csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

& jaygforbes [csci-468-spring2022-private Private

<> Code () Issues 1% Pullrequests () Actions [J Projects () Security |~ Insigh

P master v CscCi-468-spring2022-private / capstone / Go to file
Capstone.md

-IIJ. jaygforbes Update Capstone.md Latest commit c5acead 6 minutes ago @ History

A 1 contributor

‘= 225 lines (156 sloc) 9.91 KB > 0O Raw Blame OJ 3 2 U

¢ Section 1: Program

[capstone/portfolio/src.zip

Section 2: Teamwork

Team member 1: Designed most functions and also wrote nearly all the code for
the project. Team member 2: Wrote 3 test cases for the code and Catscript
documentation.

Team member 1: 130 hours were spent in development for this project. Team
member 2: 1 hour was spend in the testing for this project, 3 Hours for Catscript
documentation.

Section 3: Design pattern

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 1 of 10

https://github.com/jaygforbes
https://github.com/jaygforbes/csci-468-spring2022-private
https://github.com/jaygforbes/csci-468-spring2022-private
https://github.com/jaygforbes/csci-468-spring2022-private/tree/master/capstone
https://github.com/jaygforbes
https://github.com/jaygforbes
https://github.com/jaygforbes/csci-468-spring2022-private/commit/c5acead46b16c14468faeb7526bab394264a18e0
https://github.com/jaygforbes/csci-468-spring2022-private/commit/c5acead46b16c14468faeb7526bab394264a18e0
https://github.com/jaygforbes/csci-468-spring2022-private/commits/master/capstone/Capstone.md
https://github.com/jaygforbes/csci-468-spring2022-private
https://github.com/jaygforbes/csci-468-spring2022-private/issues
https://github.com/jaygforbes/csci-468-spring2022-private/pulls
https://github.com/jaygforbes/csci-468-spring2022-private/actions
https://github.com/jaygforbes/csci-468-spring2022-private/projects?type=beta
https://github.com/jaygforbes/csci-468-spring2022-private/security
https://github.com/jaygforbes/csci-468-spring2022-private/network/dependencies
https://github.com/jaygforbes/csci-468-spring2022-private/find/master
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-1-program
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-2-teamwork
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-3-design-pattern
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md?plain=1
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md
https://github.com/jaygforbes/csci-468-spring2022-private/raw/master/capstone/Capstone.md
https://github.com/jaygforbes/csci-468-spring2022-private/blame/master/capstone/Capstone.md
x-github-client://openRepo/https://github.com/jaygforbes/csci-468-spring2022-private?branch=master&filepath=capstone%2FCapstone.md

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

Memoization/Flywheel was the design pattern that was used for this project. If
you navigate to Parser -> CatscriptType.Java, on line 37 is where the it begins.
The hash map we created holds the cached objects. The if/else statment handles
if the object has been cached. When executing this program, many objects are
created, sometimes this process is repeated several times. Having memoization
allows me to cache these certain events and creates far less data to be managed
by memory while at the same time making the program more efficient.

Section 4: Technical writing.

Catscript Guide

Catscript is a coding language developed for the CSCI 468 Compilers capstone
course at Montana State University - Bozeman. It is compiled into Assembly in
the Java Runtime Environment and features a number of qualities typically
associated with high-level programming languages.

The compiler for Catscript has been built with a recursive-descent parser, as
compared to other more ubiquitous parsing methodologies.

Introduction

Catscript is a simple, but robust scripting langauge. It can perform a variety of
tasks from basic mathematic operations, simple string manipulation, and complex
control flows. Below is a rudimentary example of the language in action:

function standUpAndCheer(team : string) : void {
print("Go, " + team + ", Go!")

standUpAndCheer("Cats") // Go, Cats, Go!

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 2 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-4-technical-writing
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#catscript-guide
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#introduction

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

Grammar and General Syntax

Primitive Types

There are three primitive types supported by Catscript at this time: int, bool,
and void .

e Integer values, denoted with the reserved word int , are numeric values
which contain no decimals. All integers in Catscript are signed integers and
support a number of mathematical operations.

|
w

var x : int =
var y : int = -9
var z : int = 42

An example of several integer variable declarations

e Boolean values, denoted with the reserved word bool , are singular values
which are like a switch, and can be either 'on' (true), or 'off' (false).

var p : bool true
var g : bool = false

An example of two boolean variable declarations

e void types are exclusively used when declaring functions that do not return
any information. Although the void type is only used for function
declarations, the other two primitives may also be used as return values in
function declarations.

function foobar() : void {}

An example of a function declarations with a void return type

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 3 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#grammar-and-general-syntax
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#primitive-types

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

Objects

In addition to the primitive data types, Catscript makes use of three types of
object data types as well: string, 1ist, and null objects.

e String values contain text. Unlike some higher-languages, the number of
characters in a Catscript string does not need to be defined before
assignment, and can be changed as needed.

var hello : string = "Hello World!"

An example of a string object

e List objects are collections of different values of the same type. The
elements of a list object can either be primitive values or other objects.
Similar to strings in Catscript, the size of a list object need not be defined
during instantiation.

var listl : list<int> = [1, 2, 3]
var list2 : list<string> = ["a", "b", "c"]

Two examples of a list object, one containing integer values, and the other
containing string objects

e null is avalue used to denote an object as having been undefined, and can
be used to declare objects before assigning values to them.

Objects may also be declared using a generic object type, which allows a
variable to have any type of object assigned to it during and after it is declared.

