
Section 1: Program
The source code for the compiler is included in the attached zip file.

Section 2: Teamwork
Compilers are complex systems, and it is necessary to understand the entire
process to be able to build a compiler. For that reason, the compiler was
designed and programmed without partner help. If this were to have been a
group project, many groups would have one member doing most of the work and
the other member would have passed the class with no clue of how to design a
working compiler.

The teamwork in this project consisted of test-driven-development and docu-
mentation. For each two-member team, each member wrote tests and documen-
tation for the other member’s compiler. This allowed team members to check
their partners work without the risk of one person coasting.

Section 3: Design pattern
The Memoization pattern was used to optimize the getListType() func-
tion in the CatScriptType class. Initially, this function created a
new (immutable) object each time it was invoked, resulting in over-
head each time it was called. This wastes both CPU time and mem-
ory and places unnecessary stress on the JVM’s Garbage Collector.

Section 4: Technical writing. Include the tech-
nical document that accompanied your capstone
project.
The included documentation file ‘catscript.md’ explains the grammar and func-
tionality of the CatScript programming language.

1



Section 5: UML.
CatScript uses a parser to generate a parse tree. The parse tree is formed from
ParseElements that follow a hierarchy. This parse tree is used for evaluation,
bytecode generation, and (not implemented) transpilation to JavaScript.

UML Diagram for ParseElement.java:

Figure 1: ParseElement UML

Section 6: Design trade-offs
In general, compilers can be created in one of two ways, Parser Generators
and Recursive Descent. Parser generators are often used due to the ease of
creating a working compiler, but they are sub-optimal for the end user. The
code they generate produces confusing error messages for the end user, and they
are difficult to debug.

We chose a recursive descent compiler to satisfy the above-mentioned learning
and debugging criteria. The recursive descent pattern is similar to how the
other parts of the compiler (evaluator and bytecode generator) work and gave
me a better understanding of how compilers actually work.

2



Section 7: Software development life cycle model
In this class, we used test-driven development (TDD). Test-driven development
starts with a collection of tests that the software must pass and a “framework”
application with few features implemented.

Each stage of the compiler had its own set of tests. The four sections of the
compiler (Tokenizer, Parser, Evaluator, and Bytecode generator) each had their
own series of tests.

Test-driven development helped greatly with developing all parts of the compiler.
Since the program specification was specified by programmatically executed
tests, it was easy to see which parts of the program were functioning properly,
and which parts still needed work. Additionally, TDD provided an easy way
(regression testing) to check if new code introduced bugs by re-running previous
tests.

3


	Section 1: Program
	Section 2: Teamwork
	Section 3: Design pattern
	Section 4: Technical writing. Include the technical document that accompanied your capstone project.
	Section 5: UML.
	Section 6: Design trade-offs
	Section 7: Software development life cycle model

