CSCI 468 Compilers, Capstone Document
Kristoff Finley

Program

source code:

https://github.com/Gearhartlove/CatScript-Compiler/tree/master/capstone/source
.zip

Teamwork

Team Member One and I worked together in providing documentation
for eachother’s codebase as well as implementing the logical operators
“Il" and ‘8&" into CatScript through four different tests. Five
percent of the project’s time was spent working with Team Member One,
as most of the compiler work involved writing code and passing test
checkpoints individually.

Team Member One’s documentation is a CatScript guide. It details
typing, operators, storing and printing values, branching, looping,
variables, and function specifics. Each piece of information is
followed by in-depth examples written in CatScript. The documentation
is included in the Technical Writing portion of this document.

The logical operators ‘||’ and ‘8&’ are implemented for
CatScript. This changes the grammar by factor_expression recursively
requiring a logical_expression, and moving the unary_exprssion which
was present into the logical_expression. This fits into the grammar as
follows.

factor_expression = logical_expression { ("/" | "x")
logical_expression };

logical_expression = unary_expression { ("8&&" | "[|")
unary_expression };

The tests written for this feature include tests for
tokenization, expression parsing, evaluation, and ByteCode
compilation. The tests written in the code are included on the next

page.

Tokenization

@Test

public void logicalExpressionTokenization() {
assertTokensAre("true && false", TRUE, LAND, FALSE, EOF);
assertTokensAre("true || false", TRUE, LOR, FALSE, EOF);

Parsing

@Test

public void logicalExpressionWorks() {
LogicalExpression expr = parseExpression("true && false");
assertTrue(expr.isAnd());
expr = parseExpression("true || false");
assertFalse(expr.isAnd());

Evaluation

@Test

void logicalExpressionEvaluatesProperly() {
assertEquals(true, evaluateExpression("true && true"));
assertEquals(false, evaluateExpression("false 8& true"));

assertEquals(true, evaluateExpression("true || false"));
assertEquals(false, evaluateExpression("false || false"));
}
Compilation
@Test

void logicalExpressionCompilesProperly() {
assertEquals("true\n", compile("true && true"));
assertEquals("false\n", compile("true 8& false"));
assertEquals("true\n", compile("false || true"));
assertEquals("false\n", compile("false || false"));

After the grammar was updated, after the tests were written, and after
every error was handled, the compiler now compiles catscript with
logical operators! An example of the feature implemented in unison is
shown by the following valid catscript.

var X : bool = true || false // evaluates to true

Design Pattern

CatScript uses the memoization pattern to memoize type access in
the getListType() method in the CatscriptType.java code. This pattern
“accelerates performance by caching the return values of expensive
function calls" (cloudsavvit.com). A HashMap is created which stores
the catscript type. If the qgueried CatscriptType exists in the
HashMap, the cached result is returned. If the queried CatscriptType
does not yet exist, then a new CatscriptType is instantiated and added
to the HashMap. This removes redundant instances of CatscriptType
ListTypes existing, when they are already instantiated.

The source code for this feature found in CatScriptType.java is below.

static HashMap<CatscriptType, ListType> cache = new HashMap< ();
public static CatscriptType getListType(CatscriptType type) {
ListType listType = cache.get(type);
if (listType = null) A
listType = new ListType(type);
cache.put(type, listType);
}
return new ListType(type);

Catscript Guide

Introduction

Welcome to the Catscript Guide! Catscript is a simple scripting language that statically is typed and statically scoped. It supports strings, integers, lists and booleans.
And, it is technically turing complete via the if statement and the for loop!

This language was completed as an assignment for CSCI 468: Compilers at Montana State University. This document is to help explain how to use Catscript for
whatever you'd like to do in the JVM.

Features
CatScript Typing

Booleans

Catscript supports basic booleans. We can get them in a few ways

var x : bool = true // via direct assignment
vary : bool =1 <2 // or doing some calculations
var z : bool = null == null // note: null == null!

