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Section 1: Program 

The source code is found in source.zip in the same directory. It is written in Java 
using the IntelliJ IDE. The codebase was continually managed using GitHub. 
 
Source code found at: 
/Users/WillW/csci-468-spring2022-private/capstone/portfolio/source.zip 
 
Or 
 
https://github.com/willwalkuski/csci-468-spring2022-
private/blob/master/capstone/portfolio/source.zip 
  

https://github.com/willwalkuski/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip
https://github.com/willwalkuski/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip


Section 2: Teamwork 

Member Contributions 

Team member 1 was responsible for programming and implementing full 
functionality of the project. Features implemented include tokenization, parsing, eval, 
and compilation of the Catscript language. Functions were implemented to satisfy the 
provided test suites. 
 

Team member 2 provided additional tests to run the program against to ensure 
functionality in cases not originally covered in the base tests and to continue to add to 
the test-driven development cycle. They also provided the full technical documentation 
of the Catscript language which is included in the next section. 
 

Time Estimates 

Team member 1: 80 hours (~89%) 
Team member 2: 10 hours (~11%) 
  



Section 3: Design Pattern 

A design pattern included in this project is memoization. Memoization is a 
technique used to optimize a program by reducing expensive function calls. To 
eliminate these function calls, a cache is created with a map. If the function is called and 
the desired result is already stored in the cache, that value is returned. Otherwise, the 
cache is updated. Our implementation was not designed to be safe with multiple 
threads. 
 

This implementation can be found in the CatscriptType.java class beginning on line 38. 
This file is found in src/main/java/edu.montana.csci.csci468/parser. The code block is also 
included below. 

 

// Memoization implementation 
static Map<CatscriptType, CatscriptType> CACHE = new HashMap<>(); 
public static CatscriptType getListType(CatscriptType type) { 
   CatscriptType potMatch = CACHE.get(type); 
   if (potMatch != null) { // check if the type already exists 
       return potMatch; 
   } else { // if not, add the new type 
       ListType listType = new ListType(type); 
       CACHE.put(type, listType); 
       return listType; 
   } 
} 

 

 

 

 

 

 

  



Section4: Technical Writing 

Catscript Technical Documentation 

Introduction 

This documentation will follow the grammar of CatScript providing descriptions and 
examples of each element that CatScript consists of. 

Features 

CatScript Types 

CatScript is a statically typed language with a simple type system. This means that once a 
type is defined it cannot be changed. The types include: 

• int - a 32 bit integer 

• string - java-style strings 

• bool - boolean value 

• list - a list of value with type ‘x’ 

• null - the null type 

• object - any type of value 

Error Handling 

Error handling within CatScript is similar to what you would expect from other languages. 
Line numbers and line offsets are stored to give specific feedback on where an error occurs. 

Comments 

Commenting in CatScript is identical to commenting in Java. Comments begin with ‘//’ and 
anything after will be ignored by the compiler. 

ex: 

// some comment 

Expressions 

Expressions evaluate to some value, either object or literal types. 

Type Expressions 

As defined in the grammar: 

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type
_expression, '>'] 



Integer Literal 

Integer literals, as listed above, are 32 bit integers. CatScript does not support a decimal 
type like floats. 

ex: 

50 

String Literal 

String literals are arrays of characters of any length. String literals must be enclosed in 
double quotes. String concatenation falls under the additive expression. 

ex: 

"Hello world" 

Boolean Literal 

Boolean literals behave very similarly to other languages. they evaluate to either true or 
false. 

ex: 

true 
false 

Null Literal 

Null literal expressions are objects with no value. 

ex: 

null 

List Literal Expressions 

As defined in the grammar: 

list_literal = '[', expression,  { ',', expression } ']'; 

List literals are very similar to arrays, they can contain values of any type supported by 
CatScript. They must be enclosed in brackets and values must be delimeted by commas. 

ex: 

[1, 2, 3, 4, 5] 

Lists may contain values of varying types. 

ex: 

[1, "Hello", true, 2, "World", false] 



Parenthesized Expressions 

Parenthesized expressions are any expression surrounded by parentheses. Because of the 
recursive nature of the grammar, expressions can be surrounded by any number of 
parentheses pairs and will evaluate to the same value. 

ex: 

(expression) 
(50) 
("Hello world") 
((((50)))) 

Equality Expressions 

As defined in the grammar: 

equality_expression = comparison_expression { ("!=" | "==") comparison_expres
sion }; 

Equality expressions check if two expressions are equivalent or not and return a boolean 
value based on the result. ‘==’ is used for checking if two expressions are equal and ‘!=’ is 
used for checking if two expressions are not equal. 

ex: 

1 == 1 
1 == 2 
1 != 1 
1 != 2 

These evaluate to: 

true 
false 
false 
true 

Comparison Expressions 

As defined in the grammar: 

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=" ) addi
tive_expression }; 

