CSCI 468 Compilers

Spring 2022 Capstone Report
Jacob Sitch & Justin Scarbrough

Section 1: Program

The source code for this project can be found in a zip file located in the capstone directory of the
associated github repository at /capstone/portfolio/source.zip

Section 2: Teamwork

Teammate Participation:
My partner for this project is Jacob Sitch, who provided documentation for Catscript, as well as

test cases for features that the course did not test itself. The tests provided will be shown in the
following subheading, and documentation is shown in section 4. Unlike most capstone projects,
the teamwork in this project was very limited to the point where we each worked on our own
project almost completely individually, and then provided each other documentation and extra
tests. Because of this, assigning a ‘percentage of work’ is difficult to calculate, and doesn’t really
show a good dynamic of work between us. For those reasons it will be omitted from this report.

Testing:
The following tests were authored by and provided to me by my partner, and can be found in the

source code in src/test/java/PartnerTest.java:

@Test
void ifElseTest () {
//Effectively an if else statement
assertEquals ("1\n", executeProgram("" +
"if (false) {\n" +
"} else {\n" +
" if(true) {\n" +
" print (1) \n" +

" I\n" +
"I\n"));
}
@Test
void NegativeNumbersTest () {
//Tests that negative number computation works correctly
assertEquals (-10, evaluateExpression ("2 * =-5"));
assertEquals (10, evaluateExpression("-2 * -5"));
}
@Test

void ListTest () {
//Tests that lists can hold multiple types

assertEquals ("[1l, BooleanLiteralkExpression,
StringLiteralExpression]\n",
executeProgram ("print ([1, true, \"hi\"])"));

}

These tests check three components of Catscript’s functionality, and are explored in more detail
below:

Else If Test

The first test checks that if statements are properly set up to handle ‘else if’ conditions by
executing an assertion to see if a printed value matches depending on the proper condition
being met. In this case, the primary condition (false) is not met, but the second condition, else if
(true) is met, so the test passes.

Negative Numbers Test

The second test checks to see that negative numbers are properly multiplied by the factoring
component of Catscript. This test has two different assertions, one where a positive integer (2)
is multiplied by a negative integer (-5), resulting in a negative value (-10). The second assertion
is two negative integers (-2 and -5) multiplied together, resulting in a positive value (10).
Because the compiler is written to handle arithmetic in this way, the test passes.

List Typing Test

The third test checks to see that lists are able to hold multiple types. This test consists of an
assertion checking that the expected value of 1, as well as type values for a
BooleanLiteralExpression and a StringLiteralExpression are displayed when printing a list
consisting of the integer 1, the boolean value true, and the string “hi”. This test was written
incorrectly, as printing a list in catscript prints each element of the list, rather than its type. The
expected value of ‘1’ for the first element is correct, but rather than expecting types for the other
two elements, the actual value of the element should be expected instead.

Fixing the Test

One way to fix this test would be to write a new assertion expecting a true value and requiring
an input of a list with different types for each element. Use a for loop to iterate through the list
and check the type of the current element, storing the data of the previous type (not counting
the first element of the list). After iterating through the list once, check the current type with the
previous. If these types do not match, pass the test, as it shows that the list is capable of
holding multiple types. If the for loop completes its iteration with all elements matching in type,
fail the test. In this case, it's possible that the list input is all of one type, but to properly write this
test, the list must be of different types, which means a failing test would only mean that the
typing system for the compiler cannot identify different types, or that the list is not able to return
the proper types of its contents. Alternatively, this test could be fixed by simply expecting the
values [1,true,”hi”], as they are all of different types, though doing this might not definitively

prove that the compiler was able to determine that the types of these elements are indeed
different.

