
CSCI 468: Compilers Capstone Portfolio
Hannah Madsen

Montana State University
May 2022

1



Section 1: Program
Source Code:
https://github.com/hbmadsen/csci-468-spring2022-private/blob/master/capstone/portfolio/source
.zip

Section 2: Teamwork

Kieran and I contributed equally to this project. We both individually wrote a recursive descent
parser that converted Catscript to bytecode. We also provided each other with three tests to
include in our test driven development. Lastly, we each wrote up documentation of Catscript and
how it worked, this documentation was exchanged between us to ensure that we both had a
sound understanding of the language.

Kieran’s tests:
https://github.com/hbmadsen/csci-468-spring2022-private/blob/master/src/test/java/edu/montan
a/csci/csci468/partnerTests.java

Section 3: Design Pattern

Memoization was employed in the CatscriptType class for the getListType() function, where type
for the given list is returned. Memoization is implemented through the use of a hashmap to
cache previous list types, so new list types do not need to be created every time the function is
called.

private static Map<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

ListType listType = cache.get(type);
if (listType == null) {

listType = new ListType(type);
cache.put(type, listType);

}
return listType;

}

Section 4: Technical Writing
The below documentation was provided to me by my partner, Kieran Ringel. Also see
Ringel_Catscript.md here:
https://github.com/hbmadsen/csci-468-spring2022-private/blob/master/capstone/Ringel_Catscri
pt.md

2



Catscript Guide

Introduction
Catscript is a scripting language similar to python. It is an interpreted language so the source
code is converted to bytecode which is then run by the java virtual machine.

Features

For loops
A for loop is used to iterate over an expression. The for loop in catscript operates similarly to the
for loop in python.

for (item in [1, 2, 3] {
print(item)

}

If statement
If statements support conditional logic. If statements are written using the keyword "if". Catscript
also supports else if and else statements.

if (1 > 2) {
print("wrong")

} else {
print("right")

}

Print statements
Print statements are used to print strings to the output.

print("Hello world")

Variable Statements
Variable statements are used to declare variables and can optionally include the variables type.

var x = 1
var y : int = 2

Assignment Statement
Assignment statements are used to assign a new value to a variable.

x = 2

3



Function Declaration
A function is defined using the "function" keyword.

function foo() {
print("bar")

}

Parameters can be passed into a function, they are specified in the parentheses. Multiple
parameters must be separated by commas.

function foo(x, y : int) {
print(x)
print(y)

}

The function declaration can also include the type, specifying what the return type is.

function foo(x : int) : int {
return x

}

A function’s body can consist of statements and return statements.

Equality Expressions
Equality expressions are used to determine if two values are equivalent.
1 == 1 would return true, or not equivalent 1 != 2 would return true.
Equality expressions return a boolean.

Comparison Expressions
Comparison expressions can compare two integer values and determine iif the left value is
greater than, greater or equal to, less than, or less than or equal to the right value.

1 < 2
1 <= 4
5 > 3
5 >= 4

A comparison expression returns a boolean.

Additive and Factor Expressions
Additive and factor expressions are used to perform basic mathematical operations.

1 + 2

4



3 - 2
4 * 5
4 / 2

Unary Expression
A unary expression is used to negate a numerical value or boolean.
not true would result in false - 1 results in -1.

List Literal
Lists are used to store multiple variables in one item.

[1, 2, 3]

Types
Catscript supports integers, strings, booleans, objects and lists.

Section 5: UML
See class diagram on page 6.

Section 6: Design Trade-offs
The design decisions and corresponding tradeoffs made for the compilers project included
choosing to use a recursive descent parser and to not follow a visitor pattern for evaluation and
compilation. We chose to use a recursive descent parser rather than a parse generator because
recursive descent is simpler and provides a better understanding of the recursive nature of
grammars. The tradeoffs for choosing recursive descent were that it required more code and
that it is not as standard as parser generators. Additionally, we made the decision to not use the
visitor pattern that was used in the Crafting Interpreters book to address the expression
problem. In our project, we had evaluation and compilation take place within each parse tree
node, which was directly embedded in the parse tree and made it easy to implement and kept
everything in one place. The tradeoff with this approach was that we did not separate concerns,
which is often preferred.

Section 7: Software Development Life Cycle Model
Test Driven Development (TDD) for this project. This model was very helpful because it ensured
that the prerequisites were fulfilled for each part of the compiler, thus, avoiding errors in later
stages of development. However, I was quite reliant on these tests and found that tests would
pass in some stages of development, but failed to ensure I had properly implemented
everything with the whole picture in mind. So, I had to revisit and rewrite code that I had
previously thought was correct.

5



6


