
Portfolio
CSCI-468: Compilers

Spring 2022

Moiyad Alfawwar
Philip Ghede (Partner)

2022-05-06

1

Section 1: Program
The source of the project is linked in the path of the following directory.
/capstone/portfolio/source.zip

Section 2: Teamwork
Our team is composed of two members. Team member 1: Moiyad Alfawwar, Team

member 2: Philip Ghede. Team member 1 his primary contributions were the implementations
of the tokenizer, parser, evaluation, and bytecode. Team member 1 spent approximately
90% of the time working on the project. Team member 2 contributed primarily by providing
tests and documentation to the project to check if the functionality is implemented correctly
and document the features of the Catscript programming language. Team member 2 spent
approximately 10% of the time.

2

Section 3: Design Pattern
In this project, I decided to use the memoization design pattern. The memoization

design pattern is used to optimize the runtime of the program while running specific methods.
In this instance, I memoized the getListType method. If the function is called and the list
type exists in the cache created as a HashMap, then we return the one that we have saved in
the cache instead of creating a new ListType(type) every single time the method is called.
This should cut down some of the time complexity of the runtime of the program.

static final HashMap<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

// getting list-type from the cache called it memory.
ListType listTypeMem = cache.get(type);
// if the memory is null, means that it hasn't been cached yet.
if (listTypeMem == null) {

// create the type and put it into the cache and return it.
ListType listType = new ListType(type);
cache.put(type, listType);
return listType;

} else {
// if It's cached return the cached type.
return listTypeMem;

}
}

3

Section 4: Technical Writing

Catscript
In this course we will be creating a small programming language called CatScript

CatScript Grammar
catscript_program = { program_statement };

program_statement = statement |
function_declaration;

statement = for_statement |
if_statement |
print_statement |
variable_statement |
assignment_statement |
function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
'{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
{ statement },
'}' ['else', (if_statement | '{', { statement }, '}')];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,
[':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
[':' + type_expression], '{', { function_body_statement }, '}';

function_body_statement = statement |
return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

4

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive_expression {
(">" | ">=" | "<" | "<=") additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list_literal | function_call | "(", expression, ")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' |
'list' [, '<' , type_expression, '>']

CatScript Types
CatScript is statically typed, with a small type system as follows

int - a 32 bit integer
string - a java-style string
bool - a boolean value
list - a list of value with the type ‘x’
null - the null type
object - any type of value

5

Features
Arithmetic Operators

• Addition operator +
• Subtraction operator -

• Multiplication operator *

• Division operator /
print(1+1)
print(1-1)
print(2*3)
print(1/1)

Output:

2
0
6
1

Variables

var x : string = "Howdy!"
var x = 25

Lists

Declaring and assigning lists.

var myList = [1,2,3]
var myList = [1,"string", 3] //lists behave covariantly

Integer lists
var myList : list<int> = [1,2,3]

String lists
var myList : list<string> = ["a", "b", "cde"]

Object list
var objLst : list<object> = ["apple", true, 1, "object"]

For Loops

6

for(x in [1,2,3]) {
print(x)

}

Output:

1
2
3

Comparison

Catscripts supports Equality expressions, Comparison expressions

Equality operators:
Equal == and Not Equal !=
var x : bool = (7==7)
var y : bool = (7!=7)
print(x)
print(y)

Output:
true
false

Comparison operators:
Greater than >, Greater than or Equal >=, Less than <, and Less than or Equal <=
var x : bool = (10>9)
print(x)
var y : bool = (10>10)
print(y)

Output:
true
false

If Statements

var x : int = 1
var y : int = 2
if(x == y){
print("same")

} else if(x != y) {
print("not the same")

7

} else {
print("fail")

}

Output:

not the same

Printing

print("Howdy!")

Output:

Howdy!
var strX : string = ("Howdy, ")
var intY : int = 10

print(strX + intY)

Output:

Howdy, 10

Printing boolean expressions:
print(1==1)
print(80>90)

Output:
true
false

Functions

Function with parameter:
var x = "Howdy!"
function foo(str) {
print(str)

}

var x = "Howdy!"
function foo(str : string) {
print(str)

}

8

Function call:
foo(x)

Outputs:

Howdy!

Function without any parameters:

function foo(){
print("A function without parameters")

}
foo()

Output:

A function without parameters

Comments

Catscript support comments.
// Catscript Comment

9

Section 5: UML

10

Section 6: Design Trade-Offs
This project was created using recursive descent parsing, it is also called hand-

crafted parsers. Recursive descent has many advantages over parse generators. Features of
recursive descent include speed, it is faster than parse generators. Unlike parse generators,
recursive descent is easy to understand. It is also much easier to modify, add features to,
maintain and debug. One of the things that we did in the project is adding meaningful errors
and helping the user debug their code faster. Of course recursive descent is not better in
everything than parse generators. Parse generators require less code to get working and less
infrastructure. Indeed that comes with the tax of being much harder to read, far from the
hardware.

Another trade off, that this project constructed in an unusual composition. The
compiler, the transpiler, and evaluation are all embedded within the parser. This makes it
simpler and easier to code all in one place. However, the lack of separation of concerns can
lead to unorganized and tightly coupled which would eventually make the code base less
maintainable in the long run even though we are using recursive descent.

In my opinion, what makes recursive descent a much better approach is that
reflects the recursive nature of the programming language grammar directly, despite having
the footprint of the code base larger than it would be if it was done using parser generator.

11

Section 7: Software Development life cycle model
In this project we used a Test Driven Development life cycle model. In this model,

we plan tests of the expected behavior of the required functionality of the project. This allows
me to complete the development process and achieve an accurate output to the requirements.
The tests themselves do not only test the required output functionality, but also try to tackle
errors and when the program should stop. For instance, if a user is creating a list and the
user’s syntax is not inline with the grammar of Catscript it should halt and give out an error
message. Therefore, this model has a great workflow. In fact this project may make me learn
the test kits of a new language that I am learning to create projects in.

Since the tests are usually created in sections and each one ensures specific parts
of the program are behaving and working correctly. This allowed me to focus and be on track
of each functionality. Often, not always, the errors allow me to know where exactly they
happened during the runtime process. Therefore, I know where exactly to start debugging.
I think this test driven development life cycle goes hand in hand with debugging in my
experience.

Of course it isn’t all nice there are obviously some drawbacks, it takes a long time
to create tests that are very valid to the task that needs to be done. Some portions of the
tests in this project do not always provides good errors in this case some of the Bytecode
tests were much different than the rest of the testing suit. The messages that I get from the
Bytecode tests are not always helpful. That is probably not due to the life cycle model. It
was just of the nature of Bytecode and its error messages.

12

	Section 1: Program
	Section 2: Teamwork
	Section 3: Design Pattern
	Section 4: Technical Writing
	Catscript
	CatScript Grammar
	CatScript Types
	Features
	Arithmetic Operators
	Variables
	Lists
	For Loops
	Comparison
	If Statements
	Printing
	Functions
	Comments

	Section 5: UML
	Section 6: Design Trade-Offs
	Section 7: Software Development life cycle model