We can also chain boolean expressions to get new booleans, in our version of catscript, we have a logical expression

var x : bool = true || false // evaluates to true!

Integers

Catscript supports integers.

var x ! int -~ @ /1 @

vary : int =1 + 1 /12

var z : int - 1000 / 10 // note: Catscript does not support floating
// point, so it will always do integer divison

Strings
The classic 'Hello World!" program is possible in Catscript! Strings are backed up by the JVM's String class, and we can do concatenation through the + operator

print("Hello World!") // sends 'Hello World!\n' to stdout
print(“Hello, " + "Strings") // sends ‘'Hello, Strings\n' to stdout

Lists

Lists in Catscript are immuatable, which means that we can store multiple types in the same list. However, be careful because trying to assign a list of object toa
listof int will fail because we cannot guarantee that all items in the list are int types

var x : list<int> = [1, 2, 3, 4]

var y : list<string> = [“"Hello", "World", *“!"]

var z : list<object> = [null, "Hello", 1]

var w : list<int> = z // will fail because of the above

Null

Catscript supports null types.
var x : object = null

Object

Catscript supports a basic object type. Most of the time this is used in type inference but you can just declare all things to be of type object . A notable exception is
you cannot assign list typesto object

var x : object = “Strings!”
var y : object = false
var z : object = 1

Void

Catscript also supports a void type, although it is not assignable to any variable. It is used for functions that do not return any values.

function foo() {
print(“This function doesn't return anything!")

Type Inference

So far in this guide we have been telling the compiler exactly what type we are going to use for our variables i.e var x : int = @ . However, we can just let the
compiler figure out whatever the variable's type is supposed to be by just saying var x = @ . The compiler will figure out what the type of the variable should be
through type inference, by just checking what the type of the variable is on the right hand side of the expression. So, in the rest of this guide, we'll be taking advantage
of some the features in the compiler to minimize the code we're writing.

Variable Assignment Errors

Catscript will not let you assign dubious types to variables. For example

var x : string = "Hello World!"
x =0 // < will fail

Because int is not assignableto string But you can do:

var x : string = “"Hello World!"
x = null

Because null is assignable to any type.

As a general guide, anything is assignable to object, null is assignable to any type, and each type is assignable to itself.
Catscript Operations

Catscript supports very basic operations. We have addition, subtraction, division and multiplication. Note : Since Catscript does not support floating point types, all
division operations will act like integer division.

Adding

Addition is done via the + operator. As you saw in the Catscript Typing section, you can see that we can add two numbers like so:
var x =1+ 1
Please note that the + operator is overfoaded. If you were to do

var x = "1" + 1
print(x)

this will be treated as string concatenation. The output of this program would be 11.

Subtracting

Subtraction is done via the - operator. You can do subtraction like so:
var x = 2 - 1
Multiplication
Multiplication is done via the * operator. You can do multiplication like so:

var x = 10 * 2

Division
Division is done via the / operator. Please note that this does integer division, and will not produce floating point values.

var x =10 / §
vary =10 / 3 // y == 3 in this case

Storing and Printing Values

Variables

Variables are the bread and butter of any programming language. Let's take a look at how CatScript handles them.

Declaration

We can declare variables using the var keyword, as you have seen in aimost all the previous examples. You can tell the compiler that the variable has a specific type
like so:

var x : int - -10
but you can also let the compiler just figure it out.
var x = -10
Assignment
We can mutate any variable that is currently in scope through the -~ operator. For example:

var x = 1

X=Xx+1

Print Statements

Print statements are a good way to log data to the console. You can print any variable that is in scope, or any expression supported by CatScript.

print("Strings") // strings

print(1) // integers

var x = null

print(x) // even null values 0.0

print([1, 2, 3]) // and lists! nicely formatted in the console

This program prints the following to stdout :

Strings
1

null

[1, 2, 3]

Branching

If Statements
If statements are the way that you can perform branching in your code. We can write if statements in CatScript using the if keyword

var x : int - @
if (x < 5) {
print(x+" is less than 5")

You can also use the else keyword to perform other actions if the initial condition (x < 5 in this case) is not true

var x : int = @
if (x < 5) {

print(x+" is less than 5%)
}

else {
print(x+" is greater than or equal to 5")

}
Looping

For loops
For loops are great for iterating through a list. We can do a basic for loop like so:

// We can iterate through any constant list
for (x in [1, 2, 3]) {
print(x)
if (x == 2) {
print(“2 is in the list!")

