
Topo Health Portfolio

Nicholas Dzomba, Ben Holmgren, Joaquin Monterrosa

Introduction

Motivation

According to the American Cancer Society, lung cancer is the leading cause of cancer-related
death in the United States, making up over 25% of all cancer deaths. They estimate that in 2021,
there will be 235,760 new cases of lung cancer and 131,880 deaths from lung cancer in the
United States. In one's lifetime, the odds of getting lung cancer are 1 in 15 for men and 1 in 17
for women [1]. Worst of all, 75% of cases are diagnosed at stage 3 or 4 [2], which is problematic
because early detection can improve 5-year survival rates anywhere from 2-10 times [3].

There are two primary factors to this problem. First, radiologists are extremely expensive. The
average radiologist makes over $250,000 a year, or $138 an hour [4]. This problem is amplified
for rural communities, which struggle to get access to radiologists. Once they do get access, there
are typically higher expenses for them as well. In particular, the Northwest has a severe lack of
access to quality screenings and care, as there are no National Cancer Institute designated cancer
centers in Montana, Alaska, Idaho, Wyoming, North Dakota, or South Dakota [5].

Secondly, the accuracy of screenings conducted by radiologists is imperfect. Studies have shown
that conventional radiologists maintain a 0.75 specificity rate when diagnosing lung cancer in CT
scans [21]. Specificity describes the rate at which a radiologist accurately diagnoses a
cancer-positive patient. Based on our calculations in Appendix A, radiologists maintain a 0.79
general accuracy rate. General accuracy describes the rate at which a radiologist accurately
diagnoses any patient regardless of whether they do or do not have cancer. Ultimately, these
accuracy rates indicate that a significant number of lung cancer cases fail to be caught especially
in the early stages.

This is where Topo Health comes in. Topo Health is a state-of-the-art AI model used to diagnose
lung cancer wrapped in an intuitive, secure web app. The application uses a two-dimensional
convolutional neural network, with convolutions occurring slice-by-slice in the processed CT
scan. Our neural network, implemented using tensorflow, achieves an 82% accuracy rating,
performing slightly better in practice than we would expect from a human radiologist. On top of
that, it can significantly ease the expense of screenings. Per scan, Topo Health takes 90 seconds
on average to preprocess the scan and complete a diagnosis, which we would expect to greatly
surmount the speed of a conventional radiologist. If Topo Health can streamline the work of a
radiologist by two hours it could save around $276 per screening, and if it can entirely replace a
radiologist it has the potential to save over $500 per screening. As there were 262,700 lung

1

cancer screenings in the United States in 2015 [8], Topo Health’s potential impact on accuracy
and savings will be substantial.

As for the broader impact, lung cancer screenings have an annual cost of $78.8 million to
Americans each year [9]. It has also been estimated that lung cancer as a whole costs the United
States 21.3 billion dollars annually [10]. Most importantly, there are an average of 131,880 lung
cancer deaths in the United States each year. Topo Health can help to reduce that number by
providing cheaper, more accessible, and more accurate screenings.

Research Methods

Our methods involved testing multiple learning models to diagnose lung cancer in CT scans. In
particular, we implemented a 3-dimensional convolutional neural network, a 2-dimensional
convolutional neural network, and a k-nearest-neighbor model using techniques from
computational topology.

The most widely studied choice in the literature is a convolutional neural network (CNN). CNNs
are the foremost type of neural network for image classification problems. In some cases, deep
convolutional networks have performed extraordinarily well at diagnosing lung cancer in CT
scans, achieving accuracy rates exceeding 90%[16][17]. We study two different CNNs, one
which performs 3D convolutions and one which performs 2D convolutions on each slice in a
DICOM image. Each model makes use of Tensorflow implementations, which is among the
preeminent Python libraries for open source neural networks. We investigated both variants of
CNNs using an automated hypertuning process, which optimizes our networks according to
depth in convolutional layers and the filters applied.

We also investigated the use of topological data analysis (TDA) techniques for lung cancer
diagnosis in a CT scan. TDA techniques have achieved high efficacy when detecting cancer in
histopathology slide data[22], but remain relatively untested in the domain of CT scan cancer
diagnosis. More specifically, we used a Vietoris-Rips filtration on the point cloud generated from
the 3D mesh of each lung. This outputs a persistence diagram representing topological
descriptors of the lung. Persistence diagrams are then used in a k-nearest-neighbor model
(KNN), where distance is computed using the bottleneck distance. Though intriguing and
potentially novel in this domain, we eventually abandoned TDA models in our experimentation
due to their high computational complexity.

Finally, to make our machine learning possible, the scan data for our experimentation was pulled
from the open source data provided by The Cancer Imaging Archive and the Kaggle 2017 Data
Science Bowl. To evaluate the performance of our models, we establish their total accuracy in
providing a correct diagnosis, and their sensitivity. We then compare models to the sensitivity
and accuracy rates of conventional radiologists.

2

Hypothesis

Our hypothesis is that the 3D convolutional neural network will outperform the average
radiologist, since it has shown the most promising results in the literature for lung cancer
screenings. We are not sure how the TDA model will perform, but it is not unreasonable to
expect that it may be comparable to the averages obtained by conventional radiologists.

Engineering Product

Our engineering product, titled “Topo Health”, is an intuitive & secure web app built around the
AI model discussed above. This product allows radiology technicians to automatically process
lung cancer scans. The web app works as follows:

Step 1: A technician will complete a CT scan.

Step 2: The technician will upload the scan to our intuitive, secure web app.

Step 3: The scan will be processed through our state-of-the-art diagnostic AI model.

Step 4: After a few minutes the technician will get back the results from their diagnosis.

While this is the core of our app’s functionality, it doesn’t paint the whole picture of what our
app does. First, the Topo Health app will be purchased by clinics and used by radiology
technicians. We’re not sure if it will replace the role of a radiologist or be used as a tool
alongside a radiologist. Either way, the app has an administrative view for the clinic along with
a technician provisioning system. After logging in, technicians can find past scans and results
using a myriad of search and filter tools. Additionally, the app is HIPAA-ready, meaning that all
protected health information (PHI) is transferred and stored securely. Last and most importantly,
this product has been built with the input of our target users: technicians. For this reason, we
conducted a customer discovery sprint to learn about the specific needs and use cases of our
target customer before building the app. Details about this customer discovery sprint can be
found in Appendix D.

