Section 1: Program

The purpose of this project was to create a recursive descent parser for a new language called
Catscript. This parser would parse the language into its respective expression and statement
types, these would then be compiled into JVM byte code to be executed.

Source Code: https://github.com/kieran-ringel/csci-468-spring2022-private/blob/master/
capstone/portfolio/source.zip

Section 2: Teamwork

Team members 1 and 2 contributed equally to this project. They both individually wrote a
recursive descent parser that converted Catscript to bytecode. Each team member also provided
the other team member with three tests to include in their test driven development. Each partner
also wrote up documentation of Catscript and how it worked, this documentation was exchanged
between partners to ensure that each team member had a sound understanding of the language.

Section 3: Design pattern

We utilized memoization in the CatscriptType for a function where we are returning the type for
a certain list. This is a feature built into the structure of the language.

private static Map<CatscriptType, ListType> cache = new

HashMap<> () ;

public static CatscriptType getlListType (CatscriptType type) {
ListType listType = cache.get (type);

if(listType != null) {
return listType;
} else {

}

ListType listTypel = new ListType (type)
cache.put (type, listTypel);

return listTypel;

Without memoization, this function is called with a given type to return a new list type. With
memoization a list type for a given type is stored in a hashmap so the list type does not need to
be created every time. If the type does not exist in the hashmap then it is created and stored in the
hashmap before returning the corresponding list type.

Section 4: Technical writing.

See documentation on pages 3 and 4.

Section 5: UML.

See class diagram on page 5.

Section 6: Design trade-offs

The largest design decision was choosing to use a recursive descent parser. This was chosen over
a parse generator because it is simpler and provided us with a greater understanding of the
recursive nature of languages. Its tradeoffs were that the reductive descent parser required more
code and is not a standard as a parse generator. We also chose not to use the visitor pattern from
Crafting Interpreters for the expression problem. Instead evaluation and compilation took place
at each parse tree node. The tradeoff was that this did not separate concerns.

Section 7: Software development life cycle model

This project was done using Test Driven Development (TDD). These tests helped the flow
through the project as they guided the focus of development. They were valuable in guaranteeing
that the project satisfied all of the project requirements. The only downfall of TDD was
dependency on tests. If a test passed, it was assumed that part of the project was implemented
correctly. When developing down the line, there were times that a test would fail because a
previous section was developed incorrectly and would have to be fixed.

Catscript Guide

Introduction

Catscript is a statically typed scripting language comprised of a small type system. This document provides an overview of key features, as well as providing explicit
code examples.

Features

Data Types

The following are the data types that are supported by Catsript: - int - a 32 bit integer - string - a java-style string - bool - a boolean value - list - a list of value with the
type 'x' - null - the null type - object - any type of value

Lists

Lists are a useful data structure for storing multiple elements within a single variable. Lists are specified with [] in Catscript.

1=1[1, 2, 3]

For Loops

A for loop is used when iteration needs to occur, and can be applied to iterable objects like lists. The for loops in Catscript work similarly to for loops in python
and are identified by the for keyword.

for (x in [1, 2, 3]){
print(x)

Unary Expressions
Unary expressions are used to negate values using either - orthe not keyword.

-1

not true

The first example results in the numerical value of -1, whereas the second example results in false.

Additive and Factor Expressions

Additive and factor expressions are used to support basic mathematical opertions. The supported operations are addition, subtraction, multiplication, and division.

1+1
3 -1
3 %4
6/ 2

Comparison and Equality Expressions

Comparison and equality expressions are used to support the common logic conditions from mathematics. Catscript supports the following statements:

e Equals: x ==

e Notequals:x!=z

e lessthan:x<z

e Lessthanorequal to: x <=z

e Greater than: x>z

e Greater than or equal to: x >=z

If (and Else) Statments

Catscript supports mathematical conditional statements through if statements, which are identified by the if keyword. Else statements are used to catch
anything leftover from the preceeding if statment.

if(a == b){
print(1)

} else {
print(2)

Print Statments

Print statements are used to display output to the user and are idetified by the print keyword.

print("Hello World")

Assignment Statements

Assignment statements are as simple as assigning a value to a variable.

Variable Statements

Variable statements are used to declare variables and are identified by the var keyword. The variable type can also be declared.

var x = 21

var y : int = 3
** Both are valid statements **

Functions

Functions can be created within Catsript to run specific blocks of code at specified times and are identified by the function keyword. Parameters can be passed

into functions by being specified in the parentheses after the function name with multiple parameters being separated by commas. Optional data types can also be
specified for parameters. Data can be returned with the return type being specified in the function definition. Recursive functions are also supported by Catscript.

function capstone(done : bool) : string {

if (done){

return "graduate"
} else {

return "try again"
}

The body of a function can contain both statements and return statements.

Return Statements

Return statements are used to return values from a function and are identified by the return keyword.

function foo(x : int) : int

return x + 1

Inspiration for documentation & formatting came from: W3Schools https://www.w3schools.com/

ParseElement

+ verify(): void

+ validate(symbolTable): void
+ compile(code): void

+ transpile(javaScript): void

Expression
Statement
+ evaluate()
+ transpile()
+ execute(runtime) + compile()

]

[[[[[[1 1 W [| | | [, | 1 |

s N N N N N N s N M s N\ N\ N\ N\ N N N N

(A
VariableStatement | | ReturnStatement | |FunctionCallStatment| |AssignmentStatement| IfStatement ForStatement FunctionDefinitionStatement PrintStatement SyntaxErrorStament AdditiveExpression | [BooleanLiteralExpression| ComparisonExpressior] | EqualityExpression FactorExpression| [IdentifiedExpression| |FunctionCallExpression| | ListLiteralExpression | | NullLiteralExpression | [StringLiteralExpression UnaryExpression