Documentation:

My partner created documentation for Catscript, going over the language in a very basic and
fundamental way. Each feature of the language was written out in explicit detail with examples
of how to go about using them, or at least how they should appear syntactically while
programming with Catscript. While a little lengthy, this documentation does a good job of
explaining Catscript to someone who has had almost no previous experience with programming,
which seems to fit well with the category of Catscript’s intended use case, that being as a
lightweight scripting language. This documentation is viewable in Section 4 of this report.

My Work:
My primary work on this project consisted of authoring code for tokenizing, parsing, and

executing catscript code, as well as using provided tests to ensure that the program worked
properly.

Code Generation:

Writing code for this project was a process that took place over the course of the entire
semester. | was instructed on the material at hand, such as tokenizing and use of recursive
descent parsing and was then given the task of programming the functionality for those same
functions | was instructed on. The project was split into four checkpoints where certain parts of
the code had to be completed by a certain date, and with each checkpoint | followed a similar
pattern to write the code in a timely manner while also still being correct.

Debugging and Testing:

Done in tandem with writing the code, the use of Test Driven Design allowed me to complete
this project in a way that consisted of writing samples of code, and then debugging them with
the pre-written tests for each checkpoint. After these tests for one component of the code
passed, | moved on to other components, using the information and patterns that | learned from
the previous sections. For example, when writing code to get parsing functionality to work, |
started by working on additive expressions (Such as 1+1+1). After | wrote the code to process
additive expressions, | moved on to test factoring expressions (such as 1*1*1). Because the two
are similar in nature, and | already wrote code that processes addition, altering it to handle
multiplication and division was a very simple matter.

Section 3: Design pattern

Design Pattern Used:

For this project we made use of the memoization pattern when accessing types for a list object.
Without memoization, the method looked like this:

public static CatscriptType getListType (CatscriptType type) {
Return new ListType (type):;

This implementation works fine, but is very inefficient, as it creates a new ListType object with
every single call of the method, which can cause an unnecessary amount of memory allocation
and potentially slow down a system. For example, if a list is made up of only int type data, but is
100 entries long, that’s 99 entries of a list type that we don’t really need to generate. This
method is designed to return what type the data we’re looking at is, so we don’t need to
generate new objects for each entry in a list, rather just for the first occurrence.

Memoization Explained:

Memoization is a design pattern that, put simply, uses caching to speed up computation. A table
(usually a hashmap) is used to store new data entries, and is then called on when that same
value appears. Memoization is typically used in sequences where data repeats often, which is
what getListType does.

With memoization, our code looks like this:
private static Map<CatscriptType, ListType> cache = new
HashMap<> () ;
public static CatscriptType getListType (CatscriptType type) {
if (cache.containsKey (type)) {
return cache.get (type);
} else {
cache.put (type, new ListType (type)):
return cache.get (type);

This implementation uses a map to store ListType objects, and rather than creating a new object
for any entry in a list, checks the map to see if one already exists. If it does exist, the method
just returns that type (since they’re the same). If it doesn’t, the ListType is put into the map
before being returned, so in the future no new object needs to be generated.

Section 4: Technical Writing

The following documentation has been provided by my partner. This is written in a markdown
format:

Catscript Guide

This document should be used to create a guide for Catscript, to
satisfy capstone

requirement 4
Introduction

Catscript is a simple scripting language. It tokenizes, parses, and
evaluates input to
then compile into code.

Features

Catscript is built on a couple data types, ints, strings, lists,
booleans, null, and objects. With these data types we

are able to use Catscript to create Print statement, For statements,
If statements, and Function statements.

Expressions
Literals

Catscript has multiple literal values. Integers, strings, lists\[x]
of type x, boolean, null, and object wvalues

are all acceptable in Catscript. Catscript can also handle
parenthesized expressions and

negative numbers.

1 //Integer
"Hello" //String
list[1,2] //List[Integer]

true //Boolean

#4### Additive/Factor

Catscript can add, subtract, multiply, and divide any integer given
to it and correctly
return the computed value.

