>']