Qualifications

Every member of our team brought their own unique set of abilities integral to the success of our
project. Ben Holmgren is pursuing a dual degree in mathematics and computer science with a
data science minor. Over the past four years, he has been conducting research in computational
topology. His exploits have led him to publish papers at international conferences, establishing
novel theoretical results aimed at improving the broad viability of TDA. In addition, he has
helped to maintain the open-source R “TDA” package, troubleshooting issues and co-creating an

3

NSF workshop to teach topological data analysis using R to undergraduates throughout the
country. Ben is our group’s topological data analysis (TDA) and general computational geometry
expert, and he led the development of our TDA models and the conversion of a DICOM image
into usable data.

Nicholas Dzomba is also a double major in mathematics and computer science with a minor in
data science. He has a strong background in machine learning, including experience using deep
learning with Los Alamos National Laboratory. He and Ben spearheaded our group’s efforts in
developing the Convolutional Neural Networks (CNNs), which were tested alongside our TDA
model.

Joaquin Monterrosa is pursuing a double major in business accounting and computer science. He
is our group’s expert in business viability and in web development and was responsible for the
success of our model’s web interface. He has four years of experience as a venture consultant at
the Blackstone Launchpad and two years of experience doing freelance web-app development.

Our resumes are presented below:

4

Benjamin Holmgren
Email: benjamin.holmgren1@student.montana.edu Phone: (406)-599-4614
Website: https://benholmgren.github.io/ben-holmgren/ Address: 86 Scobie Way, Bozeman, MT

Education
Fall 2018-Present Dual Degrees in Computer Science and Mathematics, Montana State University, Bozeman, MT

- Data Science Minor
- 3.95 GPA, 3.98 CS GPA, President’s List

Experience & Service
2018-Present Undergraduate Researcher, Computational Geometry & Topology Group, Montana State University

- President of MSU computational geometry & topology club, assisted in organizing 2021 CG fall workshop
- Presented my research in an international conference and in venues throughout the US
- Served as a referee for the Canadian Conference on Computational Geometry

Spring 2021 Teaching Assistant, CSCI 276 - Discrete Mathematics, Montana State University
- Substitute lecturer for classes of roughly 60 undergraduates
- Led help sessions for students and graded assignments

Selected Intellectual Contributions
Discrete Morse Theory If You Must Choose Among Your Children, Pick the Right One

We improve the computational complexity of a fundamental problem in discrete Morse theory. Published in CCCG.
Talk: https://www.youtube.com/watch?v=kHpD-J4EzI8&t=608s
Citation: Holmgren, B., McCoy, B.K., Fasy, B.T., & Millman, D.L. (2020). If You Must Choose Among Your
Children, Pick the Right One. CCCG20.

Co-Organizer of NSF Workshop Topology For Data Science 2020 (Postponed)
Created an open source tutorial project in 2018 on techniques in TDA which grew into an NSF workshop in 2020.
To be held in Spring 2021. The MSU news wrote an article about my work here.
Original tutorial project and work with the R package was presented in the MSU Undergraduate Research
Celebration 2019 Poster Session: Updating the R Package ‘TDA’.

National Conference on Undergraduate Research 2020 (Given in April 2021)
Poster Title: Using Hasse Diagrams to Compute a Gradient Vector Field, outlines my contributions
in discrete Morse theory and its applications in efficient data simplification and processing.

Fréchet Properties Path-Connectivity of Spaces of Graphs under the Fréchet Distance
Collaborators: Fasy, B.T., Majhi, S., Wenk, C. We prove an array of topological properties of the Fréchet
distance, which is particularly useful when analyzing network data. To appear in EuroCG 2022.

Visualization Project Poking a Simplicial Complex Collaborators: Marco Huot, Brad McCoy
Multidisciplinary Project to visualize Morse theory as part of a thesis project for students in the art department.

Honors & Awards
- MSU Cameron Presidential Scholar, John C. Felton & John L Magaret Scholarships
- 2019/20 SOC Undergrad. Researcher of the year, 2020/21 MSU Math Outstanding Scholar award
- Phi Kappa Phi & Pi Mu Epsilon Honors Societies

Skills & Interests
- Python, C/C++, Java, R, Matlab, Git, Latex, TCP/IP, OpenGL, Security, HTML/Javascript/CSS
- Algorithms, Topology, Abstract Algebra, Alpine Climbing, Rich Teamwork

mailto:benjamin.holmgren1@student.montana.edu
https://benholmgren.github.io/ben-holmgren/
https://www.youtube.com/watch?v=kHpD-J4EzI8&t=608s
https://www.montana.edu/news/19766/msu-undergraduate-helps-make-complex-computer-science-more-accessible
https://vimeo.com/393067859

Nicholas Dzomba
Summary
Computer Science and Mathematics double major, data science minor, in fourth year at Montana
State University. Research/Work experience in multiple fields, upper level coursework includes
probability theory, dynamical systems, applied mathematics, artificial intelligence, database sys-
tems, numerical analysis, mathematical imaging and advanced linear algebra. Also capable in Py-
thon, Java, C, R, and MATLAB programming.

Education
2018 - B. Sc. in Computer Science and Mathematics, Minor in Data Science Montana State University

3.71 GPA. Expected spring 2022 graduation. Courses taken include applied math-
ematics, dynamical systems, numerical analysis, advanced linear algebra, mathem-
atical imaging, robotics, database systems as well as Python, Java, R, and C/C++
programming. Fall 2021 coursework includes artificial intelligence, UX design, com-
putational biology, probability theory, and capstone project using machine learning
and topological data analysis to improve cancer detection.

Work Experience
2021 Los Alamos National Laboratory Los Alamos, NM

Los Alamos Dynamics Summer School Fellow
Fellowship as part of 2021 Los Alamos Dynamics Summer School, on Waveometry:
Multi-Layer Input Deep Learning for UltrasonicWavefieldMeasurements project. Du-
ties included problem solving, convolutional neural networks with PyTorch, Python
and MATLAB programming, technical writing and presenting.

2021 Montana State University Bozeman, MT
Computer Science Teaching Assistant
Teaching assistant for a lower level computer science course in Spring 2021 and Fall
2021. Duties include running a lab section, assisting students and grading.

