Montana State University

Capstone Portfolio

Logan Dolechek
CSCI 468 — Compilers
Professor: Carson Gross

Spring 2022

Section 1: The Program

The overall framework was provided by our Professor Carson
Gross. Carson used a test-based system to drive our development
in a reverse engineering styled method to complete CSCI 468.
Both Team Members used the IntelliJ IDE by JetBrains to develop
the compiler using the Java language. The final source code can
be found in this directory of my repository in the source.zip
file.

Section 2: Teamwork

This semester each Team Member was responsible for writing
their own compiler individually. Throughout the entire semester
we would communicate to one another on how the project was going
and assist one another on certain sections where we would be
stuck within the logic. Between our own personal communication
and the rigorous use of lab/office hours we were able to
complete most of the compiler with some of the bytecode section
missing. Team Member 1 (Logan Dolechek) and Team Member 2
(Colton Weeding) individual estimated hours into this project
throughout the entire semester is somewhere between 140 to 150
hours. Team Member 1 was responsible for writing the
documentation and 3-unit tests for Team Member 2. Team Member 2
was responsible for writing the documentation and 3-unit tests
for Team Member 1.

Section 3: Design Pattern

Introduction

In Catscript we use a design pattern referred to as
Memoization. Memoization is considered an optimization
technique. When a function call happens for the first time the
type will be cached and stored into a map. As more function
calls occur with different types those will continue to be
stored within the same map. Once a function call is repeated the

corresponding cached value will be returned. Resulting in saved
computational time.

Example in Catscript

The snippet included below can be found within the
CatscriptType.java file.

Map<CatscriptType, ListType ache

> @
atscriptType getListType (CatscriptType ty

ListType listType = cache.get (type) ;

if (listType !'= null) {
return listType;

Section 4: Documentation

Introduction

The Catscript language is a relatively simple language that
is statically typed. Mathematical operations are supported
within the Catscript language. The mathematical operations that
are supported are as follows: addition, subtraction,
multiplication, and division. Parentheses are also supported to
allow for order of operations. The left-hand and right-hand
rules are followed within Catscript. The addition token (+) can
be overloaded to allow for string concatenation. It should also
be noted that Catscript also checks equality using a bang-equal
(!=) to check when two values are NOT equal to one another and
equal-equal (==) when two values are equal to one another. There
are two ways to add comments in Catscript. The first being
(/**/) placing the desired comment (s) between the asterisks. The
second by using (//) and following the double slashes with the
desired comment (s) .

Types that are featured within Catscript are as follows:
Integers, Strings, Null, Objects, and Boolean expressions. Lists
are also featured in Catscript. The two typical types that are
normally seen in languages that are not seen in Catscript are
the Float and Double types. There are a variety of expressions
and statements that are within Catscript and will be explained
in greater detail below.

Commenting Examples:

Above is a single line comment

Above 1s when you want to have multiple lines of comments

Expressions

Expressions evaluate some value in Catscript. The following
expressions will be covered below: String, List, Integer,
Boolean, Null, Unary, Additive, Parenthesized, Factoring,
Comparison, Equality, Function calls, and Syntax Errors.

String Literal Expression:

Like in many programming languages String literal
expressions in Catscript begin and end with gquote marks (%,”).
From left to right it will construct an array of characters,
resulting in a word or sentence(s).

Examples:

Above evaluates to C.

"This is a sentence."

Above evaluates to This is a sentence.

List Literal Expression:

In Catscript List literal expressions begin and end with a
square bracket ([,]). List literals are used to generate a list
of items or an array of items. All items within the list will be
separated by a comma. All items that can be included in a 1list
literal are strings, integers, Booleans, or the null type.

Examples:
Basic List of Integers

[0, 1, 2]
Above evaluates to [0, 1, 2]

List of multiple types

[0, null, "String"]
Above evaluates to [0, null, String]

Lists within a List

1, 2] , ["String", true
Above evaluates to [[

1
0, 1, 2] , [String, truel]]

Integer Literal Expression:

In Catscript you can type any number in, and it will
evaluate if it is an integer. Integers in Catscript are 32-bit

value.

Examples:

Above evaluates to 21
21.5

Above will NOT evaluate in Catscript

Boolean Literal Expression:

In Catscript Boolean values evaluate to true or false.

