
CSCI 468: Compilers

Spring 2022

Maxwell Lineberger

Partner:
Taner Rubino

/capstone/portfolio/source.zip

Section 1: Program

jetbrains://idea/navigate/reference?project=csci-468-spring2022-private&path=capstone/portfolio/source.zip

Team member 1 was the lead on writing the code for this project, and spent a majority of the time on the
tokenizer, parser, evaluation, and bytecode. Most of this was geared towards passing the tests for each of
those sections as this was a test driven project. Team member 2 provided additional tests that were aimed to
further improve the code. They also supplied the Catscript documentation which can be found in section 4
under technical writing. Team member 1 spent about 95% of the time on this project and team member 2
spent about 5% of the time for this project.

Below are the tests that team member 2 provided for team member 1:

@Test
 void nestedIfStatementWorksProperly(){

 assertEquals("1\n", executeProgram("var x = 5\n" +
 "if(x==7){ print(0) } else { if(x<7){ print(1) } else { print(-1) } }"));

 assertEquals("0\n", executeProgram("var x = 7\n" +
 "if(x==7){ print(0) } else { if(x<7){ print(1) } else { print(-1) } }"));

 assertEquals("-1\n", executeProgram("var x = 9\n" +
 "if(x==7){ print(0) } else { if(x<7){ print(1) } else { print(-1) } }"));

 }
 @Test
 void typeInferenceWorksForListTypes(){

 VariableStatement var = parseStatement("var x = [1, 2, 3 ,4]");
 assertEquals(CatscriptType.getListType(CatscriptType.INT), var.getExplicitType());
 var = parseStatement("var x = [true, false, true, true]");
 assertEquals(CatscriptType.getListType(CatscriptType.BOOLEAN), var.getExplicitType());
 var = parseStatement("var x = [\"abc\",\"string\", \"foo\"]");
 assertEquals(CatscriptType.getListType(CatscriptType.STRING), var.getExplicitType());

 }

 @Test
 void forStatementEnsuresSyntax(){

 assertEquals(ErrorType.UNEXPECTED_TOKEN, getParseError("for(x in [1, 2, 3] { print(x) }"));

 assertEquals(ErrorType.UNEXPECTED_TOKEN, getParseError("for (x [1, 2, 3]) { print(x) }"));
 assertEquals(ErrorType.UNEXPECTED_TOKEN, getParseError("for (x,y in [1, 2, 3]) { print(x) }"))

 }

Section 2: Teamwork

One design pattern used in this project was memoization, also known as flywheel. This is located in the
CatscriptType class, and is used in the function getListType.

Below is the code we started with, which is functional but not efficient:

 public static CatscriptType getListType(CatscriptType type) {
 return new ListType(type);

 }

We want to avoid creating new types if they already exist, so we start by creating a hashmap which will
contain each type. When we get the type, we will check to see if it already exists in the hashmap. If it does,
then we will return that from the cache. If it does not, then we will create the new list type and add it to the
cache. Now if the same type is called multiple times then it will only be created as a new type once.

Below is the improved code with the pattern implemented:

 private static Map<CatscriptType, ListType> cache = new HashMap<>();
 public static CatscriptType getListType(CatscriptType type) {

 ListType listType = cache.get(type);
 if (listType != null){

 return listType;
 }
 else{

 ListType newListType = new ListType(type);
 cache.put(type, newListType);
 return newListType;

 }
 }

Section 3: Design Pattern

Catscript is a simple functional programming language that uses an easy to understand syntax and has
common features of many other programming languages.

An example of a simple Catscript program to print out a list looks like:

function printList(myList : list<int>) {
 for(x in myList){

 print(x)
 }

}

printList([1,2,3])

Output:
1
2
3

The type expression is expressed in the Catscript grammar as:

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type_expression, '>']

The data types that exist within Catscript as shown above are:

int: Stores integer values such as 1 or 25 or -10
string: Stores words or sentences such as "hello" or "this is a string"
bool: Stores true or false values
object: A generic type, can store the values for any other type
list: Stores a collection of values of a single type, can be given a type using <> such as list<int>, lists are
immutable

Section 4: Technical Writing

Catscript Documentation

Features

Types

Expressions

The various types of expressions are represented in the grammar as:

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
 list_literal | function_call | "(", expression, ")"

Expressions in Catscript are used as the basis of the program logic, which are evaluated at runtime to
produce a value.

Expressions can be used to represent simple arithmetic operations such as addition, multiplication, or
negation as shown above within additive_expression, factor_expression, and unary expression.

The additive expression is used to add integers as well as to concatenate strings together.
The factor expresion is used to multiply two integers
The unary expression is used to take the opposite of an int using '-' or a boolean using 'not'

Expressions can also be used to compare two values together as shown in equality_expression and
comparison_expression which will evaluate to a boolean value

The equality expression is used to check if any two values are equivalent or not
The comparison expression is used to compare integers to each other

Expressions can also be a single value. These expressions are considered primary expressions and will
evaluate to the single value within them.

additive expressions: 2 + 5 , "hi " + "there"

factor expressions: 3 * 4 , 25 * (9 * 3)

unary expressions: -5 , not true

equality expressions: 5 == 5 , 10 != 6 , true == true , null != false

comparion expressions: 1 < 3 , 6 >= 5

primary expressions: 1 , true , "hello" , null

Expression examples:

Variables

Defining Variables

The variable statement is expressed in the Catscript grammar as

variable_statement = 'var', IDENTIFIER,
 [':', type_expression,] '=', expression;

As shown in the grammar, a variable is defined using the var keyword followed by the name of the variable
represented as IDENTIFIER above

A variable's type can be declared using a colon : after the name of the variable. If no type is given, then the
parser will determine the type at runtime.