//Result of
//Result of
//Result of
//Result of

=N
|

N NN

N b O W

Comparison/Equality/Unary

Catscript has the ability to compare the value of integers to return
a true or false value

depending on the operator. It is also able to determine if an input
is equivalent. Catscript

can also take the unary value of 'not' to change a boolean value.

> 2 //true
>= 4 //true
//false
< 4 //true

SN W o
A
Il
—

1 ==1 //true
false == false //true
true != true //false
not true //false

not not true //true

Function Call

A Function Call in Catscript allows you to call to a function
somewhere in the code. Use the name of the function and the

correct argument to call it.

func (x) //Result depends on funcionality of function func /()

Statements

Print Statement

Print statements in Castscript are similar to some popular languages
in that it is called

with print(value) and has the ability to concatenate strings and
integers.

print (1) //1

print (2 + 2) //4

print ("hello") //hello
(

print ("one" + 1) //onel

Variable Statement
The Variable statement is able to set a value to a named variable on

the symbolTable to use throughout the program.

var x = 1

print (x) //1

For Statement

For statements in Catscript require a variable and a list in the form

of for(variable in \[list]) { inner }. These can be used to iterate
through a statement multiple times.

for(x in [1, 2, 3]) { print(x) } //1 2 3

If Statement

If statements in Catscript require a true value to execute its inner
code. An Else can be
executed if the initial condition fails. It also accepts nested If

statement.
if (true) { print(l) } //1
if(1 + 1) { print(1l) } //1

if(false) { print(l) } else { print(2) } //2

Function Statement

Functions can be created in Catscript that can contain many different
opperations inside of it. Create a function with

the keyword 'function' followed by the name of the function, in this
case, 'func'. You can then set the arguments required

for your function,

either implicitly or not.

inner part of your function.

function func(x
function func2 ()

NEENEEN

int) {

Return Statement

print (x)
{ print("hello")

} //prints

You can then code the

} //prints input for x
'hello'

A function in catscript can also return a value to the function call.
That value can then be used wherever it was called from.

NEENEEN

function func3(x)
1

{ return x + 1 }

val 4plusl = func3(4) //4plusl == 5
Section 5: UML
ParseEiement
t
paren
-start : Token ;
-end : Token
children
0..*
+validate (symbolTable: SymbolTable) :
Token void
+ranspile (javascript: StringBuilder) :
+start ; int 4('} n void
+end :int " +compile (code: ByteCodeGenerator)
+line : int

+ineOffset : int
+stringValue : String
+type : TokenType
-tokenizer: CatScriptTokenizer

yo0.*

ParseError

¢

tokenizer

-location: Token
-errorType: ErrorType
-message: String

//Returns value of argument plus

Expression

+evaluate(runtime: CatscriptRuntime) : void

FactorExpression

-operator : Token
-leftHandSide : Expression
-rightHandSide : Expression

+isMultiply : boolean
+getType : CatscriptType
+evaluate(runtime
CatscriptRuntime) : Object
+ranspile(javascript
StringBuilder) : void
+compile(code
ByteCodeGenerator) : void

The following is a class diagram for the FactorExpression class. This class diagram shows how
the FactorExpression class relates to its interface, expression, which extends other classes. The
classes that ParseElement has access to, ParseError and Token, should have accessor
methods due to the private nature of their variables, but that goes without saying. One thing
worth noting with the FactorExpression class diagram is that it will also potentially call itself, as
well as any other expression. This was omitted from the class diagram due to the confusing

nature of recursion in UML. FactorExpression’s extended classes ParseElement and Token also
have access to instances of their own classes, though these are in limited quantities. In the case
of Token, the tokenizer variable will only have one instance, and ParseElement’s children could
be any number, though it's not through recursion (directly) that these children are generated.

