PIQUE Expansion:

Adding a GUI and
Database

By: Maria Gallivan, Dawson Kanehl, Zoe Norden
Connor Snow

CSCI 483R
Dr. Clemente lzurieta

April 25™, 2022

PIQUE Expansion:
Adding a GUI and Database

Introduction
Qualifications
Background

Work Schedule
Milestones
Work Schedules
Responsibilities
Proposal Statement
Requirements

Architectural Design Documents

Tools Used

Diagrams
UML Diagram: GUI
Component Diagram
The GUI Use Case Diagram
Sequence Diagram
High Fidelity Model of the GUI
Generalized PIQUE Assessment Graph Model

Database Comparison
Expected Results
Appendix

Resumes

References

14
14
14
14
17
18
19
20
21

22
22
53
55
59

Introduction

Today's society runs on code. Code is built into every service and product. This presents
many opportunities for cyber criminals to exploit systems preying on both individuals and
corporations. According to the University of North Georgia, 43% percent of cyber attacks target
small business, 64% of companies have experienced web-based attacks, 62% experienced
phishing & social engineering attacks, 59% of companies experienced malicious code and
botnets, and 51% experienced denial of service attacks [1]. Additionally, the estimate for the
average cost of data breaches in 2020 was $150 million USD [1]. These staggering numbers
continue to grow yearly in favor of the criminals.

Most programmers and companies are unaware of how vulnerable their systems are to
cyber attacks. This is an enticing area for crime with a wide victim set and easy targets. A need
to perform quality assessments on code persists in the industry as well as in personal projects.
Through the comparison of their code to modern practices, we can enable companies to raise
their standard of security. This, in turn, would hinder cyber crime and drop the number of cases.
By strengthening the code’s defense, we disincentivize criminals to attack as it is more difficult
to infiltrate the system and make money.

The PIQUE (Platform for Investigative software Quality Understanding and Evaluation)
software was developed to help analyze code against current standards to evaluate its quality.
The first step is creating a hierarchical tree of importance to score their code in key areas such as
security, readability, usability, etc. Unfortunately, this tree must be modeled by hand and
manually transferred into a JSON file, before being sent through the PIQUE application.

Our prototype would allow the users to model this tree in the application and
auto-populate the necessary files. For ease, these files would be exported into a database that our
group is designing. This database will store the finished tree, the nodes used, weights of the

nodes, the links between nodes, the total scores, and different versions of the code and tree.

Qualifications

Please see resumes towards the end of the document.

Background

Our team is expanding the PIQUE software [2]. This software is written in JavaScript and
bootstraps with Create React App [3]. We are creating a GUI and database to allow the users to
model a priority tree in the app and auto-populate the necessary files. The PIQUE software,
itself, aims to return a quantitative result of how secure code is based on the user created model.

PIQUE was designed as a solution to assess software through quality modeling, with
regards to concepts such as functional stability, performance efficiency, compatibility, reliability,
security, maintainability, and portability. It does not simply analyze given code and assign a score
to each metric. Instead, the software utilizes a quality model provided by the user as a framework
to score and aggregate quantitative results. Each user will have unique metrics for assessment as
software quality can be subjective. Two users with the same code but different priority trees can
get vastly different scores due to the nature of the PIQUE app’s process. The users weigh each
metric to ensure quality by their own evaluation.

The PIQUE software takes the user’s priority model as a JSON file containing
configuration information, various categories of qualitative metrics, and the relevant parent-child
relationships between those metrics as defined by the model. This information goes first to the
Calibration phase, where the app ensures the code is scored based on modern practices and the
priority tree. It then enters the Scoring Phase, where an actual number is assigned to the code.
Currently to access these phases, the developers must translate a hand-written priority tree into
its corresponding JSON file manually.

In this JSON file, certain tools for evaluation are specified. A majority of the tools exist
on a suite called Roslynator, which is an open-source collection of over 500+ analyzers and
refactorings. Analyzers, for example, run and evaluate the source code looking for adherence to
general rules and code styles that should be followed. These are tools that are specified at the
bottom level of the hierarchy and there’s many options available depending on how the model
needs to be configured for the client’s usage. Many of these analyzers pertain to code formatting,
generally accepted practices, and any sorts of security concerns such as unused variables,
parameters or maintaining proper access rights for variables. All these factors are taken into

consideration when developing the quality model.

The quality model allows us to assess, predict, and improve our software/systems through
a modeling framework that scores individual characteristics based on importance. The user
determines which quality characteristics will or will not be taken into account when evaluating
the properties of a piece of software. The quality/score of the software is the degree to which the
system satisfies the stated and implied needs of its various stakeholders. Those stakeholders'
needs (functionality, performance, security, maintainability, etc.) are precisely what is
represented in the quality model, which categorizes the quality model into a unique tree for that
user with its own set of characteristics and sub-characteristics [6]. A score will be given to each
of these sub categories as well as an overall score.

We can look to PIQUE for a practical example of this being done and implemented. In its
current state, PIQUE is an operational platform that would allow users to conduct quality
modeling on their own code. This is being done manually where the team will hand write all the
JSON code to describe the user's unique hierarchical tree of importance. This is both time
consuming and not realistic long term or on a large scale. Our team's goal is to streamline this

process and make it accessible for users, this is outlined below.

Work Schedule

This project is divided into two semesters. The first semester is devoted to developing a
clear understanding of how the PIQUE software works and planning for the project. During
winter break, we will begin to code our GUI and implement the database. This development
will continue into the following Spring semester. We intend to use a Kanban framework for the
Waterfall Methodology to manage our workflow. Although we plan to follow the Waterfall
Methodology, we will still have weekly meetings where we outline weekly goals and progress
made. Following our weekly meetings, we will meet with our customer, where we will share
updates of our progress.

We have chosen a Kanban framework for the Waterfall Methodology as our development
method because of the straightforward path the Waterfall approach takes. It guides the project
through an analyze, design, implement, then test workflow. This cultivates success for our group
due to conflicting schedules which impede consistent changes to the design and progress check

ins. We trust that our requirements and design will lead us to a positive implementation and each

member of the team will do their job. This work environment naturally falls into the Waterfall
Software Development Methodology. To implement a Kanban framework, we will also be using

Trello as a tool to keep track of our software development progress.

Actual Implementation of Work Schedule

Our team used Trello as a tool to keep track of key tasks and dates as they approached. In
addition to the features in Trello to assign tasks, we also held discussion while in our weekly
meeting over Discord. In combination with these two apps, we are able to effectively delegate
tasks for the week and assign them from “to do”, “in progress” and eventually “done”. Due to
Trello’s ability to visually see our names next to tasks as well as a color coding system for the
two groups, we were able to see how much work each team has done as well as what is left to get
done.

In addition, we used the aforementioned Kanban and Waterfall strategies as intended

throughout the duration of the project.

Milestones

Proposed Milestones

GUI Milestones
1) Implement a drag and drop feature for nodes
2) Establish connections between nodes via lines
3) Tie the drag and drop feature to a work space
4) Implement metadata on nodes: weights, color, name
5) Export a finished tree into a JSON file

6) Establish a connection to the database to save finished trees

Database Milestones
1) Design a database that will store:
a) Quality model tree,

b) Nodes with associated metadata

c) Links between node

d) Versions of the code being compared

e) Scores for each version
2) Decide what kind of graph database (Neo4j)
3) Begin designing database through ERD diagrams
4) Generate and implement the database

5) Ensure it interfaces with the GUI as intended

Actual Milestones

GUI Milestones
1) Create workspace and menu
2) Add nodes with a button functionality
3) Implement ability to name and edit nodes
4) Implement drag and drop feature to work space
5) Establish connections between nodes via links
6) Save current node structure to JSON formatted file

7) Ul/Visual improvements

Database Milestones
1) Setup Google Firebase
2) Implement link between PIQUE App and Google Firebase
3) Load saved JSON formatted file to node structure

