CatScript Documentation

Introduction

CatScript is a simple, statically typed toy scripting language. It was created for educational purposes, but it can
both evaluate and compile a pretty extensive amount of things (although lacking many of the 'core' features of
more robust languages).

Ex:

var x = "foo"
print(x)

Types

As mentioned above, CatScript is statically typed. The type system includes the following:

: A 32-bit signed integer.

. : A Java-style string.

. : A Boolean value.

. : An immutable list of values of any object type or subtype.
. : The null type.

. : A parent type of any of the above types.

Commenting

CatScript supports both single-line and multi-line comments. Single-line comments begin with a // and continue
to the end of the line. Multi-line comments begin with a /* and end with a

Ex:



Expressions
Additive

CatScript supports an overloaded + operator for evaluating two objects. In CatScript you can:

« Take two ints and evaluate to their sum of type int.
» Take a string and another int/string/null object and evaluate to their concatenation of type string.

Ex:

1+ 1

1 + "foo"
"foo" + "bar"
foo" + null

Comparison

There are four comparison operators:

Only ints can be compared, and they evaluate to a bool type.

Ex:

— o ) )

Equality
Compares two objects using one of two equality operators and evaluates to a bool type.
Equality operators are as follows:

evaluates to true if the two objects are equal.

evaluates to true if the two objects are not equal.



Ex:

Factor

Evaluates to the result of multiplying or dividing an int by another int. As CatScript only support ints, the result of
division will always the truncated int.

Factor operators are as follows:
evaluates to the result of multiplying the two ints.

evaluates to the result of dividing the two ints.

Ex:

1 % 2

2 /1
Function Call

Evaluates to the result of the execution of a defined function with the given (including zero) arguments.

Ex:

function foo(x : int, y : int) {
return x + vy

}

foo(1, 2)



Identifier

Identifiers are used to reference a variable or function. They evaluate to the value of the variable or the execution
of the function they are referencing.

Ex:

var x = 1

List
A list is an immutable collection of any object type or subtype.
The element types of a list are optionally specified by the < and > symbols for type guarantees.

Ex:

var x = [1, 2, 3]
function foo(l : list<int>) {

print(1)

If no type is specified, the list type will be inferred. If multiple types are found, the type of the list will be of type
. Note that passing a list into a function without specifying type in the parameter of the function, the
function will assume the type of the list is

Unary
Evaluates to the opposite of an int literal or a boolean literal. Uses the unary operators:
negates an int literal.
negates a boolean literal.
-1

-(2 + 3)
not true



Parentheses

All expressions evaluate to the result of the operation they are in, and follow an order of operations. Parentheses
are used to force evaluation of an (perhaps nested) expression before it is used in its parent expression (or final
evaluation, if no parent exists).

Ex:
1+ 1 % 2
(1 +1) 2
Literals

Here are the literal types in CatScript. These are just the types that are supported by the language, and the way
they need to be written in code in order for the parser to recognize them.

« int literal - simply a number without a decimal.

« string literal - a string of characters surrounded by double quotes.

» bool literal - either or , must be lowercase.

« null literal - just the word null, must be lowercase.

« list literal - a list of objects surrounded by square brackets and separated by commas.

The way to represent these types are as follows:

true

null

[1, 2, 3]
["foo", "bar"]
[1, true, "1"]

Statements
Assignment

Sets, or re-sets, the value of a variable by copying the value of an expression into the variable itself. It is invoked
by the assignment operator = between an identifier (variable) and an expression. Note that while similar to a



variable declaration, an assignment statement is not a declaration (although they can often happen together).
The variable must be declared before it can be assigned.

Ex:

X + 1

X
]

print(x + 10)

For Loop

The for loop is used to iterate over every element in a list. This loop is invoked using the for keyword, followed by
a variable name, followed by the in keyword, followed by the list name (or a list literal itself).

Ex:

var x = [1, 2, 3]

for (i in x) {
print(i)

}

for (i in [1, 2, 3]) {
print(i)
}

Function Definition

The function definition statement is used to save a function to an identifier so that it can be called at any point in
the future within that scope.

It is invoked by the keyword, followed by the name of the function, followed by the parameters of the
function, each parameter separated by commas, and all enclosed in parentheses, followed by the body of the
function enclosed in curly braces.

« The parameters of the function are the names of the variables that are passed into the function.
» The body of the function is the code that is executed when the function is called.



Ex:

function foo(x : int, y : int) {
return x + vy

}

The name of the function here is
The parameters of the function are x and v, optionally specifying the type of the parameter as ints.

The body of the function is , which returns the sum of the two parameters.

If Statement

The if statement is used to execute a block of code based on the value of a boolean expression being true or
false. It is invoked by the i keyword, followed by the boolean expression to be checked, followed by the body of
the if statement enclosed in curly braces.

An if statement optionally has an else statement, which is invoked by the keyword following the last curly
brace of the if statement, followed by the body of the else statement enclosed in curly braces.

It will look something like this: . This is saying that if the expression is true, then
execute the code in the curly braces, otherwise execute the code in the curly braces following the keyword.

Ex:

if (x > y) {
print(x)

} else {
print(y)

}

Print

Takes the value of an expression and places it on the console, followed by a newline character. It is invoked by
the keyword, followed by the expression to be printed.

Ex:

print(1 + 2)



This will put the value of the expression on the console. In other words, it will print 2 followed by a newline
character to the console.

Return

The return statement is used to return the value of an expression from a function. It is invoked by the
keyword, followed by the expression to be returned.

"Returning" simply means that the function will stop executing and "give back" the value of the expression.
The return statement is optional, and if it is not present, the function will return

Ex:
function foo(x : int) {
return x + 1

print("bar")

var number = foo(2)

print(number)

So the function will return the value of , which in this case is 3 since we've called foo with a value of 2. The
function will not print to the console because it appears after the return statement and since return stops
execution when it is called, the print statement in the function will never be called.

Variable

The variable statement is used to declare a variable. It is invoked by the keyword, followed by the name of the
variable, followed by an = operator, followed by the expression to be assigned to the variable. This is similar to an
assignment statement, except that the variable is being declared or defined before the assignment.

Ex:



