

Compiler Capstone Portfolio

Kolson Mendelsohn

CSCI 468

09 May 2022

The Program

Included below is a link to the source code file:

https://github.com/KStormM/csci-468-spring2022-
private/blob/master/capstone/portfolio/source.zip

Teamwork

For the purposes of this section, I will be referenced as team member 1, and my partner will be
referenced as team member 2.

Team Member 1 Contributions: Code tests, documentation

Team Member 2 Contributions: Invalid code tests

Team Member 1 Estimated Time: 95%

Team Member 2 Estimated Time: 5%

The task of each team member for this project was to provide the other team member
with three code tests as well as a detailed documentation of the Catscript programming language.
Team member 1 and team member 2 met up to discuss the desired approach to the team
components of the project. Following the meeting, team member 1 repeatedly attempted to
contact team member 2 in regard to the documentation and the tests. Team member 2 responded
with two code tests and no documentation. The code tests were invalid. Team member 1 again
repeatedly attempted to contact team member 2 in regard to the invalid tests and documentation
with no success. The two tests provided by team member 2 will be included below. After a brief
discussion with Professor Gross, team member 1 decided to submit his own work as team
member 2 did not contribute the required components.

Tests Provided by Team Member 2:

@Test

 public void functionDisallowRecursion() {

 FunctionDefinitionStatement expr = parseStatement("function x() {x()}", false);

 assertNotNull(expr);

 assertTrue(expr.hasError(ErrorType.RECURSIVE_FUNCTION));

 }

@Test

 public void functionDefStatementEnsuresClosingBrace() {

 FunctionDefinitionStatement expr = parseStatement("function test() { ", false);

 assertNotNull(expr);

 assertTrue(expr.hasErrors());

 }

The first of the two tests included above is an invalid test. The Catscript grammar supports
recursive function calls whereas the test’s purpose is to output an error when a recursive function
call is made. The second test included above tests a functionality that was already tested through
the tests provided by Professor Gross. In lieu of the two tests provided by team member 2, team
member 1 developed three new tests. The tests are included in the PortfolioTests class file in the
included source code as well as in the technical writing section of this portfolio.

Design Pattern

A design pattern that was used in the program is memoization. Memoization is the
process of storing the results of a function to reduce processing strains. Typically memoizing a
function is used for particularly expensive functions in regard to processing time.

In the CatscriptType class, there is a function call that returns the type associated with a
list. The function was memoized using a hashmap. If the type has already been instantiated, it is
simply pulled from the hashmap. This reduces the processing time for list types that have already
been used. In this case, memoization was used because the getListType method is used
frequently. Its frequent use would have a small but noticeable impact on the processing time of
the program.

Technical Writing

The two tests discussed in the teamwork section were not valid tests. Included below are the
three tests provided by myself.

Tests Provided by Myself

The required documentation was not provided by team member 2. Included below is the
documentation developed by myself.

UML

Included on the next page is a UML class diagram produced on LucidChart. This UML diagram
shows the abstract class ParseElement and its associated classes. In an attempt to make the
diagram viewable, the next page has been translated to a landscape orientation.

Design Trade-Offs

One of the major design trade-off decisions that we made was generating our own parser
rather than using a parser generator. A parser generator is a tool that produces a parser based on
the grammar of the language. In most cases a parser generator is sufficient to complete a
compiler. A major downside to a parser generator, however, is that they often do not produce a
user-friendly parser. For example, a parser generator does not incorporate error recovery. The
error messages that are produced can often be vague or hard to understand. Our decision to
produce our own parser allowed us to incorporate error recovery, our own error messages, and
gave us some flexibility to improve efficiency.

Another major reason why this decision was made was to understand how a parser works.
Using a parser generator would have resulted in the same end program. However, we would have
missed out on learning the inner workings of a parser. By producing our own parser, we were
given the opportunity to understand exactly how a recursive decent parser works as well as why
it is the most popular choice for parser design among many companies.

Software Development Life Cycle

For this project, the software design strategy that we used was test-based development.
This means that we have a group of code tests that are developed to test a specific aspect of our
compiler. We then develop the compiler to get all tests passing. This design strategy has several
benefits. One of the major benefits is that bugs in our code are easily weeded out. Another
benefit of test-based designing is that there are clear milestones for completion of the compiler.
In this case, there were clear test groups used for the lexing, parsing, and compiling stages of the
compiler.

One disadvantage of this design strategy is that there is very little flexibility in the code.
There is a clear purpose to the tests and the code must accomplish that purpose. In this case, it is
beneficial to understand how a compiler works. In the real world, on the other hand, this design
strategy may limit the potential scope of a program.