Comparison expressions check a condition and return a boolean value based on the result. 
Comparisons can be ‘<’, ‘>’, ‘<=’, or ‘>=’. 

ex: 

1 < 2 
1 > 2 



1 <= 1 
1 >= 1 

These evaluate to: 

true 
false 
true 
true 

Additive Expressions 

As defined in the grammar: 

additive_expression = factor_expression { ("+" | "-" ) factor_expression }; 

Additive expressions include adding or subtracting integer values. String concatenation can 
also be done with this expression using the ‘+’ operator with a string on the left, right or 
both sides. Parentheses can be used to enforce precedence. 

ex: 

1 + 1 
1 + 1 + 1 
2 - 1 
(1 + 3) - 2 
"Hello " + "world" 
"Hello world" + 1 

These evaluate to: 

2 
3 
1 
4 
Hello world 
Hello world 1 

Factor Expressions 

As defined in the grammar: 

factor_expression = unary_expression { ("/" | "*" ) unary_expression };  

Factor expressions behave very similarly to additive expressions but encompass 
multiplication and division. Parentheses can again be used to enforce precedence. 

ex: 

1 * 2 
1 * 2 * 3 
6/2 
2 * 8/(2 + 2) 



These evaluate to: 

2 
6 
3 
4 

Unary Expressions 

As defined in the grammar: 

unary_expression = ( "not" | "-" ) unary_expression | primary_expression; 

Unary expressions precede values and typically convert to opposites using ‘-’ or ‘not’. ‘-’ is 
used before integers and ‘not’ is used before booleans. These can be stacked many times.  

ex: 

-50 
--50 
not true 
not not true 

These evaluate to: 

-50 
50 
false 
true 

Primary Expressions 

As defined in the grammar: 

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null
"|  
                     list_literal | function_call | "(", expression, ")" 

Function Call 

As defined in the grammar: 

function_call = IDENTIFIER, '(', argument_list , ')' 

Function calls consist of an identifier (name) followed by an argument list surrounded by 
parentheses. 

ex: 

foo(1, 2, 3) 

Argument Lists 

As defined in the grammar: 



argument_list = [ expression , { ',' , expression } ] 

Argument lists are any number of expressions delimited by commas. 

ex: 

1, 2, 3 

Statements 

For Statement 

As defined in the grammar: 

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',  
                '{', { statement }, '}'; 

For statements traverse lists with iteration. They follow the following format. 

ex: 

for(varName in list) { 
  // body 
} 

In practice: 

for(x in [1, 2, 3, 4, 5]) { 
  print(x) 
} 

Outputs: 

1 2 3 4 5 

If Statement 

As defined in the grammar: 

if_statement = 'if', '(', expression, ')', '{',  
                    { statement },  
               '}' [ 'else', ( if_statement | '{', { statement }, '}' ) ]; 

If statements execute specific code blocks based on a conditional value. they follow the 
following format. 

ex: 

if(expression) { 
  // execute this code if condition is met 
} 

In practice: 



var x = 10 
if(x == 10) { 
  print(x) // x would be printed since it meets the condition 
} 

If statements can also have else clauses that follow. 

ex: 

if(expression) { 
  // execute this code if condition is met 
} else { 
  // execute this code if condition is not met 
} 

In practice: 

var x = 10 
if(x == 10) { 
  print("x is 10") 
} else { 
  print("x is not 10") 
} 

Print Statement 

As defined in the grammar: 

print_statement = 'print', '(', expression, ')' 

Print statement use the print command directly followed by parentheses. Whatever is 
inside the parentheses will be output. 

ex: 

print("Hello world") 

This evaluates to: 

Hello world 

Variable Statement 

As defined in the grammar: 

variable_statement = 'var', IDENTIFIER,  
     [':', type_expression, ] '=', expression; 

Variable statements assign a variable name to a value. They follow the following format. 

ex: 

var x : int = 10 



Notice the type (following the colon) can be omitted and an object type will be assigned by 
default. 

ex: 

var x = 10 

Function Call Statement 

As defined in the grammar: 

function_call_statement = function_call; 

Function call statements are the same as function call expressions. 

Assignment Statement 

As defined in the grammar: 

assignment_statement = IDENTIFIER, '=', expression; 

Assignment statements assign a new value to an existing variable 

ex: 

var x = 10 
x = 22 
print(x) 

This evaluates to: 

22 

Note that CatScript is statically typed so variable types cannot change throughout 
execution. The following example is invalid and would result in a parse error. 

ex: 

var x = 10 
x = "Hello" 
print(x) 

Function Declaration 

As defined in the grammar: 

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +  
                       [ ':' + type_expression ], '{',  { function_body_state
ment },  '}'; 

Functions are good for easily calling specific code blocks that will be repeatedly used. To 
declare a function the format is as follows. 

ex: 



function funcName(parameters : parameterType) : returnType { 
  // body of function 
} 

In practice: 

function helloWorld(x : string){ 
  print(x) 
} 
 
helloWorld("Hello world") 

Note that a function can have zero or more parameters. Parameters and return may or may 
not have a defined type. If the return type is omitted, ‘void’ is implied by default. 