2020 Montana Space Grant Consortium Bozeman, MT
MSU BOREALIS Summer Intern
Part of a team of interns working on developing for and organizing high altitude
weather balloon launches over summer 2020. Work included high altitude ballooning
live landing prediction software with PyQt and autonomously steering parachute.

Research Experience
2021 Los Alamos Dynamics Summer School Los Alamos National Laboratory

Aforementioned fellowship as part of 2021 Los Alamos Dynamics Summer School.
Research to be presented at 2022 International Modal Analysis Conference.

2018 - 2019 Computational Topology and Geometry Research Group Montana State University
Includes spending summer 2019 working on experiments with sphere stratifica-
tion for shape reconstruction and auditing graduate level computational geometry
course. Duties included Python programming and problem solving.

Awards and Honors
2019-2021 Outstanding Student Award MSU Department of Mathematics

$1500 scholarship for 2019-2020, 2020-2021, and 2021-2022 academic years.

2020-2021 Sonderegger Tutor MSU Department of Computer Science
$1000 scholarship for 2020-2021 academic year for helping tutor computer science
students.

2018-2020 President's and Dean's List Montana State University
President’s List Fall 2018, Spring 2020, Dean’s List Spring, Fall 2019

Contact
1500 Topaz Dr.

Missoula, MT, 59808
USA

(406)546-2367

nicustm@gmail.com

Skills

Technical Skills
Python
Java

C/C++
R

MATLAB
NumPy

MatPlotLib
PyTorch

PyQt
Arduino/Raspberry Pi

SQL/MySQL
Git/Github

LaTeX
Linux Shell

Adobe Creative Cloud
Microsoft Office

Soft Skills
Problem Solving
Technical Writing

Technical Presenting
Teaching

Communication
Public Speaking

Collaborative Work
Independent Work

Software Engineer at NASA

Worked on the Kennedy Space Center Launch Control Systems

Strengthened and expedited hardware configuration update

procedures

Updated launch dashboard

Trained to adhere to the highest security and testing standards

Worked with a large, complex software lifecycle

Learned a ton about space exploration and other engineering realms

S U M M E R 2 0 2 0

J O A Q U I N M O N T E R R O S A

Montana State University: Computer Science & Business Accounting

4.0 GPA

Full-Ride Presidential Scholar in the Honors College

Ressmeyer Scholarship for Computer Science Advancement

Harold and Reta Haynes Business Scholarship

Jake Jabs Entrepreneurship Scholarship

President of campus Entrepreneurship Club

U.S. Bank of Bozeman Accounting Scholarship

Freshmen Business Mentor (Leadership Position In College of Business)

2 0 1 7 - P R E S E N T

E D U C A T I O N

J . D S U S A N D A N A | D R . D A N I E L D E F R A N C E | D R . M A R Y A N N C U M M I N G S

R E F E R E N C E S

W O R K E X P E R I E N C E

IT Analyst at Moss Adams (Accounting Firm, Silicon Valley Office)

Audited IT systems

Advised risk mitigation strategies for IT systems

Advised application and database process improvements

Advised improvements to software development lifecycles

S U M M E R 2 0 1 9

Business Strategist and Cofounder of Freats LLC

Scrum Master

Strategize long-term activities and goals

Software development

Legal and tax oversight

2 0 1 7 - P R E S E N T

Venture Consultant at Blackstone Launchpad

Accelerate and navigate the ideation process of early-stage startups

Inject agile principles into startups and their founders

Advise entrepreneurs in navigating the software development and

production process

Growth strategies

2 0 1 7 - P R E S E N T

S K I L L S

Reference contacts available upon request.

A C H I E V E M E N T S

Won the MSU $50K Startup

Competition

Vice-president of the Pi

Kappa Alpha fraternity (110-

man chapter)

Won Techstars' International

startup competition at UCLA

Headed a $3,000 blood

cancer philanthropy event.

Brandon Speth $1,000 Award

for Passion, Poise, and

Charisma

Most Innovative Startup,

$1000 award

1st Place in Elementary School

Science Fair (my proudest

accomplishment)

UX Research

Java

C

Python

Javascript

PHP

MySQL

SQLite

Non-Relational databases

XML

HTML

CSS

Bootstrap

Database Structuring

React

Firebase

Web Development

Mobile Development

Fluent in Spanish

Project Management

Agile Methods

Graphic Design

Lo and Hi Fidelity Prototyping

Excel Power User

Access Power User

Background

The process of diagnosing lung cancer is almost universally conducted in person, and the
significant costs associated with diagnosis are rooted in the historic reliance on an in-person
diagnosis from a radiologist. To address this problem, Topo Health sought to utilize significant
advancements that have been made in the artificial intelligence community to automate and
streamline lung cancer diagnosis. In recent years, techniques have emerged simultaneously in the
topological data analysis (TDA) and deep learning research communities which have shown
great promise in cancer detection. Our technology brought these advancements demonstrated in
the literature to fruition, with the hope of making an impact in the lives of the cancer afflicted
community. We implemented models informed from academic research in order to make these
recent advancements in AI accessible to technicians through an intuitive web application. In the
future, with the addition of technologies like Topo Health, it is reasonable to expect that
automating lung cancer diagnosis could result in substantial monetary savings in the healthcare
sector. This could make a meaningful contribution to the democratization of cancer treatment,
and most importantly, could save countless lives by expediting & improving the accuracy of
diagnosis.

Due to the importance of automatic cancer detection, this problem has been studied extensively.
Significant strides have been made independently in both the TDA and deep learning research
communities in recent years. Both fields provide unique benefits in addressing the problem, and
we brought forward lessons from each area of research in our final product. Conveniently, when
using techniques from either field, the workflow is largely the same. The data pipeline consists of
identifying data in the form of a CT scan, converting the scan to a grayscale image, and then
transforming pixel data into a matrix. (Often, given the resolution of the image, one may want to
reduce the resolution for time and space concerns when handling the matrix in a model.) Such
matrices can either simply consist of the original grayscale images in the scan, or can be binary
given some threshold value in the grayscale image. After data has been successfully
preprocessed, it is either fed into a trained machine learning model, or it is processed into a TDA
filtration. Both models provide a functional summary of key features in the scan, and based on
these summaries, an automatic estimation is made to diagnose an image for lung cancer.

