
Montana State University

Capstone Paper

Kaylee Fong

Tester Partner: Caden Fong

Compilers - CSCI 468

Spring Semester 2022

Table of Contents

Section 1: Program 3

Section 2: Teamwork 3

Section 3: Design Pattern 4

Section 4: Technical Writing 5

Section 5: UML 10

Section 6: Design Trade-offs 11

Section 7: Software development life cycle model 11

2

Section 1: Program

https://drive.google.com/file/d/1WO-S1TIdlOfFlhS1fLLK8on0GQt-IimI/view?usp=sharing

Section 2: Teamwork

General Teamwork Information

For this capstone project there were two team members, team member 1, the author of

this report, and team member 2, the tester for this project. For this project over 150 hours were

spent to get it to completion. Something to note for this project is that it was mostly an individual

project and team member 2 also wrote their own compiler where team member 1 for this project

was the tester for them.

Team Member 1 (The Programmer)

Team member 1’s Primary contributions were writing the compiler through test-driven

development and this report. Team member 1 spent around 80 percent of the total project time, or

around 120 hours, on this project.

Team Member 2 (The Tester)

Team member 2’s Primary contributions were writing three tests (tests are located in

PartnerTests.java in the test directory) for the compiler and also writing the documentation for

Catscript which can be found in Section 4: Technical Writing of this report. Team member 2

spent around 20 percent of the total project time on this project, in other words around 30 hours.

3

Section 3: Design Pattern

The design pattern used in this project is called memoization or the flyweight design

pattern. The pattern is used in the file “CatscriptType.java” in the the

“src/main/java/edu/montana/csci/csci468/parser/” file path and can be seen below:

private static Map<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

ListType listType = cache.get(type);
if (listType != null) {

return listType;
} else {

ListType newListType = new ListType(type);
cache.put(type, newListType);
return newListType;

}
}

Shown highlighted above is the implementation of the memoization design pattern. The reason

for doing it this way is because the Catscript list type can be used many times throughout a single

program and is a costly object to create every time. Using this pattern more efficiently uses space

as each instance of a ListType for a specific primitive type like int only gets created once. It also

means that this operation is faster for each subsequent call as getting the ListType object is then

only a simple lookup instead of an object instantiation.

4

Catscript Documentation of Features

Introduction
Catscript is a simple scripting language with the ability to evaluate or compile code written within it's
grammar rules that appear as follows.

catscript_program = { program_statement };

program_statement = statement |
function_declaration;

statement = for_statement |
if_statement |
print_statement |
variable_statement |
assignment_statement |
function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
'{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
{ statement },

'}' ['else', (if_statement | '{', { statement }, '}')];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,
 [':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
[':' + type_expression], '{', { function_body_statement

}, '}';

function_body_statement = statement |
return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

Section 4: Technical Writing
5

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression
};

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")
additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list_literal | function_call | "(", expression, ")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,
type_expression, '>']

Features
Catscript features syntax for basic data structures and control flow.

Comments

Catscript comments are single inline statements ignored during compiling and interpretation and can be
written as follows

// This comment will be ignored by the parser

Variables and Type Inference

Catscript is statically typed and supports the following data types natively: null, void, int, string, bool, and list.
Values can be assigned to variables globally and locally, but can only be defined once for a given identifier.
However, the value can be reassigned just without the var keyword.

Variables can be defined with or without a type explicitly but will be inferred if not given, and is semantically
written as follows

6

var identifier : int = 1
identifier = 2
or
var identifier = 1
identifier = 2

Lists are immutable in Catscript and can be defined as follows

var listExample : list <int> = [1, 2, 3]
or
var listExample = [1, 2, 3]

Basic Operators

Catscript includes basic operators for modifying and calculating using ints' as well as a unary operator for bool
values. The binary operators use left associativity excluding the two unary operators which are right
associative.

Addition in Catscript operates following the rules of basic addition and is overloaded to support string
concatenation, and is written in the following ways

1 + 5
or
1 + "Hello World"
or
"Hello " + "World"

Subtraction can be written as follows

5 - 1

Multiplication can be written as follows

2 * 2

Division can be written as follows

16 / 4

Negation can be written in two ways for negating an int and a bool, they are written as follows

7

-4
and
not true

Comparison Operators

Catscript supports all the basic comparison operators for ints' and an equality operator for comparing
referential equality, each resolving to a bool value.