The following is a provided UML class diagram showing the compiler’s overall structure and
class relation:

C ReturnStatement c AssignmentStatement

8 FunctionCallStatement
c ForStatement

€ VariableStatement

8 Statement CatScriptProgram

c PrintStatement

€ IfStatement
c FunctionDefinitionStatement

= SyntaxErrorStatement
E ParseE'Lement u

c UnarvExpresslun

[StringLiteRalExpression (3 ListLiteralExpression

€ AdditiveExpression

c TypeLiteral Syn xErrorExpression

8 FactorExpression c Express_wn [ComparisonExpression
<

c IntegertheralExpressmn c Identlfler‘Exnr‘esslun
[Booleapditera Expre sion

c EuualltvExpressmn

Nu'L'Lthara'LExpr‘assl n

< FunctionCallExpression

c ParenthesizedExpression

This UML diagram is sparsely populated compared to the one for FactorExpression, though this
is because the diagram is displaying relations between each class that has a connection to both
Expression and Statement. Most other classes for expressions and statements likely follow the
same pattern seen in FactorExpression. For the sake of brevity they will not be explicitly
displayed.

Section 6: Design trade-offs

Recursive Descent and Parser Generators

This project saw a few design trade-offs, namely in the different ways to design a compiler. The
two methods discussed in the course were parse generator compilers and recursive descent
compilers. At a very broad level, recursive descent is a practice that uses recursion, as the
name implies, to parse through lines of code from a certain starting point, usually an identifier or
symbol relating to an expression. A parser generator, on the other hand, is created with a much
more explicitly defined grammar in mind. Due to these stricter rules, parser generators are
usually much more involved and detailed than a recursive descent compiler.

The main trade-off seen with using a recursive descent compiler is that of convenience and
intuitive design at the cost of performance and efficiency. Recursive descent compilers typically
are not as capable as parser generators due to the fact that there’s no specific grammar being
anticipated (beyond basic ideas). Because a general pattern is applied to parsing and tokenizing
with recursive descent, grammar can be expected, but the means of compiling will probably take
longer than using a parser generator specifically designed to handle the grammar needed to
compile a certain language. In the scope of this class, these performance differences would be
negligible most of the time, but if the compiler was to be used for an enterprise entity, these
differences might be more clearly seen.

Omitting the Visitor Pattern

Most recursive descent compilers make use of the Vlsitor Pattern for evaluating and executing
compilation. Methods in this compiler, such as evaluate(), compile(), and others are all included
in the parser directly, rather than being in its own class that’s only referenced. The trade off with
this design choice is simplicity at the cost of organization and the volume of code. By writing
each method into its respective parser class, writing the compiler was much easier than it
otherwise would be. However, this resulted in some unnecessary bloat to the project which
could very well be trimmed by making use of design patterns and optimization.

Section 7: Software development life cycle model

The development lifecycle seen with this project is Test Driven Development (TDD). This design
traditionally consists of tests being written as oracles for a project’s intended functionality. In the
case of this course, the tests were pre-written by the instructor. With these tests present, our
development cycle consisted of writing code, testing it against the provided tests, and then fixing
any issues that arise due to the results of those tests. This model is largely helpful to a
classroom environment, but also provides some challenges when trying to emulate design and
development practice in a project. TDD made it extremely easy to focus on the development of
the project without having to create test cases or look at node coverage for a given branch of

the project, which cuts down on time significantly. Rather than having to meticulously test each
technical aspect of a given piece of code, TDD with provided tests allows us to focus much
more of our time on actually developing a project. The main drawback of using TDD in place of
some other more elaborate testing is that there will inevitably be some cases that are not
fulfilled. An example of this is with the assignment statements in our parser, which was never
tested by the provided tests. By using TDD, there will be some components of a project that
might just not work, or might have some drastic side effects that are not intended. Since this
project will have no greater use beyond education, there’s no need to worry about potentially
dangerous bugs, but in a real environment, using TDD on a compiler might be a dangerous idea
unless the objective was to make a functional compiler in a short amount of time.