4) Database structure improvements

Jan19

Work Schedules

Proposed Work Schedules

GUI

4 weeks

Feb7 7 mar

4 weeks

3 weeks

4 weeks

28 mar 25aug

start of semester

Work on the shapes and links
Start drag and drop
Start on aesthetics

Finish drag and drop
Implement metadata

Week 1-4
e Start implementing drag and drop / draw.io API
e Able to drag and drop nodes and connections

e Start aesthetic

Week 5-8
e Wrap up drag and drop for nodes and connections

e [mplementing the metadata

Week 9-11
e JSON file population
e Aesthetics

e Start presentation slides

Week 12-15
e Bug fixes, demo

e Presentation slides/project board

Week 16

e Presentation and demos

Start presentation slides

Demo
Presentation slides

»
>
Continue with aesthetics Bug fixes I

Presentation week

(Maria)
(Maria)
(Zoe)

(Zoe)
(Maria)

(Maria/ Zoe)
(Maria)
(Zoe)

(Maria/ Zoe)
(Maria/ Zoe)

(Maria/ Zoe)

Jan19

start of semester

e Start the implementation of the database
e Store the scores of nodes

e Store the nodes and the relations

Week 5-8
e Continue the work on the database
o Store the JSON file

e Store the versions of the code

Week 9-11

Database
Y weeks 4 weeks 3 weeks 4+ weeks
Feb7 7 mar 28 mar 25 aug
'
Start implementation of a data base Continue the database . . Bug fixes
e y— Store the JSON file Validate/test the smrageﬁloefsversmns, data and JSON D
Store nodes and relations Store versions of the code Presentation board
Presentation week
Week 1-4

(Connor/ Dawson)
(Connor)

(Dawson)

(Connor/ Dawson)
(Connor)

(Dawson)

e Validate/test the storage of key data, JSON files, and versions

Week 12-15
e Bug fixes, demo

e Presentation slides/project board

Week 16

e Presentation and demos

(Connor/ Dawson)

(Connor/ Dawson)

(Connor/ Dawson)

(Connor/ Dawson)

10

Actual Work Schedules

4 weeks 4 weeks

Jan19 Feb7 7 mar

3 weeks 4 weeks

28 mar 25aug

\

Linking nodes
Drag and drop of node

Menu Formated JSON files
Create google firebase database Store files in Firebase

start of semester

Week 1-4
e C(Creation of web workspace
e Start implementing creation of nodes
e Start implementing drag and drop nodes
e (reation of menu
e Creation of Google Firebase

e Link the Google Firebase to PIQUE app

Week 5-8

e Implementing linking of nodes

Wrap up drag and drop for nodes and connections

Implementation of load/save as menu choices

Edit names and descriptions of nodes

Add functionality to the creation of nodes
Continue the work on the database

Store JSON files to firebase

Week 9- 14
e Load JSON Files
e Export JSON Files

e FEdit and delete node fixes

Edit names and descriptions of nodes Store JSONs in local storage

Store JSONs in firebase y
Bug fixes

Demo

Edit classification:
t classifications Presentation slides

Upload JSON files

Presentation week

(Maria)

(Maria)
(Connor/ Maria)
(Dawson/ Zoe)
(Dawson/ Zoe)

(Dawson/ Zoe)

(Connor)
(Connor/ Maria)
(Dawson/ Zoe)
(Connor)
(Maria)
(Dawson/ Zoe)

(Dawson/ Zoe)

(Connor/ Maria)
(Connor/ Maria)

(Connor)

11

e Updating Proposal and posterboard (Dawson/ Zoe)

e C(Creation of abstract (Dawson/ Maria/ Zoe)

e Update Trello (Dawson/ Zoe)

e Read Me (Dawson)
Responsibilities

As mentioned previously, our project is split into two sections. The first section is a
database that will save and store the quality model tree, nodes, weights of the nodes, the links to
each node, versions of the code being compared, and the different scores for each version. The
second section is a GUI that allows the user to drag and drop software quality nodes and export
the finished tree to a JSON file. The two groups are connected by the finished tree which will be
stored in the database.

We decided to split the group evenly and assign two people to each section. Although all

parties intend to work on both systems, we did have primary focuses as described below:

Proposed

Maria Gallivan: Start implementing drag and drop / draw.io API, implement metadata,

JSON file population, finish up aesthetic, presentation slides/ bug fixes, demos

Dawson Kanehl: Database implementation, Store the nodes and relations, store versions of the

code, bug fixes, demo, project board

Zoe Norden: Start aesthetic, finish drag and drop, JSON file population, presentation slides,

bug fixes, demos

Connor Snow: Database implementation, Store the scores of nodes, store JSON files, Bug fixes,

Demo, project board

12

Actual

Maria Gallivan: Deployed the React development environment, implemented a node class and a
node “playspace” for building the quality model tree. Added functionality to store nodes as
JSON objects within an array and save that array to a JSON formatted file. Designed functions

for reading nodes and populating them on screen with their relationship lines.

Dawson Kanehl: GUI menu, Google Firebase realtime database implementation, link database
to PIQUE web app, store the nodes and relations in the database, save trees to JSON files in the

database, Read me, Proposal document, Database comparison, poster for presentation

Zoe Norden: GUI menu, database implementation, link database to PIQUE web app, store the
nodes and relations in the database, save trees to JSON files in the database/locally, Poster for
presentation, slides, misc. Administrative tasks, database comparison, assisted with loading

JSON files to produce PIQUE trees

Connor Snow: Linking of nodes, implementing a drop down menu with options for node
manipulation: showing node information, deleting nodes, changing node names,
adding/removing connections to nodes. Created a draggable node “template” that spawns a new
instance of a node and prompts the user to fill out name, description, and classification. Added

functionality for parsing JSON files.

13

Proposal Statement

The PIQUE Software needs a graphical user interface to allow users to model a priority
tree more easily as well as a database to store the completed tree. Currently, when a tree is
crafted, the developer must hardcode large JSON files since the tree was drawn by hand. This
JSON file gives the software the ability to read the tree and move into the calibration phase.

The PIQUE developers are frustrated by the time wasted transferring hand-written trees
into JSON files, so our team will build a tool to expedite this process. The tool will be
implemented into the PIQUE software and allow designers to directly model their risk priorities
in the app and store the results in a database, which is also designed by our team. This interactive

GUI will save time and effort on both the users’ and developers’ side.

Requirements

1) Creation of nodes, classifications, children, and description must save to a JSON file
2) A JSON file must be saved locally to the PC and on the database

3) When loaded, a JSON file must display the tree correctly

4) Must be able to edit node properties

5) Must be able to delete links/nodes

6) Must be responsive, fast, and scalable

7) Meets ISO/IEC 9126 and 25010 standards

14

Architectural Design Documents

Tools Used

Initially, the team looked at creating the PIQUE expansion using Javascript React
libraries and the graph database, neo4j. We chose Javascript React because the portion of PIQUE
we are expanding was already written in Javascript with React bootstrapped in. In addition, we
figured that this would allow the original development team to make edits and changes to the
code without the extra effort of learning a new language.

However, we decided not to use neo4j as our database component. Instead, because we’re
building a database with the intent to store large JSON files, we decided to go with Google
Firebase. Google Firebase natively stores information in the JSON file structure, so it made sense

to choose a database with that in-built characteristic.
Diagrams

UML Diagram: GUI

The GUI UML diagram is shown below. It utilizes the Facade Pattern, which analogous
to a facade in architecture, creates an object that serves as a front-facing interface masking a
more complex underlying code [4]. We used this design pattern because it improves the
readability and usability of our code: the facade object can be created and all the pieces needed
come along with it. Additionally, it removes dependencies on each subsystem allowing us to

avoid bugs. Overall, this pattern leaves us with a simplified interface with which to interact.