To begin, advances in TDA are worth bringing into the discussion as a viable set of techniques in
detecting cancerous regions of a CT scan. Motivated by the ubiquitous importance of shape in
data, TDA is an attempt to broadly categorize connectedness within a point cloud. To do so, a
field called persistent homology provides the gateway between discrete data and a measurable,
continuous space. We attempted to use techniques from persistent homology to quantify the
shape in lung cancer CT scans. Namely, we utilized the Dionysus library to implement the
Vietoris-Rips filtration [13][14]. In doing so, generated spatial summaries of the connectivity of
features within a CT-scan, which are the primary features of interest in diagnosing cancer in
DICOM image data and have been useful in the literature[15][7]. Using these spatial summaries

5

(called persistence diagrams), we can compute measures of distance between the shape of given
scans, and based on these distances in shape, can estimate the likelihood with which a given scan
presents cancer. We computed distance between persistence diagrams through a metric known as
the bottleneck distance, which computes the cost of an optimal matching between two
persistence diagrams, and is available in the Python Persim library.

By computing a persistence diagram for a large training set of images, and comparing diagrams
between images known to have cancer at varying degrees of severity, we were able to ‘train’ a
supervised model. Then, in using TDA for our engineering product, our initial plan was to
integrate the model into our web application by conducting a filtration on images provided by a
user, and then simply conducting a nearest-neighbor process in order to provide a diagnosis for
the given image. Though this was not our end approach due to time complexity concerns, our
implementation was fully able to be integrated in such a web based setting.

Additionally, we felt that TDA was a worthy subject for experimentation in this setting because
of its inherent avoidance of the ‘black box’ tendencies of neural networks. In the future, using
techniques in TDA could allow us to not simply stop at a diagnosis. Rather, we could further use
distance measures between persistence diagrams to flag connected components within a given
scan that are likely to present cancerous nodules. After flagging these specified connected
components, we could identify the corresponding pixels in an original image, and highlight these
pixels in an output provided for the radiologist. Remarkably, works in the literature have gone
even further, and have used acquired persistence diagrams as input into a Cox proportional
hazards model to estimate the survivability of the lung cancer presented in a given scan [7]. This
is an immense level of diagnostic power to provide to a technician. It is the hope of the authors,
as well as the research community more broadly, that such information could provide a greater
level of clarity for technicians to provide the best possible treatment for their patients. Though
this was out of the scope of our project, it is certainly an intriguing set of features to consider
adding in the future.

Another promising advancement in image processing, and the logical next technique for us to try,
is the convolutional neural network (CNN). A convolutional neural network is an artificial neural
network with additional layers, most notably a convolutional layer. In the convolutional layer,
instead of having sets of weights and a weighted sum that a typical layer would have, it instead
performs the convolution operation. Standing alone, advancements in TDA make this an
incredible moment to tackle the problem of automating cancer diagnosis. But simultaneously, an
equally if not even more impressive revolution has transpired in the deep learning research
community in recent years using CNNs. Spearheading this effort has been Mozzayir Etemadi and
Ulas Bagci of the Northwestern University Feinberg School of Medicine. Etemadi and Bagci
alongside other collaborators have successfully implemented a deep learning model to diagnose
lung cancer extraordinarily effectively, averaging a 94% success rate in detecting early stage
cancer alone. In general, the duo have created models able to diagnose lung cancer in a CT scan

6

with 95% accuracy. Currently, this is the most effective known method to automatically diagnose
lung cancer [16][17]. Most successfully, this has occurred through a 3-layer neural network, and
has presented an extremely low rate of false positives of only around 1.2%. Engineers affiliated
with Google have jumped on this progress, and have begun collaborating with researchers in the
field to develop a preliminary google lung cancer AI. Though Topo Health did not achieve this
level of performance, the momentum behind CNNs in the realm of automated cancer detection
makes our relative success unsurprising. Additionally, in the future Topo Health is interested in
attempting to collaborate with these researchers, and we applied to adopt the preliminary Google
lung cancer model into our framework with the hope of testing their model, and of bringing
forward these technologies to benefit healthcare in Montana.

Not all of the mentioned technologies were used in the final product delivered by our team.
However, in gaining familiarity with each of the primary schools of thought in the field, we
achieved a good level of experimentation with this range of models. We not only tested the
success rate of each technique, but we also analyzed the practical performance of these
techniques in a web-based setting. Thankfully, due to the formidable open source movement in
the machine learning research community, the vast majority of these complex technologies were
readily implementable using existing free libraries. Consequently, the data pipeline and
preprocessing presented by far the largest unknown in this development effort. Our final
preprocessing was extremely robust, and adapted from the preprocessing implementation used by
the winners of the 2017 Kaggle Data Science Bowl [23]. Once completed, the mentioned
techniques were inserted interchangeably into our pipeline, allowing us to much more easily
experiment with a large number of models.

It is worth mentioning that it is extremely unlikely that another AI will emerge and be more
successful than those developed by the deep learning research originally stemming from the
Northwestern School of Medicine. Certainly, the odds were never in our favor to be the ones to
do it. Nevertheless, achieving a success rate comparable to that of a typical radiologist could
have significant implications for the radiology workflow when coupled with a smoothly running
web application. For that accomplishment alone, we feel that our engineering product can be
justly measured as a technology with the potential to leave a serious, positive impact.