Variable Declaration and Assignment

Variables can be declared in Catscript using either hard or soft typing. However,
all variables in Catscript must be instantiated upon declaration.

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 4 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#objects
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#variable-declaration-and-assignment

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

var x = "foo"
var y : string = "bar"

Above is an example of soft/implicit typing (var x = "foo"), followed by an
example of hard/explicit typing (var y : string = "bar"). Catscript variables
can also be re-assigned after instantiation:

var x = "foo"
x = "bar"

Even though Catscript variables may be re-assigned after being declared, their
type cannot be modified (e.g., a variable instantiated as a string may not be
assigned a boolean value). This includes variables declared using implicit typing,
as the type of the variable is inferred from the initial value it is instantiated with.

Comments

Comments are a method of adding important or supplemental information to a
Catscript file without changing its behavior. They are created by typing //
anywhere in your script. Once done, all text after the two slashes will have no
effect on the behavior of your script.

Comments can either be created on their own ling, or inline with a piece of code:

// This comment has a line all to itself...

var x = "no comment" // ...and this comment comes after a
variable declaration!

Control Flow in Catscript

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 5 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#comments
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#control-flow-in-catscript

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

Catscript's control flow functionalities come in three forms-- for loops, if
statements, and functions. Each has their own use-cases which make them
extremely valuable for a variety of different scenarios.

Each control block is able to encapsulate other sets of statements and
expressions using the { and } symbols.

For loops
For loops are used to iterate over each value in a list, and are great for performing

repeatable tasks.

for (x in [1, 2, 31) {
print(x * x)

For loops can also be nested to perform operations involving multiple lists at
once, or multi-dimensional lists.

var matrix = [[3, 2, 31, [2, 3, 21, [2, 1, 2]]
for (row in matrix) {
for (element in row) {
print(element)

If Statements

If statements allow for conditional control of code operation. The most basic
utility of if statements is to execute a set of commands which are predicated on
another value.

var wordOfTheDay = "Serendipity";

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 6 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#for-loops
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#if-statements

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

if (wordOfTheDay !'= null) {
print("The word of the day is " + wordOfTheDay + "!")

If statements also have a second form as if-else statements, which allow for
optional commands which are executed exclusively based on a condition.

var wordOfTheDay = "Serendipity";
if (wordOfTheDay !'= null) {

print("The word of the day is " + wordOfTheDay + "!")
} else {

print("We're sorry, the word of the day appears to be
missing.")

}

Function Declaration

Functions are easily the most versatile tool for control flow in Catscript. They
allow for sets of statements to be defined as single elements that can be
executed in multiple parts of a script.

function weather() : void {
print("It's a sunny day today.")
print("How lovely!")

weather () // This line causes the above two print statements to
be executed

Functions can also have a list of arguments, called parameters, passed to them.
Those parameters can then be used to perform dynamic actions.

function weather(quality : string, feeling : string) : void {
print("It's a " + quality + " day today.")
print("How " + feeling + "!")

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 7 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#function-declaration

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private

s

weather("sunny", "lovely") // "It's a sunny day today.",
"How lovely!™

weather("rainy", "dreadful") // "It's a rainy day today.",

"How dreadful!"

Finally, functions can also be executed recursively. That is, a function can call
itself. This is an extremely powerful functionality, but can also cause your scripts
to become unresponsive if done incorrectly, so be careful!

function go(count : int) : void {
if (count > @) {
print(count * count)
go(count - 1)

go(5) // output: 25 16 9 4 1

Control blocks can also be used in combination with one-another to perform
complex operations. This includes functions which contain for loops and if
statements, for loops that conditionally call functions, and more! The sky is the
limit.

Section 5: UML for Catscript project.

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md

5/6/22, 10:47 PM

Page 8 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-5-uml-for-catscript-project

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

Section 6: Design trade-offs

Recursive Decent vs Parse Generator We are using recursive descent parsing for
this project. This is not the common method used for classes/projects like this,
usually a parse generator is used. Using recursive descent does not compete
with the parse generator in terms of speed. Parse generator is quicker in that
regards. However, when learning parsing, the recursive descent parser is more
intuitive and simple for beginners, allowing for a great learning experience. This is
because recursive descent is a top-down method of implementing parsing that
uses recursion and trees. When using context free grammar to implement the
parser it was very simple because the context free grammer was very similar to
the implementation of the code.

We did not use the visitor pattern. We put evaluation, compile, and everything
else directly on the parse tree nodes. This makes things far more simple to learn
for students who are new to compliliers.

Section 7: Software development life

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 9 of 10

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-6-design-trade-offs
https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md#section-7-software-development-life-cycle-model
https://github.com/jaygforbes/csci-468-spring2022-private/raw/master/capstone/uml/expressions_orthogonal.png

csci-468-spring2022-private/Capstone.md at master - jaygforbes/csci-468-spring2022-private 5/6/22, 10:47 PM

cycle model

We are using Test Driven Development (TDD) for this project. | found this
incredibly helpful because it clearly lays out goals in a way that makes sense
when you are actually looking at your IDE and code rather than a conceptual map.
Having TDD is extremely helpful not only in the way mentioned before but in
teamwork and time management settings. You can lay out how many tests you
need to pass after a certain interval of time to stay on pace. In addition, with
having several tests, it is easy to assign work to coworkers and reassign tests if
someone were to fall behind in their work.

https://github.com/jaygforbes/csci-468-spring2022-private/blob/master/capstone/Capstone.md Page 10 of 10