Proposed

15

User

<<interface=>
Facade Facade Interface
Pattern uses
<<interface>>
+ create()
N) I
Scroll Window . Workspace Window 1 Menu
1
+ scroll(): void drop(n): void \. save(): void
+ drag(): void export(): void
1 1 load(): tree
1 '
*
*
* Node
Link 1 +name: String
e +color:String
+weight:Float +weight:Float

Link(node,node)
Rename():veoid

qetWeight():float
setWeight()-void

Tree

Remove():void
getName(): String
setName(string):void
getColor():String
setColor(string) void
getWeight()-float
setWeight(float):void

[

16

Final
Facade Pattern
<<Interface>>
«interfaces User
generateNode
A X
| .
i L]
Node P
] L]
+name: String i
+desc Sting 0000 pee-eeomeomeooeed ! TTTTTTTTTTTTTTT H
+ children:String H
+classification:String Menu
*. presets(): void
1 save(): void
upload(). void
1 1
1
Workspace Window
dragMe(). void 1
1 DB
+ fileName: String
! + exportToJSONM: void
| 1 Save 1
Load +fileMame: String 1
+ fileName:String + exporitToJSON void
+ parseJSON: void
Linking
1 1 + field: type
1
Tree

+addConnection()
return newLink
+ editinformation(): void
+delete(). void
+ getChildren(): return links

17

Component Diagram

This diagram demonstrates how all the different components used in this project will
interact. Due to the nature of our project, we will not be interacting with the PIQUE software.

Instead, we’re adding an additional tool that can later be incorporated with the software.

==Component==
Client
ﬁﬁCDmpUnEﬂ@ "'::}'_"] qqcnmpﬂnent}::—
Database
<=COMmponen
o0

18

The GUI Use Case Diagram

This shares potential scenarios of interaction with the user. By listing different steps the

user could take, we defined necessary components, classes, attributes, and relationships.

Save Tree

Load Tree

Developer

drag and drop link

Workspace include

Modes
(delete, move, add)

Link
(delete link, move
link, add link

Sequence Diagram

This diagram represents an overview of the sequence of events that will occur when the user

19

interacts with our program. This particular sequence is for a two node tree that is exported to the database.

User Interface Tree Database
i 1 T T
i H i ;
i Open Application N _L i i
: " : !
' Drag Node Add Mode to Tree = |
. > »)
[i
i < Show Tree Update Tree display i
5. 75ttt Y e]
[i
H Drag Node N Add Mode to Tree N Link Nodes i
i - Ll |
[i
i)
1 . i x i
D e ShowTree || e Update Tree display | | !
]]
[i
i Relink Node N Add Nodeto Tree Link Modes |
: Ll - :
] 1
[i
: Show Tree isplay i
D ooonowTree]| e Update Tree display | | |
i Open Menu > S i
| Show Menu |
o ®rrrmmmmmene e |
[i
i Export Tree R Connect to DB - e
; - -

i Request Tree

H R L LLEELEEEL

! Populate JSON file _

' Send JSON file

i — 2

i Confirm Export

: ‘ """""""""""""" i

: Close Menu Disconnect from DB
e i R EEEL L L aiad EELEEEEEELEEEEEEEEEEEEEELEE

i Confirm Export i
| e |
] i
i !
| Exit Application | !
¥ - _ i
i |
i !

20

High Fidelity Model of the GUI

This is a snapshot of the model that the GUI team intends to create. The idea is that you drag and
drop nodes into the workspace from the scrollbar on the right. The links between two nodes can be
created by clicking on a node and dragging your mouse to another node. This design is not set in stone

and could change as we dive further into the project.

21

Generalized PIQUE Assessment Graph Model

The graph model below displays the relationships in the database and the possible
schema used. Neo4j, a graph database, will be used for this project, and it supports a paradigm
called “whiteboard modeling”, meaning that as the model is developed “on the whiteboard” is
how the model is stored internally. The idea behind PIQUE is that a user can pick and choose
their quality metrics that will be used for their assessment. This coincides with how the database
will store the data - that is, the way the model is created is exactly how the respective data will
be stored. At the bottom level of the hierarchy model are the diagnostic nodes, which consist of a
myriad of various tools depending on the use case. The approach here uses a bottom-up approach
by using the assessment of the various product factors the tool diagnostics could represent to
drive the design of the measure layer nodes and the bottom-level product factors[2]. Note: this
graph model is intended to be a generalized model, meaning that not all nodes and relations

present in this diagram necessarily represent an actual user model.

TQI:
Aggregate Total Quality
Score
Index

Quality :QA QA Per QA QA QA QA QA
Aspects Compatibility Maintainability erformance Portability Reliability Security Usability
Efficiency | |
Fully { []
Connected | | | | I I | | |
Product 5 ::PTF . :PFt_ :PF :PF PF ‘PF PF] :Pt_F | . :PF
Eactors ata Type xception Format Structure Documentation | | /0 Handling Encryption unctiona esource
Integrity Handling Syntax Handling
. . ‘M . i .
. . :M Format :M Structure .) :M Encryption :M FSyn .
Measures :M DTI Smells ‘M EH Smells Smells Smells Documentation ‘M 1/O Smells Smells Smells ‘M RH Smells
Smells
Diagnostics { :D {size: 13} :D {size: 7} :D {size: 53} :D {size: 20} :D {size: 8} :D {size: 26} :D {size: 13} :D {size: 18} :D {size: 6}

22

Database Comparison

Initially, the team looked into the graph databases vs relational databases. Graph
databases excel as displaying highly connected, retrieving information, and are more flexible
with constantly changing nodes. Conversely, relational databases are more static in nature and
better at storing information. Relational databases are more transactional.

After more digging we started to look into graph database frameworks like Neo4j and
MongoDB. Neo4j, like all graph databases, is flexible, quick, and easy to query. Unfortunately,
it’s not very scalable and has its own query language that may not be easy to learn. After
deliberation with the team and the client we discuss another route. In the past summer the
PIQUE Lite team used an online database called Google Firebase. This database excels at JSON
storage and that is exactly what we needed.

Our entire project revolves around creating a way to generate, load, edit, and save JSON
files. The creation of these JSON files, when loaded, would create a PIQUE tree. This matched
Google Firebase perfectly. Google Firebase natively stores all information in JSON files and
allows easy access to retrieve and store new files. The downside to this database is that it does
require an online connection to save to the database as well as an active google account that the
database host can authorize to allow you to view and download these JSON files. Additionally
there is a cost if the files become too large. For general use the free version will be fine but there
may be cases where there is not enough storage for the files.

We recommend going forward with a Google Firebase implementation, even if it’s only
to a backup to local storage, with this method any verified user can login from any computer

with an internet connection and download their JSON files to continue their work.

Expected Results

By the end of this project we expect to have a working user interactable tree that allows
users to create a hierarchical tree for quality modeling. We also expect to have a database that is
capable of loading and storing previously created PIQUE trees and all relevant metadata attached

to them.

Appendix

",

import React, {useState} from "react";
import "./App.css";

import Node from "./components/Node";

import TopBar from "./components/TopBar";

import Xarrow from "./components/Xarrow";

import {Xwrapper} from "react-xarrows";

import {Menu, MenuButton, Menultem, SubMenu} from '@szhsin/react-menu';
import {getDatabase} from "firebase/database",;

import {getStorage, ref, uploadBytes} from "firebase/storage";

import {initializeApp} from "firebase/app";

import {getAnalytics} from "firebase/analytics";

import {Button} from 'react-floating-action-button'

import Select from 'react-select';

import '@szhsin/react-menu/dist/index.css";

TODO:

const firebaseConfig = {
apiKey: "AlzaSyALd8fTT YORiOwwlJ7bC 70347ssGlltvg",
authDomain: "capstone-pique.firebaseapp.com",
projectld: "capstone-pique",
storageBucket: "capstone-pique.appspot.com",
messagingSenderld: "981342029277",
appld: "1:981342029277:web:e5b3373ftd6425¢60c2234",
measurementld: "G-SOHHKBR67N"

const
app = initializeApp(firebaseConfig),
analytics = getAnalytics(app),
database = getDatabase(),
dbstorage = getStorage();

const options = [
{value:"tqi", label: 'TQI'},
{value:"quality aspects", label: 'Quality Aspects'},
{value:"product factors", label: 'Product Factors'},
{value:"measures", label: 'Measures'},
{value:"diagnostics", label: 'Diagnostics'},
{value:"name", label:'Model Name'},
{value:"additionalData", label:'Additional Data'},

{value:"global config", label:'Global Config Information'}];

const bool options = [
{value: false, label: "False"},
{value: true, label: "True"}];

const config_options = [
{value: "benchmark_strategy", label: "Benchmark Strategy"},
{value: "weights_strategy", label: "Weights Strategy"},
{value: "normalizer", label: "Normalizer"}];

const

storage = [],
childlines = [],

TYPE = ["node"],

model object =
"name": "Default",
"additionalData": {},
"global config":{},

"factors": {

Ne s, (Y

tql S

"quality aspects": {},

"product_factors": {}
ts
" 9 "
measures': {},
"diagnostics": {}

let currentNodelnfo = {
nodeName : null,
nodeDesc : null,
nodeType : "other",
toolName : null,
is_positive : null,
config_key: null,

let currentNode = {};

const App = () => {

nodeName = null,
nodeDesc = null,
nodeType = "other",
toolName = null,
is_positive = null,
config_key = null;

const
[intcrfaccq setInterfaces] = useState([]),
[nodes, SCtNOdLS] = useState([]),
[111 nes, setlines] = useState([]),
[sclcctcd setSelected] = useState(null),
[actionState, setActionState] = useState("Normal");

const handleSelect = (¢) => {
if (e === null) {
setSelected(null);
setActionState("Normal");
!