Function Body Statement 

As defined in the grammar: 

function_body_statement = statement | 
                          return_statement; 

The body contained in a function consists of statements or expressions. 

Parameter List 

As defined in the grammar: 

parameter_list = [ parameter, {',' parameter } ]; 

A parameter list is a list of parameters delimited by commas. 

Parameter 

As defined in the grammar: 

parameter = IDENTIFIER [ , ':', type_expression ]; 

A parameter is an identifier optionally followed by a colon and a type. 

ex: 

x : string 

Return Statement 

As defined in the grammar: 

return_statement = 'return' [, expression]; 

Return statements return specified values from functions. 

ex: 



function funcName(parameters : parameterType) : returnType { 
  // body of function 
  return returnval 
} 

In practice: 

function helloWorld(x : string) : string{ 
  return x 
} 
 
a = helloWorld("Hello world") 
print(a) 

This would output: 

Hello world 

  



Section 5: UML 

 
There was no UML creation prior the start of this project based on the way the 

class was formatted. Above is an expansive class diagram stemming from the 
ParseElement class. It illustrates how elements to be parsed fall under either an 
expression or a statement. From there it shows all the different expressions/statements 
that could be executed upon along with their respective attributes. While this is only a 
fraction of the codebase, it covers the bulk of the most important part of the compiler. All 
together they provide the framework for the parsing stage. These classes also include 
evaluate or execute, transpile, and compile methods as mentioned in the notes. 
Obviously more detail could have been included for each class but at this scale it was 
omitted for readability reasons and to allow a broader view of this portion of the 
codebase.  



Section 6: Design Tradeoffs 

Recursive Descent 

Prior to beginning work on this project, the decision was made to use a recursive 
descent parsing algorithm, the method used for most production compilers, as opposed 
to a parser generator. As with any choice like this, there are pros and cons to each 
option. This section will cover why recursive descent was chosen as the preferred 
design choice.  
 
 Recursive descent is a Top-Down Parser meaning that it builds a parse tree from 
the top and down. The grammar is traversed recursively starting from the top until a 
terminal is hit. If non-terminals still exist, the top of the grammar is called again until all 
branches are terminals. To do this, a grammar that eliminates left recursion and left 
factoring is required. This technique fit well with the grammar that we were working with.  
 
 Recursive descent is known to be a simpler method of writing a compiler despite 
there generally being more code required. Although there is more code, since it is 
simpler than a parser generator the code ultimately is more readable, more 
maintainable, and therefore also easier to debug. It also provides a better 
understanding of the recursive nature of grammars. Parser generators are more 
standard among classes like this at other universities, but recursive descent is more 
applicable to production compilers. 
 

Avoiding Visitor Pattern 
 

A common technique that we decided to avoid is known as the Visitor Pattern. 
This idea consists of placing new behavior or operations into a separate class rather 
than introducing modifications to an existing object structure. Instead, we decided to put 
eval, transpile, and compile directly onto the parse tree nodes. Generally, these very 
different operations would be separated into their own classes. This choice was made 
primarily to preserve as much simplicity as possible throughout the program. It keeps 
everything in one place and makes implementation more fluid. 
  



Section 7: Software Development Lifecycle  
 The software development lifecycle used in this project is test-driven 
development (TDD). We were provided with several test suites to verify that our code 
was producing the intended result to ultimately build a functioning compiler. There were 
dedicated test suites for each checkpoint. The majority of tests were provided prior to 
beginning work on the project however several more were included at the end by team 
member 2 to further verify that the code behaved as intended.  

How TDD Works 

In theory TDD operates in 6 steps. These steps are as follows: 

 
1. Add a test 

0. Requires focusing on requirements before writing code 
2. Run all tests (new test should fail) 

0. Proves that new code is required for desired feature 
3. Write the simplest code that passes the new test 
4. All tests should now pass 

0. If tests fail, revise the new code until they pass. This ensures new code meets 
the requirements and does not break existing functionality. 

5. Refactor as needed, using tests after each refactor to ensure functionality is preserved 
0. This improves readability and maintainability without breaking functionality 

6. Repeat 

Our Experience with TDD 

As mentioned above, the majority of tests were provided from the beginning as 
opposed to adding them as we go. They were split into 4 sections. One for tokenization, 
one for parsing, one for eval, and one for bytecode generation. These tests not only 
verified that correct syntax passed but that incorrect syntax was also caught 
appropriately. This ultimately was a clean and efficient way of doing things. It ensured 
that all test cases were covered, while still maintaining functionality as we went through 
the tests. We also found that having tests made debugging the functions much quicker 
and intuitive. The tests provided valuable error handling within a controlled case. The 
tests provided a clear direction for the project and promoted independent work. Having 
a clear answer of when things were working correctly or not and when all requirements 
were met made work rewarding and inspired confidence in the code being produced. 
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