// even ones with all kinds of elements in them
for (x in [“Hello", null, 1]) {
print(x)

Note that x in this case is a copy of whatever is in the list on the nth iteration, so changing x will not change items in the list. We do this so that our typing system
remains sound even when we have a list of object s.

Functions

Definitions
We can declare functions via the function keyword. Here is an example:

function foo() {
print("Fool")

Returning Values

We can tell the compiler that our function returns a value like so:

function foo() : string {

return

First we say the function will return a string (on line one withthe : string syntax), and then whenever we execute a return statement, the expression
immediately follwoing the return is, well, returned :-) (example on line 2)

Catscript also supports recursion. Let's take a look at a basic recursive funciton.

function foo(x : int) {
print(x)
if (x > 9) {
foo(x-1)
}

Function Calls

We can call a function by just doing foo(args...),you can see in the example above that we can call the same function within the function's own definition. Here is
a non-recursive example.

// a cute little wrapper function around ‘print’
function foo(x : int) {
print(x)
}
foo(1337)

UML

CatScript Compiler Overview, page 1

—)

CatScriptTestBase| CatScriptParser CatScriptProgram CatScriptTokenizer ByteCodeGenerator
[, compile(
CatScriptParser() Match on token type,
: Add Token to tokenList
parse(String)] CatScript (String) :
tokenize()
loop N
scanToken() .*
5 See Tokenize Diagram
for a more detailed
setStart() : description
parseExpression() :
oop | [e :
hasMoreTokens() :
addStatement(Statement)

parseProgramStatement()

match(FUNCTION) , _

match(IDENTIFIER)

match(VAR)

match(IF)

match(FOR)

match(PRINT)

match on statement
type, parse it with
respect to it's type and
then returnthat
statement as a type

CatScript Compiler Overview, page 2

sentEnd(Token)
verify()
new By!eCoda'Generalor(CalScriptProgram) CSL"E"STOBV‘GCOdB()
execute() i
getOutput()

The CatScript Compiler begins by considering code the user has
written. In this UML diagram, this first step takes place in the
CatScriptTestBase, where code has been written and is soon to be
compiled. The compile() method starts the process by instantiating a
CatScriptParcer. This object will then instantiate a CatScriptProgram
object, which will then instantiate a CatScriptTokenizer. The
Tokenizer scans the code the user has written and returns a TokenlList,
consisting of all of the tokens in the language. More about the
CatScriptTokenizer will be described in the next UML diagram.

After tokenization, the parsing of expressions and statements
begins in the aforementioned CatScriptParcer object. The parsing
begins by first trying to parse an expression. If no expression
exists, then a statement is parsed. The statement(s) match on specific
‘statement’ Tokens, creates an instance of that statement as an
object, and then adds that object to the CatScriptProgram. After
parsing has ended, the program is verified which includes whether
variables are named correctly or exist and also static type checking.
This verification is done on each statement or expression that exists
in the CatscriptProgram. If verification raises no issues, the code is
then compiled to Java ByteCode by instanting a ByteCodeGenerator
object with the CatScriptProgram as a parameter. The Program is
finally executed, which is compared to a CatScriptTestBase test.