{ else setSelected({id: e.target.id, type: "node"});

const checkExistence = (id) => {
return [...nodes, ...interfaces].map((b) => b.id).includes(id);

function setName(prop){ nodeName = prop.target.value; }
function setDesc(prop){ nodeDesc = prop.target.value; }
function setType(prop){ nodeType = prop.value; }

function setTool(prop){ toolName = prop.target.value; }

function setBool(prop){ is_positive = prop.value; }
function setConfigKey(prop){ config_key = prop.value; }

function changeName(prop){
if (prop.target.value !== currentNodelnfo.nodeName)
nodeName = prop.target.value;
else
nodeName = currentNodelnfo.nodeName;

1
s

function changeDesc(prop) {
if (prop.target.value !== currentNodelnfo.nodeDesc)
nodeDesc = prop.target.value;
else
nodeDesc = currentNodelnfo.nodeDesc;

1
S

function changeType(prop){
if (prop.value !== currentNodelnfo.nodeType)
nodeType = prop.value;
else

nodeType = currentNodelnfo.nodeType;

function changeTool(prop){
if (prop.target.value !== currentNodelnfo.toolName)
toolName = prop.target.value;
else
toolName = currentNodeInfo.toolName;

1
s

function changeBool(prop){
if (prop.value !== currentNodeInfo.is_positive)
is_positive = prop.value;
else
is_positive = currentNodelnfo.is_positive;

1
S

function changeConfigKey(prop){
if (prop.value !== currentNodelnfo.config_key)

config_key = prop.value;
else
config_key = currentNodelnfo.config key;

function handleDropDynamic() {
closeForm();
let 1 = nodes.length;
TODO:

let object = TYPE[O0];

while (checkExistence("node" + 1)) 1++;

if(nodeName === null || nodeName === ""){
nodeName = "node" + 1;

let newNode = {
id: nodeName,
desc: nodeDesc,
type: nodeType,
children: {},
positive: is_positive,
t name: toolName,
c_key: config_key,
x: 500,

y: 500,
TODO:

shape: object};
setNodes([...nodes, newNode]);
storage.push(newNode);
console.log(storage);

function showInfo(selected) {

const index = nodes.findIndex(item => {

return item.id === selected;
1)
const name = document.getElementByld("info-name");
if (nodes[index].id != null)

name.innerHTML = nodes[index].id.toString();
const desc = document.getElementByld("info-desc");
if (nodes[index].desc != null)

desc.innerHTML = nodes[index].desc.toString();
const type = document.getElementByld("info-type");
if (nodes[index].type != null)

type.innerHTML = nodes[index].type.toString();
const pos = document.getElementByld("info-pos");
if (nodes[index].positive != null)

pos.innerHTML = nodes[index].positive.toString();
const tool = document.getElementByld("info-tool");
if (nodes[index].t name != null)

tool.innerHTML = nodes[index].t name.toString();
const config = document.getElementByld("info-config");
if (nodes[index].c_key !=null)

config.innerHTML = nodes[index].c_key.toString();
openlnfo();

function setEdit(selected) {
let index = nodes.findIndex(element => element.id === selected);
currentNode = nodes[index];
currentNodelnfo.nodeName = currentNode.id;
currentNodelnfo.nodeDesc = currentNode.desc;
currentNodelInfo.nodeType = currentNode.type;
currentNodeInfo.toolName = currentNode.t name;

currentNodelnfo.is_positive = currentNode.positive;
currentNodelnfo.config_key = currentNode.config_key;
currentNodelnfo.config_value = currentNode.config_value;
openEdit();

function acceptEdit(props, selected) {
closeEdit();
props.setNodes((storage) => {
if ([...storage, ...props.interfaces].map((a) => a.id).includes(nodeName)) {
alert('Name already in use, please choose another!");

1
S

else if (nodeName === null) {
return;

1
S
return storage.map((node) => (node.id === selected.id ? {

...node,

id: nodeName,

desc: nodeDesc,

type: nodeType,

t name : toolName,

iS_pos : is_positive,

c_key: config_key,
} 1 node));

function nameFile() {
populate_model();
let d = new Date();
let t = d.getMonth() +" " + d.getDay() +" " + d.getHours() + ":" + d.getMinutes();
let fileName = window.prompt("Enter the filename: ", t);
export to JSON(fileName);

function addChildren(1){
let parent = l.props.start,
child = L.props.end;
const obj = JSON.parse(JSON.stringify(model object)),
factors = obj.factors,
measures = obj.measures;
for (let factor in factors)/{
switch(factor) {
case "tqi":
let tqi_type = factors.tqi;
for (const name in tqi_type) {
if (name === parent) {
model object.factors.tqi[parent].children[child] = {};

1
s

break;
case "quality aspects":
let qa_type = factors.quality aspects;
for (const name in qa_type) {
if (name === parent) {
model object.factors.quality aspects[parent].children[child] = {};

8
S

break;

case "product_factors":

let pf_type = factors.product_factors;
for (const name in pf type) {
if (name === parent) {
model object.factors.product_factors[parent].children[child] = {};
!
break;
default:
console.log("Cannot add node to model.");

for (let name in measures) {
if (name === parent) {
model object.measures[parent].children[child] = {};

function export_to JSON(prop) {
lines.forEach(addChildren);
nodes.sort((a, b) => (a.type > b.type) ? 1 : -1);
const data = new Blob([JSON.stringify(model object)], {type: 'application/json'});
const a = document.createElement('a');
a.download = (prop + ".json");
a.href = URL.createObjectURL(data);
a.addEventListener('click’, (e) = {
setTimeout(() => URL.revokeObjectURL(a.href), 30 * 1000);
b

a.click();

let storageRef = ref(dbstorage, 'uploaded/' + prop);

uploadBytes(storageRef, data).then((snapshot) => {
console.log("Uploaded a blob or file!");

1)

S)

window.alert("JSON data is save to " + prop + ".json");

function parse JSON(incoming_json){

const obj = JSON.parse(JSON.stringify(incoming_json));

const
name = obj.name,
config = obj.global config,
factors = obj.factors,
measures = obj.measures,
diagnostics = obj.diagnostics;

store_node from JSON(
name,

"
)

"name",
null,
null,
null,
null);

for (let config_type in config) {

switch(config_type) {
case "benchmark strategy":
store_node from JSON(
config[config_type],
null,
"global config",
null,
null,
null,
config_type
)
break;
case "normalizer":
store_node from_ JSON(
config[config_type],
null,
"global config",
null,
null,
null,
config_type
)
break;
case "weights_strategy":
store_node from JSON(
config[config_type],
null,
"global config",
null,
null,
null,

config_type
)

break;

for (let factor in factors){
switch(factor) {
case "tqi":
let tqi_type = factors.tqi;
for (const data in tqi_type) {
store_node_ from JSON(
data,
tqi_type[data].description,
factor,
tqi_type[data].children,
null,
null