Work Schedule

We used Notion as our scheduling and scrum software. Below, is an exported representation of
our work schedule:

7

Work Schedule 1

Work Schedule
Name Assign Date Property Status

Customer
Discovery
Sprint

Joaquin Monterrosa B Ben Nic Dzomba Completed

Find Initial
Data

B Ben Nic Dzomba Completed

Complete
Branding
Guide

Joaquin Monterrosa Completed

Low Fidelity
Mockups

Joaquin Monterrosa Completed

Create Initial
DICOM Data
Pipeline

B Ben Completed

Build
Uploader
Section

Joaquin Monterrosa Completed

Data Pipeline
with STL

B Ben Nic Dzomba Completed

Setup Bubble
(Normal)
Database

Joaquin Monterrosa Completed

Setup Xano
(Secure)
Database

Joaquin Monterrosa Completed

Preliminary
CNN

B Ben Nic Dzomba Completed

Preliminary
TDA with STL

B Ben Completed

Create all
other
necessary
Xano
Endpoints

Joaquin Monterrosa Completed

Get .dcm Files
To Upload to
Xano
Endpoint

Joaquin Monterrosa Completed

Create
Results
Section

Joaquin Monterrosa Completed

Connect Xano
Database and
Enpoints To
UI

Joaquin Monterrosa Completed

Final Data
Pipeline

B Ben Completed

@January 23, 2022 → January 29, 2022

@January 30, 2022 → February 5, 2022

@January 30, 2022 → February 5, 2022

@January 30, 2022 → February 5, 2022

@February 6, 2022 → February 16, 2022

@February 6, 2022 → February 16, 2022

@February 17, 2022 → February 26, 2022

@February 17, 2022 → February 26, 2022

@February 17, 2022 → February 26, 2022

@February 27, 2022 → March 5, 2022

@February 27, 2022 → March 5, 2022

@February 27, 2022 → March 5, 2022

@February 27, 2022 → March 5, 2022

@March 6, 2022 → March 12, 2022

@March 6, 2022 → March 12, 2022

@March 6, 2022 → March 12, 2022

https://www.notion.so/Customer-Discovery-Sprint-ae864da1721f4b3d8b9a1c31abd1a523
https://www.notion.so/Find-Initial-Data-1e1933ec61b14d9c978f0d4d664ca242
https://www.notion.so/Complete-Branding-Guide-6ec9f4bd2d614a799b6de4c1f0c27bfd
https://www.notion.so/Low-Fidelity-Mockups-8b42254cc10447ed98d1915868975fcb
https://www.notion.so/Create-Initial-DICOM-Data-Pipeline-e06ae3ca333e48aaa33cc15041c21e5a
https://www.notion.so/Build-Uploader-Section-79a1a2754dd3447d94be11bb6b5a406c
https://www.notion.so/Data-Pipeline-with-STL-f8e4936417194b67a191353fe4c8d1ad
https://www.notion.so/Setup-Bubble-Normal-Database-c675becf40df4666a3fb89aba21a1164
https://www.notion.so/Setup-Xano-Secure-Database-62b1b95db13d4f68bc80ed6425ab5a44
https://www.notion.so/Preliminary-CNN-637de0ff36ff4ca6bf56aa9d8ffd203e
https://www.notion.so/Preliminary-TDA-with-STL-3ec7883f6940421aad62bb07f23e0883
https://www.notion.so/Create-all-other-necessary-Xano-Endpoints-3d1a980b1e0a4467998c445c79185529
https://www.notion.so/Get-dcm-Files-To-Upload-to-Xano-Endpoint-8ddf089b439049bab60d444911794e5d
https://www.notion.so/Create-Results-Section-9c9a90dbcc8d4f7ea0bac8009822aeee
https://www.notion.so/Connect-Xano-Database-and-Enpoints-To-UI-e183237d51bd417f88b0d785a870aaf8
https://www.notion.so/Final-Data-Pipeline-5643be7172f643b890319a00017932c0

Work Schedule 2

Name Assign Date Property Status

Create
Patients
Section

Joaquin Monterrosa Completed

Write Flask
Endpoint File

Joaquin Monterrosa Completed

Create Docker
Image and
Get It Set Up
On Google
Cloud Run

Joaquin Monterrosa Nic Dzomba Completed

Create Add
Scan
Webook-like
Functionality

Joaquin Monterrosa Completed

Connect The
UI and The
Model

Joaquin Monterrosa Completed

KNN for TDA B Ben Completed

TDA
Optimization
for Runtime
and Accuracy
(With limited
success)

B Ben Completed

TDA Model for
Numpy

B Ben Completed

Adjust Numpy
data
formatting to
fit CNNs

B Ben Completed

Implement
First Iteration
of CNNs

B Ben Completed

Add The User
Authentication
Logic

Joaquin Monterrosa Completed

Create Profile
UI and
Functionality

Joaquin Monterrosa Completed

Create Add
Patient
Functionality

Joaquin Monterrosa Completed

Add Search
and Filter
Functionality
To Patients
Section

Joaquin Monterrosa Completed

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 13, 2022 → March 19, 2022

@March 20, 2022 → March 26, 2022

@March 20, 2022 → March 26, 2022

@March 20, 2022 → March 26, 2022

@March 20, 2022 → March 26, 2022

@March 20, 2022 → March 26, 2022

@March 20, 2022 → March 26, 2022

https://www.notion.so/Create-Patients-Section-87a618a007284456807ee1851803adb8
https://www.notion.so/Write-Flask-Endpoint-File-d60e67955c9c4e3d9531e057037403b4
https://www.notion.so/Create-Docker-Image-and-Get-It-Set-Up-On-Google-Cloud-Run-2190bcbc1c1a4263b6f80176079572f0
https://www.notion.so/Create-Add-Scan-Webook-like-Functionality-264a010f68574ef7ac24b71338a252d9
https://www.notion.so/Connect-The-UI-and-The-Model-faf12720d9084623960e25900140b41f
https://www.notion.so/KNN-for-TDA-48712b84dcb0491f98d470c3b05752f9
https://www.notion.so/TDA-Optimization-for-Runtime-and-Accuracy-With-limited-success-de9005886c0746d3a656c1e8a3825545
https://www.notion.so/TDA-Model-for-Numpy-3007667411af4185b091e800e3c96c07
https://www.notion.so/Adjust-Numpy-data-formatting-to-fit-CNNs-596b8d38af0d4bf9baaa247b38458763
https://www.notion.so/Implement-First-Iteration-of-CNNs-01a3e2539af244eba165df27afe0d14f
https://www.notion.so/Add-The-User-Authentication-Logic-2925eb67a8d64790aaec81b714835412
https://www.notion.so/Create-Profile-UI-and-Functionality-866644f8fe054cbaa4e692b4b6b28823
https://www.notion.so/Create-Add-Patient-Functionality-c7b60c23528a41c9a6f401229c72cc38
https://www.notion.so/Add-Search-and-Filter-Functionality-To-Patients-Section-ac981a0363fb4b96b923a12c8f547c19