The variable will be assigned to the value that the expression on the right side of the '=' evaluates to

Example of defining a variable in Catscript with an explicit type:

var x : int = 10

Example without an explicit type (string type will be assumed by the parser):

var x = "foo"

The assigment statement is expressed in the grammar as:

assignment_statement = IDENTIFIER, '=', expression;

The assignment statement is used to reset the value of a variable that is first defined as shown in the Defining
Variables section above.

The variable defined under the name represented as IDENTIFIER above will be set to the value that the
expression on the right side of the '=' evaluates to

Example of assigning a variable in Catscript:

var x = "foo"
x = "new string"

The print statment is defined in the grammar simply as

Assigning Variables

Printing

print_statement = 'print', '(', expression, ')'

The print statement is used to display a value to the program output.

A print statement is defined using the print keyword followed by the expression to be printed within
parenthesis()

The expression will be evaluated and the value will be displayed as program output

An example of a print statement:

print(2 + 2)

Output:
4

The for statement is expressed in the grammar as:

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
'{', { statement }, '}';

The for statement in Catscript is used exclusively to iterate over lists.

The for statement is defined with the for keyword followed by a variable name, the in keyword, and an
expression representing a list within all parenthesis()

On each iteration of the loop, the variable defined as IDENTIFIER will be set as the next element in the list
defined in ‘expression’ above

Statements within the body of the loop (designated by brackets {}) are executed in order repeatedly based on
the length of the list

As the statements within the body of the statement are executed, the IDENTIFIER variable shown above will
behave as a local variable each iteration through the loop.

A simple implementation of a for loop:

var aList = [1,2,3]

for(x in aList){
 print(x)

}

Output:

For loops

1
2
3

The if statement is expressed in the grammar as:

if_statement = 'if', '(', expression, ')', '{',
{ statement },
'}' ['else', (if_statement | '{', { statement }, '}')];

The if Statement in Catscript is used to test conditional statements, and is defined using the if keyword

If the expression defined as expression above evaluates to true then the statements contained within
brackets {} after the expression will be executed in order

If the expression evaluates to false then the statements contained within the brackets after the else will be
executed.

If statements can be contained within themselves, when executed they will evaluate the outermost if
statement first and then work inwards.

A simple example of a Catscript If statement:

x=5

if (x > 10){
 print("Greater than 10")

}else{
 print("Less than 10")

}

Output:
Less than 10

The function declaration statement is expressed in the Catscript grammar as

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
 [':' + type_expression], '{', { function_body_statement }, '}';

If Statements

Functions

Function Declaration

As shown in the grammar, a function is defined using the function keyword followed by the name of the
function represented above as IDENTIFIER

The parameters of the function are declared within parenthesis, with each parameter seperated by a comma
and optionally using a colon to declare its type as shown in the example below.

The return type of the function is declared using a colon after the parameter list followed by the type the
function should return. If no return type is specified, then the return type void is assumed.

The body of the function containing the statements to be executed upon function call is defined within
brackets{}

If the keyword return is used at the beginning of a statement within the function body, the function will stop
executing and if an expression is given it will return the result of the expression.

An example of a function declaration in Catscript:

function add(x : int, y : int, z : int) : int{
 return x + y + z

}

An example of a similar function declaration with no return type or parameter types:

function printAdd(x,y,z){
 print(x + y + z)

}

A function call is represented in the Catscript grammar as

function_call = IDENTIFIER, '(', argument_list , ')'

A function can be executed by using its name followed by a list of arguments to be used as a parameters
within parenthesis().

Each statement listed in the function's body as shown in the function declaration section above will be
executed

An example of a function call, using the function declaration for add from above

num = add(1,2,3)
print(num)

Output:
6

Function Calls

Section 5: UML
In the UML diagram below, we can see a few of the many relationships within the parser of Catscript.
Although there are many elements of Statement and Expression, the focus of this diagram is on functions in
Catscript. The diagram clearly shows that Statement and Expression are the two kinds of ParseElement, and
that FunctionCallExpression is an Expression. FunctionDefinitionStatement and FunctionCallStatement are
both statements as well.

The major design trade off for this project was using recursive descent over a parser generator. The main
reason for this choice is that it is simpler to write and gives a better understanding of how a compiler works.
Parser generators rely on trickier code and how it works is much less intuitive. Although it is a bit slower and
requires more code, recursive descent was a better choice for this project. It is much easier to understand the
natural progression of the grammar through a parser generator because of the top-down approach. Each
expression and statement call each other, and this makes it easier to debug as well. It was very obvious when
one of the pieces was not working correctly.

Section 6: Design Trade-Offs

This project used Test Driven Development, which means we used tests to make sure each section of our
code was written correctly. We used tests for the tokenizer, parser, evaluation, and the byte code. Each of
those sections performs a different task so new tests were needed to make sure they were all working
correctly. We relied heavily on these tests, and it saved a lot of time over manually testing each section. It
helped with the structure of the coding process, because it was very clear which tests were passing and
which were not. By having tests before we start coding, it made it easier for our team to focus on the more
important pieces of this large compiler puzzle. It was always very clear which part we needed to work on next,
and when we were finished with a section of the compiler. Sometimes the tests were not perfect, and after
completing one section the next section would have issues. We had to go back and change some previous
code, but since the old tests were still there we could tell if we did it correctly. Overall, Test Driven
Development is a great approach to a project such as this, and we will surely be implementing it in future
projects.

Section 7: Software Development Life Cycle
Model