1
s

break;
case "quality aspects":

let qa_type = factors.quality aspects;

for (const data in qa_type) {
store_ node from JSON(

data,
ga_type[data].description,
factor,
ga_type[data].children,
null,
null

}

break;
case "product factors":
let pf_type = factors.product factors;
for (const data in pf_type) {
store_node from JSON(
data,
pf type[data].description,
factor,
pf_type[data].children,
null,
null
!
break;
default:
console.log("Key:Value pair not in model.");

for (let data in measures) {
store_ node from JSON(

data,
measures[data].description,
"measures",
measures[data].children,
measures[data].positive,
null

for (let data in diagnostics) {
store_ node from JSON(
data,

diagnostics[data].description,
"diagnostics",
diagnostics[data].children,
null,
diagnostics[data].toolName

populate_model();

function populate_model() {
for (let i = 0; 1 < nodes.length; i++) {
let nodeType = nodes|[i].type,

config_key = nodesJ[i].c_key,

nodeName = nodesJi].id,

nodeDesc = nodes[i].desc,

children = nodes][i].children,

is_positive = nodes[i].positive,

toolName = nodes[i].t name;

switch (nodeType) {

case "name":
model object.name = nodeName;
break;

case "global config":
model object.global config[config_key] = nodeName;
break;

case "tqi":
model object.factors.tqilnodeName] = {};
model object.factors.tqi[nodeName].description = nodeDesc;
model object.factors.tqi[nodeName].children = children;
break;

case "quality aspects":
model object.factors.quality aspects|[nodeName] = {};
model object.factors.quality aspects|[nodeName].description = nodeDesc;
model object.factors.quality aspects[nodeName].children = children;
break;

case "product_factors":

model object.factors.product factors[nodeName] = {};
model object.factors.product factors[nodeName].description = nodeDesc;
model object.factors.product factors[nodeName].children = children;

break;

case ""measures":
model object.measures[nodeName] = {};
model object.measures|

model object.measures[nodeName].children = children;

nodeName].description = nodeDesc;

model object.measures[nodeName].positive = is_positive;
break;

case "diagnostics":
model object.diagnostics[nodeName] = {};
model object.diagnostics[nodeName].description = nodeDesc;
model object.diagnostics[nodeName].toolName = toolName;
break;

default:
console.log("Key:Value pair not in model.");

lett, c=0;

function store node from JSON(nodeName, nodeDesc, nodeType, nodeChildren, isPositive, toolName,
configType){
let object = TYPE[0],
nodewidth = nodeName.toString().length,
XpOS, Ypos;

switch (nodeType){

case "name":
ypos = 90;
break;

case "global config":
ypos = 180;
break;

case "tqi":
ypos = 270;
break;

case "quality aspects":
ypos = 360;
break;

case "product factors":
ypos = 450;
break;

case "measures":
ypos = 540;
break;

case "diagnostics":
ypos = 630;

break;
default:

console.log("Node has no place in model.");

!
f

if(t I==nodeType)/
c=0;
t =nodeType;

- else

xpos = 250 - nodewidth*3.2 + ¢*200;

let newNode = {
1d: nodeName,
desc: nodeDesc,
type: nodeType,
children: nodeChildren,
positive: isPositive,
t name: toolName,
c_key: configType,
X: XpOSs,
y: ypos,
shape: object};
setNodes([...nodes, newNode]);
nodes.push(newNode);
for (let k in nodeChildren) {
let p = {props: {start: nodeName, end: k} };
setLines([...lines, p]);
childlines.push(p);

function openInfo() {
document.getElementByld("info").style.display = "block";

function closelnfo() {
document.getElementByld("info").style.display = "none";
const name = document.getElementByld("info-name");
name.innertHTML = "No Name";
const desc = document.getElementByld("info-desc");
desc.innerHTML = "No Description";
const type = document.getElementByld("info-type");
type.innerHTML = "No Type";

const pos = document.getElementByld("info-pos");
pos.innerHTML = "Invalid";

const tool = document.getElementByld("info-tool");
tool.innerHTML = "No Tool Name";

const config = document.getElementByld("info-config");
config.innerHTML = "No Config Type";

function openEdit() {
document.getElementByld("edit").style.display = "block";

1
S

function closeEdit() {
document.getElementByld("edit").style.display = "none";
document.getElementByld("inputName").value = "";
document.getElementByld("inputDesc").value = "";
document.getElementByld("toolName").value = "";

function openForm() {
document.getElementByld("popup").style.display = "block";

function closeForm() {
document.getElementByld("popup").style.display = "none";

document.getElementByld("inputName").value = "";
g Y p

",
s

document.getElementByld("inputDesc").value =
document.getElementByld("toolName").value = "";

function load preset(name) {
let filename = name + ".json",
JSON_preset = require("./presets/
parse JSON(JSON_preset);

function load_file() {

let name = window.prompt("Enter file name (without the file extension)"),
filename = name + ".json",
loaded JSON = require("./user_uploads/ Y);
parse_JSON(loaded JSON);

const props = {
interfaces,
setInterfaces,
nodes: nodes,
setNodes: setNodes,
selected,
showlInfo,
setEdit,
handleSelect,
actionState,
setActionState,
lines,
setLines

const nodeProps = {
nodes: nodes,
setNodes: setNodes,
selected,
showInfo,
setEdit,
handleSelect,
actionState,
setLines,
lines

// HTML
return (
<div>

{/* Workable area needs to be wrapped in Xwrapper so Xarrows dynamically re-render */}
< >

{/* Root Canvas */}

<

—_n

className="canvasStyle"
1d="canvas"

onClick={() => handleSelect(null)} >
{/* Drag and Drop Tool Bar*/}
<div className="toolboxMenu">
{TYPE.map((shapeName) => (
<
key={shapeName}
className={shapeName}
onDragStart={(e) =>
e.dataTransfer.setData("shape", shapeName)
!
draggable
p
{"Drag Me!"}
</div>
Dk
</div>
{/* Nodes Play Space */}
=
id="nodesContainer"
className="nodesContainer"
onDragOver={(e) => e.preventDefault()}
onDrop={openForm}

{/* Dropdown Node Options */}

< {...props} />

{/* New Node Mapping */}

{nodes.map((node, 1) => (<
{..nodeProps}

key={i} // this seems to be the way to make sure every child has a unique id in a list
node={node}

—_n

position="absolute"
sidePos="middle"
/>
)}
{/* Add Node Popup Menu */}
<div className="form-popup" id="popup">
<div className="form-container" id="form">
<h2>Input Node Information</h2>
Node Name
< type="text"
placeholder="Name"
id="inputName"
onChange={setName}/>
Description

—_n

< type="text"
placeholder="Description"
1d="inputDesc"

onChange={setDesc}/>

Classification
{/*tqi, quality_aspects, product_factors, measures, diagnostics*/}
{/* drop-down messed up for showing values or resetting value®/}
< id="inputType"
options={options}
value={"Other"}
onChange={setType} />

Positive? (for Measures)
< id="positiveType"
options={bool options}
value={"Bool"}
onChange={setBool} />

Tool Name (for Diagnostics)

—_n

< type="text"
placeholder="Name"
id="toolName"
onChange={setTool}/>

Global Config Info
< type="configType"
options={config_options}
value={"Config"}
onChange={setConfigKey} />
{/x< type="text"*/}
{/* placeholder="Config Value"*/}
{/* id="configValue"*/}
{/* onChange={setConfigValue}/>*/}
{/* Submission Button */}
<
1d="submit-btn"
tooltip="Submit"
styles={ {backgroundColor: "#04AA6D", color: "#FFFFFF"} }
onClick={handleDropDynamic}
/>
</div>
</div>
{/* Edit node popup menu*/}

—n

<div className="edit-popup" id="edit">

<div className="edit-container" id="display-edit">
<h2>Edit Node Information</h2>