Examples:

sl

Above will evaluate to true

Null Literal Expression:

In Catscript the Null literal expression has no value
assigned to it. It is an object with no actual wvalue.

Example:

Above will evaluate to null

Unary Expression:

In Catscript unary expressions allow for negative values or
negation of a Boolean value. The way to create a negative wvalue
is to use (-) or the keyword “not”.

Examples:

Above evaluates to false

Additive Expression:

In Catscript the additive expression may be used for
addition or subtraction mathematical equations. Integers may be
added to one another, or the addition can be used to concatenate
multiple strings together. You cannot subtract an integer from a
string or a string from an integer. Subtraction is only allowed
when both the left and right hand sides are integers.

Examples:
Above evaluates to 21.

Above evaluates to 21.

Addition and Subtraction may be used as many times as needed.
Catscript will evaluate left to right until the final evaluation
is found.

Above will evaluate to 0.

As mentioned above the addition operator can be used to
concatenate strings.

"Some" + "concatenation" + "of" + "strings."

Above evaluates to: Some concatenation of strings.

Parenthesized Expression:

In Catscript a parenthesized expression is an expression
with a set of parentheses around the expression or multiple
parentheses around the expression. As long as the number of left
parentheses match the number of parentheses on the right. The
parentheses can be used in Catscript to assist with mathematical
equations.

Examples:

(21)
Above evaluates to 21

(((21)))
Above evaluates to 21

((21)
Above will not evaluate (missing an ending parentheses)

Above (7*4) evaluates to 28 then that is subtracted by 7
resulting in the final evaluation being 21

Factoring Expression:

In Catscript factor expressions handle multiplication and
division mathematics. This is done by following the left-hand
and right-hand rules. Both the left and right hand sides must be
integers. For multiplication the operand (*) is used and for
division the (/) is used.

Examples:

7 % 3

Above evaluates to 21

Above evaluates to 21

Just like the additive expressions the factor expression can use
as many multiplication or division symbols as needed to find a
final evaluation.

Above evaluates to 42

147 / 7 evaluates to 21 which is then multiplied by 4 which
evaluates to 84 then divided by 4 evaluates to 21 which is then
multiplied by 2 resulting in the final evaluation of 42. Which
happens to be the answer to life and all things.

Comparison Expression:

In Catscript the comparison expression 1is used to check if
an expression 1is less than, less than or equal to, greater than,
greater than or equal to the other expression. This is done by
using the operators (£, <=, >, >=). An evaluation will return
true or false. Again, this can only be done with the integer

type.

Examples:

Above evaluates to true because 21 is less than 42

Above evaluates to false because 21 is not less than 7

Above evaluates to true because 21 is greater than 7

Above evaluates to false because 21 is not greater than 42

Above evaluates to true because 42 is equal to 42

Above evaluates to false because 21 is less than 42

Above evaluates to false because 21 is not greater than or equal
to 42

Above evaluates to true because 21 is greater than or equal to
42.

Equality Expression:

In Catscript the equality expression is used to determine
if one expression is equivalent or not to another expression. To
determine if they are equal to one another we use (==) and to
tell if they are not equal to one another we use (!=).

Examples:

Above would evaluate to true.

Above would evaluate to true.

true == nul

Above would evaluate to false.

Function Call Expression:

In Catscript function call expressions can return values of
any data type included in Catscript itself. There can also be no
return value (null). Depending on the function there will need
to be a parameter in the function call.

Examples:

func ()

Above the function func() is called with no parameters.

x = func(21)

Above the x variable i1s set to return the value within the
function func ().

func (21, 22)
Above is an example of the function func() with multiple
parameters being sent into the function.

Syntax Error Expression:

In Catscript unexpected token errors are caught within the
expressions themselves.

Example:

((21)

Above consider the situation in the parenthesized expression
where i1t is missing an end parenthesis. This would return
ErrorType.UNEXPECTED TOKEN instead of crashing the program.

Statements

Assignment Statements:

In Catscript assignment statements are used to assign a
new/different value to a variable that has been created
previously, changing the value of the variable from what it was
originally set as to the new value.

Above the first print statement will print 21, whereas the
second print statement will print 42.

; =7"String";

print (x);

Above would cause an error in Catscript since Catscript is
statically typed it does not allow for alterations of a

variable.