CatScriptTokenizer

CatScriptTokenizer
1 tokenize()
loop scanToken()
oondiionsl addToken simplified for
I scanNumber() I readability; additional
T information included are:
100! stringValue(String,
start(int), end(int),
I isDigit() | line(int), lineOffset(int)
takeChar() .
<) addToken(INTEGER)
I scanString() |
peak() "**-., .
loop continues until a e o
second ' "' is found or .} loop peak must equal
tokenizationEnd() o takeChar() to continue execution,
returns true or else a false is
) returned takes the last ' " ' char
: takeChar() «« e ofssenevnnnniaal
| scanidentifier() | Ii
loop continues until a
second . loop isAlpha(peak()) Identifier must begin
isAlphaNumeric(input) Lot : T with Alpha in order to
returns false from | .{" takeChar() *|be valid, or else false is
peak() as the input. returned
| KEYWORDS .containsKey(String) |
€ addToken(KEYWORD.get(String))
else |
e addToken(IDENTIFIER)
[scansyntax) | [e Match and consume on a
eI desired TokenType; most
: matchAndConsume(TOKENTYPE) tokens in the language are
considered in this section of
< L] the code.

The CatScriptTokenizer scans Strings the user has written and
interprets those into predefined Tokens important to the CatScript
Language. The heart of the algorithm is the a while loop which scans
each character until no more characters exist. Inside of the loop,
there are a multitude of conditions for the desired character to match
onto. This includes scanNumber(), scanString(), scanIdentifier(), and
finally scanSyntax(). Most of these conditions do what they say,
however scanSyntax() is more general and accounts for most of the
tokens in the CatScript Lexicon. A1l match on specific criteria, such
as numbers of ‘“’ characters, or even isAlphaNumeric() conditions. In
each specific case listed above, a token is returned and added to the
CatScriptProgram TokenList.

Design Trade-offs

While programming CatScript, a number of design decisions were
made. The most prevalent is why we chose a recursive descent parser,
as opposed to a more conventional parser generator (such as ANTLR).
The primary reasons for programming a recursive descent parser by hand
are educational, readability, and debuggability.

Writing a parser from scratch without a generator is an
incredibly revealing process. It requires a strong grasp on the
grammar, tokenization, as well as parsing of the user’s code. This
opportunity is educational because everything needs to be programmed.
Nothing is given to you, nothing is generated for you. That means that
each token needs to be matched in tokenization and each statement or
expression needs to be matched in parsing. There are many steps before
the evaluating semantics even begin. Recursive descent pacers help
reveal these subjects in a much brighter 1light.

Because no code is generated, the readability of the system can
be meticulously refined and consistent throughout the scope of a
project. This translates to function descriptors, parameters names,
and even language consistency throughout a project. This allows any
other person to easily understand the conventions and jargon of a
project quickly.

Recursive descent parsers are incredibly debuggable because they
are written by hand and follow a grammar tightly. This favors Test
Driven Development highly and enables the stepping-through of code
when implementing and debugging features or bugs. This fact was proven

many times in the development of the Compiler. The ease of
debuggability helps when developing more complex features for the
language. When unexpected behavior is present, stepping through the
code is often easy and a godsend.

After speaking about the advantages of implementing a recursive
descent parser, there are also some disadvantages. Most notably, it is
a slow process. When using a tool like ANTLR, only a grammar and some
lightweight ‘generator code’ is required to implement much of the
backend of the compiler. This process lasts much longer when writing a
recursive descent parser, as often thousands of lines of code need to
be written. Generators, for the most part, work when they are given
good rules and guidelines to generate. Code written by a programmer is
often plagued with errors and bugs, which again takes time.

Software Development Cycle

A Test Driven Development software development life cycle model was
used throughout the entire project. Hundreds of tests were provided
which correlated to specific milestones during the compiler's
development. For example, the tokenizer, parser, and bytecode
compilation all included tests which must pass in order for the
compiler to work. This process was seamless, easy to follow, and
efficient when designing the various components of the compiler.

An example of a test in the source code is below.

@Test
public void returnStatementExprInFunction() {
FunctionDefinitionStatement expr = parseStatement("function x() : int
{return 10}");
assertNotNull(expr);
assertEquals("x", expr.getName());
ReturnStatement returnStmt = (ReturnStatement) expr.getBody().get(0);
assertNotNull(returnStmt);
assertTrue(returnStmt.getExpression() instanceof IntegerLiteralExpression);