Work Schedule 3

Name Assign Date Property Status

Add Search
and Filter
Functionality
To Results
Section

Joaquin Monterrosa Completed

Get 3d CNN
running

B Ben Completed

Add
abstraction to
Hypertune
CNNs

B Ben Completed

Configurations
for Local
Training

B Ben Completed

Add Auxiliary
Functionality

Joaquin Monterrosa Completed

Create Admin
Dashboard

Joaquin Monterrosa Completed

Create Add
Patient
Functionality

Joaquin Monterrosa Completed

Get 2D CNN
Model
Working On
Cloud Run

Joaquin Monterrosa Completed

Integrating
CNN with
Application

B Ben Joaquin Monterrosa Completed

Saving Better
Models and
wiring up to
cloud run
environment

B Ben Completed

Configuring
Training on
Google Cloud
(For higher
cardinality
data)

B Ben Completed

Add Design
Touch

Joaquin Monterrosa Completed

Brand The
App

Joaquin Monterrosa Completed

Add 3D Lung
Animation To
Marketing
Page

Joaquin Monterrosa Completed

Create
Marketing
Page

Joaquin Monterrosa Completed

@March 20, 2022 → March 26, 2022

@March 27, 2022 → April 2, 2022

@March 27, 2022 → April 2, 2022

@March 27, 2022 → April 2, 2022

@March 27, 2022 → April 2, 2022

@March 27, 2022 → April 2, 2022

@March 27, 2022 → April 2, 2022

@March 27, 2022 → April 2, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

https://www.notion.so/Add-Search-and-Filter-Functionality-To-Results-Section-f851f1983d114fbda35adaa0043a5f9b
https://www.notion.so/Get-3d-CNN-running-2a5f73ae6fc84a90964f0b824f7f2859
https://www.notion.so/Add-abstraction-to-Hypertune-CNNs-6f7195eadd15410aa613fbe8bc7a8cef
https://www.notion.so/Configurations-for-Local-Training-0663c9cd2ea1488fac6e355bea941904
https://www.notion.so/Add-Auxiliary-Functionality-d748f94c9fd14d4dba141ae1761bb878
https://www.notion.so/Create-Admin-Dashboard-0caafd1ffca0479f8b020f838c8d60cc
https://www.notion.so/Create-Add-Patient-Functionality-041775e2a69a4d3bb97c1000a7763324
https://www.notion.so/Get-2D-CNN-Model-Working-On-Cloud-Run-3db6afa4fbe24a03a1bd4c55d6f98d82
https://www.notion.so/Integrating-CNN-with-Application-a9795b782a7846b0bc5ee3ab619235a1
https://www.notion.so/Saving-Better-Models-and-wiring-up-to-cloud-run-environment-bc3c73d2c231480ebdb7d51182181cad
https://www.notion.so/Configuring-Training-on-Google-Cloud-For-higher-cardinality-data-dad7fa70b57f42a2bd07c5ec52c6171d
https://www.notion.so/Add-Design-Touch-ae0374a38aa442dd8bb48a30ab752b84
https://www.notion.so/Brand-The-App-af6c979b1f934b8c9b4769074f3862cf
https://www.notion.so/Add-3D-Lung-Animation-To-Marketing-Page-85548d5ce9404fbe96fa712c366f7c0a
https://www.notion.so/Create-Marketing-Page-5fe6d28452654a289cb73250c8a39a60

Work Schedule 4

Name Assign Date Property Status

Finalizing
Cross
Validation and
Statistical
Sigificance

B Ben Completed

Add Auto-
Avatar
Functionality

Joaquin Monterrosa Completed

Hook Up
Domain and
Deploy

Joaquin Monterrosa Completed

Fix The
Outstanding
Bugs

Joaquin Monterrosa Completed

Test The App Joaquin Monterrosa Completed

Squash All
Bugs That Are
Revealed In
Testing

Joaquin Monterrosa Completed

Update
Portfolio

Joaquin Monterrosa Completed

Make Poster Joaquin Monterrosa Completed

@April 10, 2022 → April 16, 2022

@April 10, 2022 → April 16, 2022

@April 10, 2022 → April 16, 2022

@April 10, 2022 → April 16, 2022

@April 10, 2022 → April 16, 2022

@April 10, 2022 → April 16, 2022

@April 17, 2022 → April 23, 2022

@April 17, 2022 → April 23, 2022

https://www.notion.so/Finalizing-Cross-Validation-and-Statistical-Sigificance-341b10a7a0c148ea8e0f51fcfdc09147
https://www.notion.so/Add-Auto-Avatar-Functionality-24945c93b2e34c97a4cda025e04a9300
https://www.notion.so/Hook-Up-Domain-and-Deploy-cdeca7dc426849928c3bb9d30f748155
https://www.notion.so/Fix-The-Outstanding-Bugs-8a9ae0de4b264055ac1915d701d7c73a
https://www.notion.so/Test-The-App-b9dff7b3ecdc4b37806e6a0070d8715f
https://www.notion.so/Squash-All-Bugs-That-Are-Revealed-In-Testing-f2779d43a826409e96b04091b5516458
https://www.notion.so/Update-Portfolio-86c562882c4f40928c4997d527f25764
https://www.notion.so/Make-Poster-70d9ebe4fb1b4492bb4c205b26f9977c

For a more detailed look at our timeline you can see a Gantt chart, calendar view, and scrum
board view on our Notion page here:

https://eight-net-3e0.notion.site/41613df3b71146c8a148421934ef1250?v=400567023aac4b41b3
9cae2766e150df

We’ve also included our old work schedule projection in Appendix F for comparison.

Our work schedule shows each of our tasks, who was assigned to each milestone, and when we
worked on each milestone. In general, Ben and Nic worked on the AI models while Joaquin
worked on the application. A more detailed view of who worked on what can be found in
Appendix I.

While this chart details our work schedule from a high-level, we adopted an agile lifecycle
approach to guide our day-to-day workflow. Specifically, we used a Scrum framework. This
approach best fit our project because Scrum allowed for a flexible and iterative workflow. This
iteration was necessary for the development of both our AI model and the encompassing
web-app. Three different methods were used to create an accurate AI model and we had to
iterate our application based on which method performed best. Additionally, developing the
web-app required the ability to iterate based on input from our customer segment: radiologists
and technicians.