Function Call Statements:

In Catscript functions are created by using the word
(function) followed by whatever name you would like to name the
new function. At the end of the new name of your function you
need an open and close parenthesis for the parameter section.
After the closing parenthesis it would be followed by an open
and closed curly brace. Anything within the curly brace would be
the contents of the function created.

Example:

function legalVotingAge (age :
if(age < 18){
print ("You are not old enough to vote yet.");

{

print ("You are old enough to vote.")

legalVotingAge (18) ;

Above 1s an example function that receives a parameter of type
integer to determine whether or not a person is of legal voting
age. At the bottom an integer of 18 is sent into the function.
The output would be ‘You are old enough to vote.’

For Statements:

In Catscript For Statements allow you to iterate through a
list of wvalues.

Above 1s a basic example of a for loop that will iterate through
the list and the output to the console.

Output: 0 1 2

If Statements:

In Catscript i1if statements are a way to use Boolean logic
to determine if this then do this, if not, do something else.

3) 1

("You are not old enough to vote yet.");

print ("You are old enough to vote.")

}
Above 1s a basic example of an if statement (as seen before in

Function Call Statement example.
Output: You are old enough to vote.

Print Statements:

In Catscript print statements are the most basic
statements. Using the word ‘print’ followed by open and closing
parenthesis you are able to print strings or variables that
contain a value.

Example:

print ("This is a print statement.");
Above the output will be: This is a print statement.

Above the output will be: 21

Return Statements:

In Catscript a return statement is a statement that return
some value at the end of a function. Any Catscript type can be
returned from the function, the return type will be determined
within the function that it is returning from.

Example:

function returnFalse() : bool {

}

?rint(returnFalse);
Above the return statement will return false and then print
false to the console.

Since Catscript is statically typed it should be noted yet again
that if the return type does not match what the return statement
is attempting to send back it will cause an error.

Variable Statements:

In Catscript variable statements permit the user to assign
a value to a variable. You can assign an integer value to a
variable or a string type to a variable. Values may be changed
throughout execution of the program if the value is of the same
type. Meaning a variable assigned to an integer cannot be
changed to a string type.

Examples:

Above 1s an example where x isn’t specified as an integer but
rather assigned to the integer type by using the right-hand side
of the equal sign to determine it as an integer.

Above 1s an example where the x is explicitly assigned to the
integer type.

Syntax Error Statements:

In Catscript statements also have error handling like the
expressions have. Instead of crashing the program an error will
be thrown to allow the program to continue to run.

Example:

print(z);
Above 1s an example where ‘'z’ is not set to any value. The error

message will say that the symbol is not defined.

21

String";
(y) 7
Above 1s an example where the variable ‘y’ was assigned to an

integer type. Then ‘y’ was set to a string type and attempted to
print ‘y’. This will throw an incompatible type error.

Section 5: UML

IfStatement SyntaxErrorStatement
Forstatement
-expressionExpression
“ArueStatements:List<Statement= -expression: Expression
-elseStatements:List<Statement> 3 vaiableNarme:String
“body:List<Statement> +SyntaxErrorStatement(start Token)
FunctianCallStatement PrinStatement
~expressionF ~expression Expression

Statement

VariableStatement

FunctionDefinitionStatement

-expression:Expression

“name:Stiing ~variableName:Siring
“ype:CalscripType +execute (runtime:CatscripRuntime) . “explicitType:CatscriptType
-argumentTypesiList<CatscriptType> J “ype:CalscriptType

-argumentNames List<String>

-body;:LinkedList<Statement>

AssignmentStatement RetumStatement

-expression:Expression -expression:Expression

~variableName String J S function:FunctionDefinitionStatement
ParseElement

-parentParseElement
start:Token

-end:Token
~children:List<ParseElement>
-errors List<ParseErrors>

+verify ()
+validate (symbolTable: SymbolTable)\
+transpile (javascript:StringBuilder)
+compile (code: ByteCodegenerator)

FactorExpression StringLiteralExpression

~operator: Token ~stringValue:String

-leftHandside:Expression
-rightHandSide: Expression

+StringLiteralExpression(value:String)

+isMultiply()-boolean

“aSting()Stiing NulliteralExpression

UistLiteralExpression

“values:List<Expression>
“type:CatscriptType

IntegerLiteralExpression

+ListLiteralExpression(values:<Expression>)
-integerValfinal int

+IntegerLiteralExpression(value:String)