Change Node Name

—_n

< type="text"
placeholder="Name"
id="name-change"

onChange={changeName}/>

>Change Description
type="text"
placeholder="Description"
id="desc-change"
onChange={changeDesc}/>
/>
>Change Classification
1d="type-change"
options={options}
value={"Other"}
onChange={changeType} />
/>
>Change Positive? (for Measures)
1d="pos-change"
options={bool options}
value={"Bool"}
onChange={changeBool} />
/>
>Change Tool Name (for Diagnostics)
type="
placeholder="Name"

text"

id="tool-change"
onChange={changeTool}/>
{/* Submission Button */}
<
1d="submit-btn"
tooltip="Submit"
styles={ {backgroundColor: "#{65503", color: "#FFFFFF"} }
onClick={function(){acceptEdit(props, currentNode)} }
/>
</div>
</div>
{/* Node Information Popup */}
info-popup" id="info">
<div className="info-container" id="display-info">
>Current Node Info</h2>
>Name
className="tab" id="info-name">No Name</p>
>Description
className="tab" id="info-desc">No Description</p>
>(Classification
className="tab" id="info-type">No Type</p>
>Positive
className="tab" id="info-pos">Invalid</p>
>Tool Name
className="tab" id="info-tool">No Tool Name</p>
>Config Type
className="tab" id="info-config">No Config Type</p>

<div className

tooltip="Exit"
styles={{backgroundColor: "red", color: "#FFFFFF"}} onClick={closelnfo}
/>
</div>
</div>
{/* Menu Interface */}
<div className="Menu">
menuButton={<MenuButton className="btn-primary">Menu</
< onClick={load file}>Upload</ >
< onClick={nameFile}>Save</ >
(<< label="Preset">
< id="csharp"

value="test"

1
s

onClick={function(){load preset('pique-csharp-sec-model')} }

>Csharp Model
</ >
< 1d="bin"
value="test"
onClick={function(){load preset('pique-bin-model')} }
>Bin Model
</ >
{/¥*TODO: Add more presets here, if necessary*/}
</ ></>)
</
</div>
</div>
{/* Xarrow Connections for Building New Models */}
{lines.map((line, 1) => (
<
key={line.props.root + "-" + line.props.end + i}
line={line}
selected={selected}
setSelected={setSelected}
/>

)}

{/* Xarrow Connections for Loading Preset and Existing Models */}
{childlines.map((line, i) => (
<

key={line.props.start + "-" + line.props.end + i}
line={line}

start={line.props.start}

end={line.props.end}

export default App;

./components/Node.jsx

import React from "react";

import "./Node.css";

import Draggable from "react-draggable";
import { useXarrow } from "react-xarrows";

const Node = (props) => {
const updateXarrow = useXarrow();
const handleClick = (¢) => {

e.stopPropagation();

if (props.actionState === "Normal") {
props.handleSelect(e);

} else if (
props.actionState === "Add Connections" &&
props.selected.id !== props.node.id

props.setLines((lines) => [
...lines,

S
1

props: { start: props.selected.id, end: props.node.id },

1
y

);
} else if (props.actionState === "Remove Connections") {
props.setLines((lines) =>
lines. filter(
(line) =>
!(line.root === props.selected.id && line.end === props.node.id)

let background = null;

if (props.selected && props.selected.id === props.node.id) {
background = "#24bd57";

} else if (

(props.actionState === "Add Connections" &&

props.lines.filter(
(line) => line.root === props.selected.id && line.end === props.node.id
).length === 0) ||
(props.actionState === "Remove Connections" &&
props.lines.filter(
(line) => line.root === props.selected.id && line.end === props.node.id
)-length > 0)
) 4
background = "#ffeb33";

if ((props.node.type === "name") || (props.node.type === "global config")) {
background = "#00blel"

return (
<
<
onStart={() => props.position !== "static"}
bounds="parent"

onDrag={updateXarrow}
>

<

ref={props.node.reference}

className={"$ {props.node.shape} ${props.position} hoverMarker"}
style={{

left: props.node.x,
top: props.node.y,
background
1
§ S
onClick={handleClick}
id={props.node.id}

{props.node.name ? props.node.name : props.node.id}
</div>

export default Node;

./components/Xarrow.jsx

import React, { useState } from 'react’;
import Xarrow from 'react-xarrows';

export default ({ setSelected, selected, line: { props } })=> {
const [state, setState] = useState({ color: 'coral' });
const defProps = {
passProps: {
className: 'xarrow',
onMouseEnter: () => setState({ color: 'IndianRed' }),
onMouseLeave: () => setState({ color: 'coral' }),
onClick: (e) => {

e.stopPropagation();
setSelected({
id: { start: props.root, end: props.end },
type: 'arrow’,
P
L
o
cursor: 'pointer’,

let color = state.color;

if (selected && selected.type === "arrow' && selected.id.root === props.root && selected.id.end ===
props.end)

color = 'red’;

return <
...defProps,
...props,
...state,
color,
// TODO: You can change this field to true to show the heads
showHead: false,
path: "straight"}} />;

./components/TopBar.jsx

import React from 'react’;

import './TopBar.css';

const actions = {

node: [
'Edit Node Information',
'Show Information',
'Add Connections',
'Delete Node'],
arrow: ['Edit Properties', 'Remove Connection'],

fs

const TopBar = (props) => {
const handleEditAction = (action) => {
switch (action) {

case 'Edit Node Information':
props.setEdit(props.selected.id);
break;

case 'Add Connections':
props.setActionState(action);
break;

case 'Remove Connections':
props.setActionState(action);
break;

case 'Show Information':
props.showInfo(props.selected.id);
break;

case 'Remove Connection':
props.setLines((lines) =>

lines. filter(
(line) => !(line.props.root === props.selected.id.root && line.props.end === props.selected.id.end)

);
break;
case '"Edit Properties':
props.setLines((lines) =>
lines.map((line) =>
line.props.root === props.selected.id.root && line.props.end === props.selected.id.end
?
...line,
menuWindowOpened: true,
}
: line
);

break;
case 'Delete Node':

if (window.confirm(" Are you sure you want to delete

props.setLines((lines) => {
return lines. filter(
(line) => !(line.props.root === props.selected.id || line.props.end === props.selected.id)

if (props.nodes.map((node) => node.id).includes(props.selected.id)) {
props.setNodes((nodes) => nodes.filter((node) => !(node.id === props.selected.id)));

1
s

props.handleSelect(null);

I
s

break;
default:

const returnTopBarAppearance = () =>
let allowedActions = [];

S
[\

if (props.selected) allowedActions = actions[props.selected.type];
switch (props.actionState) {
case "Normal":
return (
<div className="actionBubbles">
{allowedActions.map((action, 1) => (

<div className="actionBubble" key={i} onClick={() => handleEditAction(action)}>

f 1 1
{action}

case 'Add Connections":
return (

<div className="actionBubbles'">
<p>Which node do you want to connect to?</p>
<div className="

Finish

</div>

</div>

);

actionBubble" onClick={() => props.setActionState('Normal') } >

case 'Remove Connections':
return (
<div className="actionBubbles">

<p>Which connection do you want to remove?</p>
</div>

);

default:

return (
<

className="topBarStyle"

style={{ height: props.selected ===null ? '0" : '60px" } }

onClick={(e) => e.stopPropagation() }>

<div className="topBarLabel" onClick={() => props.handleSelect(null) } > </div>
{returnTopBarAppearance() }

export default TopBar;

:ro0t {
--interfacesBarWidthPx: 100px;
--canvasWidthVw: 100%;
--canvasHeightVh: 100%;
background: #1b2034;

.tab {

margin-left: 20px;

fixedBoxStyle {
border: 1px #999 solid;
border-radius: 10px;
text-align: center;
position: static;
width: 100%;
height: 50px;
display: flex;
align-items: center;
justify-content: center;
background: white;

!

fixedBoxStyle:hover {
background: rgb(230, 230, 230);

.interfacesBarStyle {

display: flex;
flex-direction: column;

justify-content: space-evenly;
align-items: center;

height: 100%;

width: var(--interfacesBarWidthPx);
border: solid black 1px;

.interfaceTitleStyle {
font-size: 15px;
color: black;
position: absolute;
margin-top: Spx;
top: 0;

.nodesContainer {
position: relative;
min-height: 100vh;
display: flex;
flex-direction: column;
width: 100%;

.Menu{
text-align: right;
font-family: Arial, Helvetica, sans-serif;,

padding: 8px;
position:-webkit-sticky;
position: sticky;

top: 40px;

1
S

.btn-primary {
text-align: center;
font-family: Arial, Helvetica, sans-serif;
font-size: large;
color:white;
background-color: #00B1E1;
padding: 8px;
margin-right: 100px;
border-radius: 20%;