Joaquin assumed the role of Scrum Master, ensuring that we abided by the Scrum framework.
Our sprints were two-weeks in length and we held weekly stand-ups every Sunday where we
reviewed the progress of the stories currently under development. At the beginning of each
two-week sprint, we took an epic or two from the backlog and broke it down into smaller stories
that could be accomplished in the next two-week sprint. We moved the stories we estimated we
could complete in two weeks into the “in-progress” stream. Initially, our backlog consisted of
the milestone’s outlined in our work schedule. Although these milestones don’t fit the formal
definition of an epic, they served the purpose of an epic well. We used Notion’s board view
(which is similar to a Trello board) as our scrum board software. We did not use story points to
estimate task lengths due to the limited time frame of this project.

Lastly, it’s important to note that before we wrote a single line of code we performed a customer
discovery sprint. From the outset, we realized that we had the computer science experience to
develop Topo Health but we had no experience as radiologists or oncologists (the primary users
of our app). For this reason, we vowed to understand our end-users by conducting a customer
discovery sprint before building the product. Information about this customer discovery sprint
and the outcomes of this process can be found in Appendix D.

8

https://eight-net-3e0.notion.site/41613df3b71146c8a148421934ef1250?v=400567023aac4b41b39cae2766e150df
https://eight-net-3e0.notion.site/41613df3b71146c8a148421934ef1250?v=400567023aac4b41b39cae2766e150df

Requirements

Functional Requirements

The main function of the Topo Health app is to process CT Scans with our AI model in order to
diagnose lung cancer. To make this happen, our app has successfully achieved the following
functional requirements outlined at the beginning of this project. Our app is able to:

○ Upload CT Scans
○ Preprocess .dcm files into a format compatible with the AI Model
○ Analyze the scan with an accurate AI model
○ Output diagnostic results
○ Interpret diagnostic results
○ Display interpreted results

Another crucial functionality for Topo Health is searching through diagnosis history. A
technician should be able to search for past lung cancer diagnoses. This functionality was
originally intended to be accomplished through fuzzy searching but after talking to our customer
segment, we realized that standard search functionality offering multiple search and filter options
was more useful than fuzzy searching.

As with most apps, user authentication and profile creation is a rudimentary functionality. For
Topo Health, our app provides this onboarding functionality for clinics, technicians, and app
admins. App admins manage the provisioning of clinics, clinics manage the provisioning of
technicians, and technicians are the primary users of our automated diagnostic functionality. For
this onboarding functionality the app:

○ Allows clinics, technicians, and app admin to sign up for the first time
○ Allows clinics, technicians, and app admin to create their profiles (to a limited

degree)
○ Authenticates clinics, technicians, and app admin
○ Allows app admin to provision clinic accounts
○ Allow clinics to provision technician accounts

Before implementation, we intended on allowing app admin to add info to clinic profiles and
allow clinics to add info to technician profiles but after better understanding our user flow, we
realized that this functionality wasn’t necessary.

Lastly, we included standard auxiliary functionality that comes with most web-apps. This
auxiliary functionality includes:

○ Universal access to terms of service and privacy policy

9

○ Access to frequently asked questions (FAQs)
○ The ability to easily report bugs and other errors

Another feature we considered implementing assuming we had the time was “quick report
generation”. Quick report generation would allow radiologists or technicians to quickly generate
diagnostic report templates based on our AI model’s diagnosis. During our customer discovery
sprint, we learned that radiologists already have templates like these in most charting software so
we decided to eliminate the idea.

For more context, refer to our use-case diagram in the “Architectural Design Documents”
section.

Nonfunctional Requirements

During our planning phase, we broke up the non-functional requirements of the app into seven
sections and detailed the nonfunctional requirements for each section:

● Security/Regulatory
○ Topo Health will need to be unofficially compliant with HIPAA standards for

privacy & security of medical information, in particular regarding Private Health
Information (PHI). Additionally, ADA standards for accessibility will need to be
met as Topo Health may be working with public entities. For general security,
there will be protected passwords that are salted and hashed.

● Capacity/Storage
○ CT Scans are typically stored in their original state as .DCM files, which average

around 200 MB per file. Our model will output PNG files, which are on average
0.4 MB. As a result, the storage of the PNG files and other information that will
be stored in text form is negligible.

○ If we consider all 260,000 scans conducted yearly in the United States, it would
require 52 TB of storage. If we just estimate the number of scans conducted in
Montana each year by taking the number of scans in the United States in
proportion to Montana’s population, it will take roughly 152 GB to store a year’s
worth of scans.

○ For this project, we will be targeting 152 GB of storage, with scalability in mind.
● Compatibility

○ Topo Health will be run as a desktop web application, meaning our website has to
be compatible with most desktop browsers. We will be targeting compatibility with
all desktop browsers with over 1000 px screen width. Additionally, Topo Health
will have to be compatible with all the most common web browsers, so we will be
targeting compatibility with Chrome, Firefox, and Edge.

● Reliability/Availability

10

○ We intend for Topo Health to be available 24/7/365, as there is no reason for there
to be significant downtime for a web application.

○ To ensure reliability, we will have tech support available, as well as feedback and
bug reporting.

● Maintainability
○ We are targeting less than 5 hours of maintenance a week.

● Scalability
○ We intend for Topo Health to be highly scalable in two different ways. Firstly, it

needs to scale to different clinics & technicians. Secondly, we would like Topo
Health to be able to scale to implement new diagnostic tools in the future,
alongside our initial lung cancer diagnosis model.

● Usability
○ 70% of users should be able to intuitively use the applications their first time

without prior instruction.
○ Usability standards & principles should be satisfied.

To truly understand the usability of our app we conducted a usability study. The outcome of this
study showed that 90% of first-time users were able to use our app without any guidance. More
detail on this study can be found in Appendix C.

In the end, we were able to successfully achieve all of the requirements except for two. We were
not able to meet all ADA accessibility standards due to a lack of time and resources. We
underestimated the amount of effort that is required to meet all ADA accessibility standards. We
also weren’t able to guarantee 152 gigabytes of storage due to the cost of such a plan. That being
said, we did build the app in a scalable manner so that if we could afford a 152 GB plan we could
scale the app with a click of a button.