AddativeExpression Expression

~operator:Token

-leftHandside:Expression
rightHandSide:Expression IdentifierExpression

+evaluate (runtime:CatscriptRuntime)

-name:String
+oString():String “ype:CatseriptType

+IdentifierExpression(value: String)

BooleanLiteralExpression

“booleanvalue:boolean

EqualityExpression
+Boolean iteralExpression(value Boolean)

~operator-Token
-leftHandside:Expression
ig! ession

UnaryExpre:

+toSting():String
~operatorToken +isEqual():boolean
“rightHandSide:Expression

N

+UnaryExpression(operator, rightHandSide)

+isMinus():boolean ComparisonExpression

+isNot(:boolean

+10String():String operatorToken
-leftHandside:Expression
~rightHandSide:Expression
+toString():Sting

FunctionCallExpression ParenthesizedExpression HeLessonan(;boolean

+isLessthanOrEqual()boolean

-name:Sting

~expression Expression +isGreaterThanOrEqual(boolean

-arguments List<Expression> +isGreater(yboolean

“type:CatscriptType

+FunctionCallExpression(functionName, arguments) L

SyntaxErrorExpression

+SyntaxErorExpression(consumeToken:Token)

Section 6: Design Trade-offs

Introduction

The two ways to create a compiler that were discussed in
this course was the use of recursive descent and parser
generators. There are positives and negatives to each approach.
Within this section I will discuss why our professor Carson
Gross chose to use the recursive descent approach over the
parser generator.

Parser Generator:

Parser generators take a grammar as the input. The grammar
that is taken in will be parsed through by the characters and
will create code from that input. This creates a parse tree that
shows the grammars production. The root of this parse tree would
be the starting node of the grammar and all nodes that are
expanded from that root is another production of the inputted
grammar.

ANTLR was the parser generator tool that was discussed in
class the most. It is a commonly used parser generator tool by
many developers. Before Carson Gross took over CSCI-468 ANTLR
was used by the previous professor for this class. Carson
believes that us as students gain a better understanding of how
to create a compiler without using this tool.

Recursive Descent:

Recursive descent is a top-down parser. With this parsing
technique the start symbol (non-terminal, the top) is expanded
upon to the entire program (to the bottom). This is known as a
brute force parser or a backtracking parser. The generated parse
tree is created by brute forcing or backtracking through the
tree itself.

Comparing Parser Generator & Recursive Descent:

Carson Gross decided that we would use the Recursive
Descent method to give his students a more hands on approach
when creating the parser for the compiler. In my opinion I am
glad that we used the Recursive Descent approach instead of
using a tool like ANTLR. By working my way through much of this
project I believe that I have learned more than a student would
have learned i1if they were handed a tool like ANTLR. Being able
to get down into the thick of it and figure my way out of the
issues that arose I feel like I have walked away from this
course with a good understanding of how to create a compiler.

Section 7: Software development life cycle model

Introduction

By far the most useful software development tool that was
utilized in CSCI-468 was the Test-Driven Development. This was
achieved by using the unit-tests that were provided in the
project by our Professor Carson Gross. The other tool that was
used during this course was the Catscript Server that we could
run via web browser allowing us to do some testing outside of
the project itself. I personally did not use the Catscript
server while working my way through the compiler but it was nice
to know that it was there if I needed it.

Test-Driven Development:

The formal definition - Test-driven development refers to a
style of programming in which three activities are tightly
interwoven: coding, testing (in the form of unit-tests) and
design (in the form of refactoring).

More times than not when starting a big project unit-tests
are written first with the goals in mind of what the developer
wants the program to accomplish. This assures that quality code
is written during the development of the program itself. This
prevents developers to write a ton of code that eventually turns
out to be useless. Ideally a developer will work their way
slowly through the unit-tests by writing small chunks of code
and then running individual unit-tests that relate to the code
that they are running. If the test continues to fail the
developer can debug the code and step through the debugger to
find where the errors may be occurring.

In CSCI-468 there were a total of 186 tests to pass. A
small portion of those were given to us already passing by our
professor. I personally really liked this method of development.
This was the first course in my college career that really
utilized Test-driven development. I was originally overwhelmed
when starting this course in January but very quickly subsided
that feeling by being able to slowly step through each unit-test
individually.

