
Compiler
Capstone
Portfolio

PREPARED FOR

Carson Gross

Montana State School of Computing

PREPARED BY

Ryan Krauss

-01975661



1. Program
A copy of the compiler program is included in the /capstone/portfolio repository on Github.

2. Teamwork
John and I teamed up to provide each other with technical documentation as well as tests
to check the functionality of our compilers.

3. Design Pattern
One of the design patterns we used is called memoization. Memoization is a technique
used to speed up compiling by caching the results of an expensive function call and is
common in recursive descent parsing. Memoization uses a hashmap to keep track of the
inputs and outputs of functions to reference instead of performing the function again. In our
case we are using it to track the List types we have already created. I have included the
relevant code below.

static HashMap<CatscriptType, ListType> cache = new HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

ListType listType = cache.get(type);

if (listType == null) {

listType = new ListType(type);

cache.put(type, listType);

}

return listType;

}



4. Technical Documentation

Catscript Guide

Introduction

Catscript is a statically typed scripting language. Here is an example:

var x = "Hello World"

print(x)

Output : Hello World

Features

Identifier Expressions
Objects of any type can be assigned to identifier variables:

var x = 1

print(x)

Integer Literal Expressions
Basic integer type

int x = 1

String Literal Expressions
Basic string type

string x = “Hello”



Boolean Literal Expressions
Basic boolean type

bool x = true

bool y = false

List Literal Expressions
Lists are static and can contain objects of any type:

list x = [1, 2, 3]

list y = [“hi”, “there”]

list z = [true, false]

Null Literal Expressions
Basic null type:

var x = null

Additive Expressions
Integers can be added and subtracted, and Strings can be concatenated:

var x = 1 + 1

var y = 1 - 1

string s = “Hello” + “ World”

Factor Expressions
Integers have multiplication and division:

var x = 1 * 1

var y = 1 / 1

Comparison Expressions
Integers values can be compared:

bool x = 1 > 2

bool y = 1 >= 1

bool z = 1 < 2



bool a = 1 <= 1

Equality Expressions
All types can be compared for equality:

bool x = (1 == 1)

bool y = (“Hi” == “Hi”)

Unary Expressions
Integers can be negative

int x = -1

Parenthesized Expressions
Any expression can be parenthesized:

int x = (-1 + 3) / 2

Function Call Expressions
Defined functions can be called with parameters:

function add(x, y) {

return x + y

}

var x = add(1, 1)

Assignment Statement
Values can be assigned to variables

var x = 1

For Statement
For statements enable iteration through lists:

for(x in [1, 2, 3]){

print(x)

}



Functional Call, Function Definition and Return Statements
Functions can be defined and then called with parameters. Return type and parameter
type can be optionally defined:

function add(x, y) {

return x + y

}

var z = add(1, 1)

function subtract(x : int, y : int) : int {

return x - y

}

int z = subtract(1, 1)

If Statement
If/else statements allow branching based on boolean expression value:

int x = 5

if(x > 0){

print(“x is positive”)

} else {

print(“x is negative”)

}

Print Statement
Print statements display expression in console

for(x in [1, 2, 3]){

print(x)

}

Output:

1

2

3

Variable Statement
Variable statements assign type based on implied type:

var x = 1



package edu.montana.csci.csci468.eval;

import edu.montana.csci.csci468.CatscriptTestBase;
import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.assertEquals;

public class PartnerTests extends CatscriptTestBase {
@Test
void intToStringConcatonation() {

assertEquals("10ten\n", executeProgram("var x = 10\n" +
"var y = \"ten\"" +
"print(x+y)"));

}

@Test
void functionreturnsnull() {

assertEquals("null\n", executeProgram("var x = 10\n" +
"function foo() {return null}" +
"foo()" +
"print(foo())"));

}

@Test
void stringsCanContainKeywords() {

assertEquals("print\n", executeProgram("var x = \"print\"\n" +
"print(x)"));

assertEquals("function\n", executeProgram("var x =
\"function\"\n" +

"print(x)"));
assertEquals("int\n", executeProgram("var x = \"int\"\n" +

"print(x)"));
}

}



5. UML Diagrams
Included in the portfolio directory is “expressionClassDiagram.pdf”, the UML diagram of
the different expression classes, the parent expression class, as well as the ParseElement
class. This diagram gives a detailed look of what is contained with each class and a
glimpse into how the Catscript compiler is ordered. In it you see each class contains their
own execute, transpile, and compile methods to override the parent functions. Part of the
reason I chose this diagram was to highlight the design choice used to not use a visitor
pattern, but a quasi factory pattern, letting each type of expression class decide what to do
with these methods.

6. Design Trade Offs
Our main design trade off was the use of recursive descent parsing instead of something
like a parser generator. The advantages of using recursive descent parsing are the process
being simpler as well as gleaning a better understanding of parsing and code generation.
The main disadvantage is it takes more code to implement.

Another design trade off is our lack of using the visitor pattern, or alternatively the
compartmentalization of every expression and statement to contain their own execute,
compile, and transpile methods. This unusual method was implemented to give us a
simpler understanding of parse trees and recursive descent.

7. Software Development Lifecycle
For our lifecycle model, we used test driven development. We were given many tests at
the beginning and coded against those tests in order to get them to pass. I enjoyed this
method of development because it gave us a clear cut goal and an obvious show of
success. Having the tests first allowed me to at least have a starting off point when I
wasn’t sure where to go.