.nfo-popup {

display: none;
border: 3px solid #f1f1f1;
border-radius: 5%;

z-index: 9;
position:absolute;
top:50%;

left:50%;
margin-left:-130px;
margin-top:-360px;

.info-container {
max-width: 300px;
border-radius: 4%:;
padding: 10px;
background-color: white;
color: black;

form-popup {
display: none;
border: 3px solid #f1f1f1;
border-radius: 5%:;
z-index: 9;
position:absolute;
top:50%;
left:50%;
margin-left:-175px;
margin-top:-360px;

form-container {
max-width: 300px;
padding: 10px;
background-color: white;
color: black;
border-radius: 4%;

form-container [type=text] {
width: 75%;
padding: 15px;
margin: 5px 0 22px 0;
border: none;
background: #f1f1fl;

.edit-popup {
display: none;
border: 3px solid #f1f1f1;
border-radius: 5%;

z-index: 9;
position:absolute;
top:50%;

left:50%;
margin-left:-175px;
margin-top:-360px;

.edit-container {
max-width: 300px;
padding: 10px;
background-color: white;
color: black;
border-radius: 4%;

.edit-container [type=text] {
width: 75%;
padding: 15px;
margin: 5px 0 22px 0;
border: none;
background: #f1f1fl;

.canvasStyle {
display: flex;
position: relative;
width: var(--canvasWidthVw);
height: var(--canvasHeightVh);
color: black;
background-image: url("img/background.jpg");

background-size: contain;

background-repeat: repeat-y;
background-color: #1b2034;

.toolboxMenu {
width: 90px;
height: 90px;
background: transparent;
text-align: center;
position: fixed;
right: 25px;
bottom: 25px;
padding: 5px;
z-index: 8;

.node {
border: 1px black solid;
text-align: center;
border-radius: 50%;
background: #00B1E1;
display: flex;
height: 100%;
justify-content: center;
align-items: center;
padding: 10px;
margin: 10px;

.node {
height: 50px;

.switchlcon {
top: 0;
width: 50px;
height: 50px;

.iconContainer {
background: white;
border-color: #999;
border-style: solid;
border-width: 1px;
display: flex;
align-items: center;
flex-direction: column;
border-radius: 10px;

./components/Node.css

.absolute {

position: absolute;

1
S

.hoverMarker:hover {
background: #00elel;

1
S

.switchlcon {
top: 0;
width: 50px;

height: 50px;

1
S

.iconContainer {
border-color: #999;
border-style: solid;
border-width: 1px;
display: flex;
align-items: center;
flex-direction: column;
border-radius: 10px;

./components/TopBar.css

.topBarStyle {
display: flex;
overflow: hidden;
position: absolute;
width: 100%;
background: transparent;
padding: 0 20px;
transition: all 0.2s ease-out;
height: 90px;
align-items: center;

.topBarLabel {
display: flex;
align-items: center;
border-radius: 30px;
background: white;
margin: 5px;

!

.topBarLabel:hover {
background: azure;

1
S

.topBarLabel:active {
background: deepskyblue;

1
S

.actionBubbles {

54

color: white;

display: flex;

align-items: center;

width: calc(10(200px);
justify-content: space-evenly;

.actionBubble {
background: #999;
border-radius: 20px;
height: 80%;

display: flex;

align-items: center;
pad
margi

.actionBubble:hover {
background: #00elel;

.actionBubble:active {
background: DeepSkyBlue;

Resumes

Dawson Kanehl

(727)-409-3360 kanehld@yahoo.com
2336 Trail Crest Drive, Bozeman, MT 59718

EXPERIENCE

Cybersecurity Education and Research, Bozeman Mt. —
Internship

Current

DOD funded internship that empowers and teaches AFROTC students
interested in Cyber security through internships and hands-on teaching,.
Complete online training and a cybersecurity focused capstone.

ACE Cyber Security Boot Camp, Rome Ny. — Internship

June 2020 - Aug. 2020

Created websites for DOD and completed various security cyber tasks.
Lead at the tactical level as a commander for mach drone warfare.
Managed a small team to accomplish tasks efficiently.

The Chocolate Moose, Bozeman Mt. — Server and Creator
June 2018 - Feb 2020

Created new chocolate desserts, milkshakes, coffees, and window

displays for the business. Consistently provides premier customer service.

OPS Air Force PDT, Patrick AFB FL. — Class Leader
June 2019

Was selected as class leader and was responsible for maintaining
accountability, being the link between cadets and cadre, as well as
handling any concern or issue that other cadets had while on the trip.

Palm Harbor United Methodist Church, Palm Harbor FL. —
Tech Lead

Oct. 2017 - May 2018

One of the leading technology and AV staff for the Sunday services and
set up all other events put on by the organization. Learned many skills

such as Media Shout, projector cameras, a media switch and video editing.

Lockheed Martin, Dunedin FL. — Internship
Aug. 2016 - May 2017

Responsibilities included: completing time studies, updating databases,
observing managers and assemblers, report observations to team lead,
complete saving packages, and assist the team in any way possible.

EDUCATION
Montana State University, Bozeman MT.
Currently Enrolled

Pursuing a Computer Science B.S. degree, as well as Air Force ROTC.

RELATED COURSES
Computer Security
Web Design

Social and Ethical issues in
computing

Human Computer Interaction

CHARACTERISTICS
Driven

Eye for detail
Adaptable
Dependable

Team Player

CERTIFICATION/AWARDS

Adobe InDesign, Photoshop,
Illustrator - Creative Cloud

Microsoft Office Suite, Certified
Specialist - (Word, PowerPoint,
and Excel)

Secret Security Clearance

Cadet of the Semester Fall 2019
- Professional Officer Course

HS Diploma Summa Cum Laude

- Engineering and Business
Academy 2017

SKILLS

Leadership
Communication

Photo and video
editing/capture

HTML, CSS, Python, Java, and
C, GoLang, Lisp

55

56

MARIA GALLIVAN

A et i i for s Secusly

CONTACT

PHOME:
(206) 653-4665

EMAIL:
marig.gollivan@amail.com

PROJECTS

Udemy CompTIA PenTest+ Seminar
04/2021 - prasant

Stuaying from Michoed Solomon on
ethical hacking and high-level
penatration tasting.

Working towards taking the PenTest+
certification by 4/2022.

National Cyber League Competition
02/2021 - 04/2021
Competed in the NCL competition
both individually and on o team
solving security problems in
cryptography, log analysis, network
scanning, open-source inteligence,
and wab app axplaitation.
Related Courses: Web Design
Databases
Cyber Security
Related Tools: Wirashark
Bash Commands
Viiware

Networked Battleship Game

09/2019 - 05/2020

Created o netwark-based gamea

focused on understanding a

client/server architecture,

Relaoted coursas, Networks
Computer Systems

Languages: Python, C++, Assembly

Hour of Code

09/2018 - 03/2019

122019

Helping 20-30 students through o
Code.org How of Code program,
Coordinating ond recruiting
voluntears.,

Multi-Discipline Engineering Project
OF/2019 - 12/2019

Built an app controder for an RC car
fram scratch while collabarating with
a team of Mechanical and Blecirical
Engineers.

Related courses. Technical Writing

Software Engineering

Language: Dart

EDUCATION
Montana State University - Bozeman, MT | 2018 - 2022
Bachelor of Science: Computer Science | .92

Bachelor of Science: Applied Mathematics | 3.54

Awards and Honors: Presdent's List (MSU 1x), Daan's List [MSL 3x),
Washington State Honors Award [(2018], President’s Award for
Outstanding Educational Excellence - Gold Award [2018)
Unsung Hera [MSU Athlatics Departrmant - 2021)

WORK EXPERIENCE

IT Support Technician | 05/2021 - 08/2021

Montana State University Facility Services = Bozeman, MT
Managed department DMS and database for hardware records.
Configured and onboarded desktops, laptops, and iPads ina
department of 100+ workers,

Cyber Systems Engineer Intern for Aerospace | 5/2020 - 7/2020
Morthrop Grumman - Azusa, CA

Ensurad cyber requirements are met by aoch hardware and softwore
group on the cumant Norfhrop Spoace project,

Performed codea raviews (C++), static code analysis, system modalling,
trade studies and education frainings.