Int comparison operators include less than, greater than, less than or equal to, and greater than or equal to
operators and are written as follows

1 < 2
2 > 1
6 <= 8
5 >= 4

Equality can be written to compare object reference as well as bool and int types, and can appear as follows

var x = [1, 2]
var y = x
x == y //resolves to true
or
1 == 2
or
true != false

Print Statement

The Catscript print statement allows objects converted to string values to be outputted at evaluation or
compiled runtime and can be written as follows

print(1)
print([1, 2])
print("Hello World")

If Statements

Catscript supports the basic if control flow statement. If statements are comprised an expression that
evaluates to a bool and can be formatted to have an else if or an else as optional additions but can also be
nested for desired output. An if statement can be written as follows

8

var x = 1
if (x == 1) {
 print("1")
} else if (x == 2) {
 print("2")
} else {
 if (x == 3) {

print("3")
 } else {

print("4")
 }
}

For loops

Catscript only supports a basic for loop control flow statement that uses a variable not predefined in another
scope and an iterable list. The for loop will loop over every variable in the iterable list given, and can be
written as follows

for (i in [1, 2, 3]) {
 print(i)
}

Functions

Functions in Catscript can be defined with a return type but will infer a return type if none is given defaulting
to void, functions can be defined with any amount of parameters with an explicit type but can be inferred if
omitted. Function identifiers cannot be used more than once and does not support method overloading.
Function calls evaluate to a value or void given the provided return type. Function definition and call can be
written as follows

function foo(x:int, y:int):int{
 return x + y
}
print(foo(2, 3))

9

ForStatement

expression : Expression

variableName : String

body : Sequence(Statement)

getComponentType()

ListLiteralExpression

values : Sequence(Expression)

type : CatscriptType

AdditiveExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isAdd()

StringLiteralExpression

stringValue : String

VariableStatement

expression : Expression

variableName : String

explicityType : CatscriptType

type : CatscriptType

isGlobal()

ParseElement

parent : ParseElement

children : Sequence(ParseElement)

registerFunctions(symbolTable : SymbolTable)

verify()

validate(symbolTable : SymbolTable)

AssignmentStatement

expression : Expression

variableName : String

CatScriptProgram

output : StringBuffer

statements : Sequence(Statement)

functions : OrderedSet(FunctionDefinitionStatement)

expression : Expression

print(v : Object)

PrintStatement

expression : Expression

EqualityExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isEqual()

FactorExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isMultiply()
IntegerLiteralExpression

integerVal : Integer

UnaryExpression

operator : Token

rightHandSide : Expression

isMinus()

isNot()

Statement

execute(runtime : CatscriptRuntime)

TypeLiteral

type : CatscriptType

ParenthesizedExpression

expression : Expression

SyntaxErrorExpression

SyntaxErrorExpression(consumeToken : Token)

ComparisonExpression

operator : Token

leftHandSide : Expression

rightHandSide : Expression

isLessThan()

isLessThanOrEqual()

isGreaterThanOrEqual()

isGreater()

FunctionCallStatement

expression : FunctionCallExpression

BooleanLiteralExpression

booleanValue : Boolean

SyntaxErrorStatement

SyntaxErrorStatement(start : Token)

NullLiteralExpression

FunctionDefinitionStatement

name : String

type : CatscriptType

argumentTypes : Sequence(CatscriptType)

argumentNames : Sequence(String)

body : Sequence(Statement)

invoke(runtime : CatscriptRuntime, args : Sequence(Object))

getDescriptor()

IdentifierExpression

name : String

type : CatscriptType

IfStatement

expression : Expression

trueStatements : Sequence(Statement)

elseStatements : Sequence(Statement)

FunctionCallExpression

name : String

arguments : Sequence(Expression)

type : CatscriptType

Expression

evaluate(runtime : CatscriptRuntime)

transpile(javascript : StringBuilder)

compile(code : ByteCodeGenerator)

ReturnStatement

expression : Expression

function : FunctionDefinitionStatement

Section 5: UML 10

Section 6: Design Trade-offs

Throughout this project there needed to be a design trade-off made when choosing an

algorithm to create the parser. In this compiler, for the parser, I used recursive descent rather than

a parser generator for a number of design reasons. First off, recursive descent more naturally

goes with the recursive nature of context-free grammars. The trade-off is for educational

purposes as a better and a more deep understanding of grammars can be obtained throughout the

process of using recursive descent. Another reason for using recursive descent is the simplicity

that comes with it as it more closely reflects grammars than a parser generator. While being more

simple to understand and more informative than a parser generator the recursive descent

algorithm requires more writing and work to create than using the parser generator. All in all,

while a parser generator would have required less work overall it was a better trade-off to go

with recursive descent in order to create a better understanding of grammars as well as parsers as

a whole.

Section 7: Software development life cycle model

Throughout this capstone project the Test Driven Development model was used. The

Test-Driven Development model is a development process in which users write tests that need to

be passed by the code they are writing for a project. In other words, projects that employ this

development method first write a test suite in code that will run tests on the actual project's code

and make sure it meets the necessary requirements to make it work properly. Before starting this

11

project there was a test suite written for us, of which all relevant tests had to be passed in the end

in order to ensure we created a fully functional compiler. Using this model helped immensely

throughout the project because it kept our progress on track and organized. I saw this design

model as being a very useful method for helping us really understand what we were doing and

why it needed to be done.

12

	KayleeFong-capstone.pdf
	KayleeFong-CatscriptDocumentation.pdf
	kayleefong_capstoneUML (1).pdf
	KayleeFong-capstone