Presantad my findings to manoagers and team meambers while
participating in an Agile work anvironmaeant,

Undergraduate Course Assistant | B/2019 - 572020

Mantana State University - Bozeman, MT

Supported 25+ undergraduates lsarming to code in Java, C, and
Python through weekly labs and study sessions,

LEADERSHIP EXPERIENCE AT MONTANA STATE

Hacker Cals Club - President | 04/2021 - prasant

Plan, implemant, and lead a regular schedule of speakers, maetings,
and presentations fo invite dscussion and deeper l@aming of Cyber
sscurity, Focilitated colloboration on NCL and Over tha Wire activities,

Associotion of Women in Computing - President | 12/201% - present
Plan meatings, and events to promaoting o sale, supportive space that
advocotes for diversity,

Build a strong community aond manage a team of students to make
ideas and opportunifies come fo life,

Theaugh the COVID semeashers, continued running the club vilually.

College ol Engineering Ambassador | 08/201% - prasent

Inspire prospective shudents to explore engineering majors through
tours and presantations,

Build relationships with meambers of all disciplines to batter relay ther
Infarmation, activities, and goals,

Spirlt Squad Cheedeader | 09/2018 - prasent
Work 20+ hours 0 week 03 o student athlete ot prochice, gomes, and
community appecrance while succasiully baloncing school,

57

ZOE NOQRDE N

CONTACT

O s70-s82-3290

B znordent T@outlook.com

'E hitps:/{github.comyznorden
17

EDUCATION

Computer Science, BS
Mantana State University
Bozermnam, MT | May 2022

China Studies, Minor
Montana State University
Bozeman, MT | May 2012

LANGUAGES

C/C++, Python, Java, HTML/CSS,

Javascript

SKILLS

Adobe Creative Cloud Suite, Linux

systems, conwersational Mandarin

PROJECTS

Seed Labs

Jar. 2021 - May 2071

Successfully demonstrated how
vulrierabilities were exploited to
gain root access toa system.

Home Security System

Onr. 2021 - PRESENT

Developed a mobile application
that receives alerts from a server

ewerytime a door is opened/closed.

PROFILE

My background invobves living and traveling the werld for most of my high school
career and being able 1o experience several different unique cultures. These

experiences have helped me to develop interpersonal and problem-sobving shills, a
high level of independence, good time management, flexibility, and the ability to
work with people of different backgrounds.

EXPERIENCE

IT Intern

Lsmnibird | Bozeman, MT| Mow. 2021 - PRESENT

« Asgist in getting this branch of Lumibird MIST SP 800-171 certified
= Assist 100+ workers with day-to-day technaology problems

Teaching Assistant at Montana State University
Montana State University | Bozeman, MT | Jan. 2021 - PRESENT

= Communicatad C to individuals with some computer science exparience
» Communicated Python to individuals with no computer science experience,

Cyber Security Intern
Zoot C. | Bazeman, MT | Dec 2020

» Researched phishing educational and tracking programs

Cermputer Science Help Center Velunteer

Montana State University | Bazeman, MT | Jan. 2021 - FRESENT

= Communicated many different programming fanguages and concepts to many
individuals of a variety of different backgrounds.

AWARDS

Meontana State University Dean's List
Montana State University | Bozemnan, MT | Fall 2020, Spring 2021

Meontana State University Grace Hopper Sponsorship Award
Montana State Unhversity | Bozeman, MT | 2019, 2021

58

Connor Lowe

Bozeman, MT 539714 | 406.370.4348
con.lowedDG@gmail.com | github.com/conlowe009

EDUCATION
Bachelor of Science, Computer Science (Interdisciplinary Option) + Minor in Japan Studies
Montana State University, Bozeman, MT

Specific Skills: Java, Python, C, C++, Go, Dart, Kotlin, Delphi, Test-Driven Development, SOLite,
HTML/CS5, Linux, Bash/Shell Programming, Systems Administration, Git & Subversion Version
Control

Relevant Curriculum: Data Structures and Algorithms, Software Engineering, Multi-Disciplinary
Engineering Design, Computer Systems, Concepts/Programming Languages, Discrete Structures,
Multivariable Calculus, Data Mining, Operating Systems, Database Systems

ACADEMIC ACTIVITIES

¢ DNontana State University Global Ambassador, 2017
International Student, Nanzan University, Japan 2016
Motetaker for Students with Disabilities, 20015-2016
Montana State University Student Senate, 2015
FIRST Robotic Competition, 2012-2014

ACHIEVEMENTS AND AWARDS
¢ DNontana State University Honor Roll, 2014-2017
¢ Benjamin A. Gilman Scholarship Alumni, 2016
s American Association of Teachers of Japanese Grant Recipient, 2016

WORK EXPERIENCE

Delivery Driver and Manager

Dominog’s Pizza, Bozeman, MT May 2016 - December 2020
& Pizza delivery in a fast-paced, dynamic environment. Lead the team of drivers during night shifts.

Software Engineering Intern

Teledyne Photon Machines, Bozeman, MT July 2021 - Present
s Software Engineering Internship focusing on control software developed in-house for Laser

Ablation Machines used in Inductively Coupled Plasma Mass Spectrometry Analysis,

Assist in design, build, and validation of new product software and technologies.

Generate documentation for new and existing product designs and technologies.

Create software GUIs for the customer facing part of the software.

Help other engineers with bug fixes and feature development.

Work with cross functional teams including sales, marketing, and production.

59

References

[1] “Cybersecurity: A Global Priority and Career Opportunity.” University of North Georgia,
2021, https://ung.edu/continuing-education/news-and-media/cybersecurity.php

[2] Rice, David Mark. “An Extensible, Hierarchical Architecture for Analysis of Software
Quality Assurance.” Montana State University, Dr. Clem Izurieta, 2020, pp. 1-156.

https://www.cs.montana.edu/izurieta/thesis/Rice.pdf

[3] Github for PIQUE-Lite app, https:/github.com/M EL/PIQUE-Lit

[4] “Facade Pattern.” Wikipedia, Wikimedia Foundation, 26 Dec. 2020,

https://en.wikipedia.org/wiki/Facade pattern.

[5] Github for Draw.io Integration, https://github.com/jgraph/drawio-integration

[6] “ISO 25000 Portal.” is025000.Com,
https://is025000.com/index.php/en/iso-25000-standards/iso-25010.

[7] Trello:
https://trello.com/invite/b/VwPS5iW 10/42edf5121778a5¢430416d3a2d890da9/guidatabas

€

[8] Github Repository: https://github.com/MGallivan00/Capstone_22

https://ung.edu/continuing-education/news-and-media/cybersecurity.php
https://www.cs.montana.edu/izurieta/thesis/Rice.pdf
https://github.com/MSUSEL/Pique-Lite
https://en.wikipedia.org/wiki/Facade_pattern
https://github.com/jgraph/drawio-integration
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
https://trello.com/invite/b/VwP5jW1o/42edf5121778a5e430416d3a2d890da9/guidatabase
https://trello.com/invite/b/VwP5jW1o/42edf5121778a5e430416d3a2d890da9/guidatabase
https://github.com/MGallivan00/Capstone_22

60

Code References

Google. “Add Firebase to Your JavaScript Project | Firebase Documentation.” Google, Google,

https://firebase.google.com/docs/web/setup#available-libraries.

Song, Zheng. “A Customisable and Optimised React Menu Library with Accessibility.” React.js

Examples, React.js Examples, 12 Oct. 2020,

Eliav2. “React-Xarrows/Examples at Master - Eliav2/React-Xarrows.” GitHub,

https://gith m/Eliav2/react-xarr ree/master/examples.

Foundation, Mozilla. “JavaScript Documentation Reference.” DevDocs, MDN Contributors,

https://devdocs.io/javascript/.

https://firebase.google.com/docs/web/setup#available-libraries
https://reactjsexample.com/a-customisable-and-optimised-react-menu-library-with-accessibility
https://reactjsexample.com/a-customisable-and-optimised-react-menu-library-with-accessibility
https://github.com/Eliav2/react-xarrows/tree/master/examples
https://devdocs.io/javascript/