Performance Requirements

Our performance requirements were focused on two areas. First, the application needed to be
able to quickly and effectively handle the expected amount of web traffic at any time. With
260,000 lung cancer scans being done in the United States annually, we expected there to be
around 712 scans per day on average. We assumed around 350 scans would be analyzed
concurrently at peak use. Thus we were targeting optimal performance to still hold at 350
concurrent users.

The second area of concern was the performance of the model. First, we wanted the model to
provide rapid feedback, so we were targeting a processing time of fewer than five minutes from
file upload to result. Secondly, the model & results must be accurate. We were originally
targeting an accuracy greater than 65% but mid-way through implementation, we increased our
target to greater than 75%.

11

Ultimately, we weren’t able to verify our concurrency target of 350 users because load-testing
the application required too much time and money. That being said, our platforms and
architecture should theoretically be able to handle that number of concurrent users. As for the
performance of the model, we were successfully able to achieve a processing time of 90 seconds
on average and we were able to implement an AI model with 82% general accuracy.

Interface Requirements

The Topo Health app consists of five interfaces:

● The user of the web application.
● The client which handles all frontend processing for the web application.
● The server which provides all backend processing for the web application.
● The model which is the AI model that generates the diagnostics based on the scans. The

model is stored within the server as another backend function.
● The relational database where data is stored.

○ There is a normal database where non-sensitive information is stored
○ There is a secure database where personal identifiable information (PII), and

protected health information (PHI) is stored.

These interfaces communicate with each other in the following ways:

● The user interacts with the client via common web event handling.
● The client uploads scan data to the server via HTML POST requests.
● The client retrieves interpreted results from the server via HTML GET requests.
● The server preprocesses .dmc CT scan files into a digestible format and inputs that data

into model.
● The model outputs raw results to an “interpretation function” on the server.
● The server uploads data to the database via database queries.
● The database passes data to the server via database queries.
● The client uploads data to the database via database queries.
● The database passes data to the client via requests and database queries.

For a more detailed description of how these components interface with each other, refer to the
component diagram in the “Architectural Design Documents” section.

To learn about other key features outside of our specified requirements, reference Appendix H

Architectural Design Documents

12

To better understand our proposed architecture, we’ve created the following behavioral and
structural UML diagrams:

13

Topo Health App

Technician

App Admin

Technician
Sign Up

Log In

Upload CT
Scan

Topo Health Use-Case Diagram
Topo Health | April 28, 2022

ClinIic

Search
Screening

History

Create
Technician

Profile

Update
Technician

Profile

Provision
Technician

<<extend>>

<<include>>

Clinic Sign Up

Create Clinic
Profile

Provision
Clinic

<<extend>>

<<include>>

Authenticate

Display Login
Error

Reset
Password

<<include>>

<<extend>>

<<extend>>

Analyze Scan
witIh AI Model

Generate
Results

Archive Scan
& Results

<<include>>

<<include>>

<<include>>

<<include>>

View Results <<include>>

<<include>>

Check
AuxiliaIry

Pages

Terms &
ConditIions

Privacy Policy

FAQs

Contact Us
Settings

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Changes & Justifications

- Originally, we thought
that App admin would
have a role in making
Clinic profiles and
Clinics would have a
role in creating
Technician profiles but
we didn't do that
because it ended up not
being necessary.

- We also tossed out the
idea of adding "auto
report generation" after
we found out that
radiologists already
have that sort of
templating tool in most
charting software.

Clinician

Server AI Model Secure Database

Key

Note: Secure Database is the encryped, HIPAA CompliaInt database The
database service we're using also handles encrypted file storage

Upload Scan

Input Preprocessed Scan

AI Results

Formal Diagnosis

Store Scan & Related Info

Clinician Uploading Scan
Topo Health | April 28, 2022

<<Database>>
Secure Database

<<Database>>
Normal Database

<<Function>>
AI Model (2D CNN)

<<Server>>
Server

<<UI>>
User Interface

<<Function>>
.dcm Scan

Prepossesing

<<Function>>
Generate Boolean

Results

<<Function>>
Tensorflow Keras Neural Network

<<Component>>
User AuthenticIation

<<UI>>
Login

<<UI>>
Signup

<<UI>>
Upload Screen

<<UI>>
Search Scans

Screen

<<UI>>
Search Patients

Screen

User Login Authentication

User Creation Verification

PHI & PII Data

The PHI & PII Data is used
throughout most of the UI
and all its subcomponents. It
includes patient data, scan
data, result data, etc.

.dmc Scan

We implemented and
tested three different
ML models (2D CNN, 3D
CNN, and TDA) and the
2D CNN performed best
so we used that for the
production model

Preprocessed Scan

New PHI & PII Data

Model Diagnosis
Scan Results

Topo Health Component Diagram

Topo Health | April 28, 2022Changes & JustificIation
- We didn't make a dedicated "Review Screen" since it made sense to

display all result data in the search scans screen.
- We realized we didn't want to use the normal database to send out

"patient tokens". Instead it was easier and more secure to request
patient data directly from the secure database.

- Added a profile screen to the UI
- We changed the AI model in this diagram from the TDA model to the 2D

CNN model since it outperformed the TDA model. Also, the previous
diagram had a "Discretionary Model" which we decided not to impliment

<<UI>>
Profile Screen

Normal Database Data

Secure Database (HIPAA Compliant)

Normal Database (No PII or PHI Data)

Topo Health - ER Diagram
Joaquin Monterrosa | April 28, 2022

User

user_id: autoID

avatar: Image

clinic_name: String

is_provisioned: Boolean

job_title: String

lastLogin: Date

name: String

parent_org: String

user_type: Option Set

email: String

modified_date: Date

created_date: Date

Slug: String

Patient

patient_id: autoID

created_at: Date

serving_technician: String

first_name: String

last_name: String

dob: Date

has_cancer: String

serving_technician_identifier:
user_id

serving_org_identifier:
user_id

avatar: Image

Scan

scan_id: autoID

created_at: Date

patient_id: patientId

result_id: result_id

dcm_fileI: pathToFile

Results

result_id: autoID

created_at: Date

scan_id: scan_id

processing_time: Float

diagnosis: String

FAQ

faq_id: autoID

answer: String

question: String

creator: user_id

modified_date: Date

created_date: Date

Slug: String

Notes

The User entity uses single-table
inheritence to represent the parent-child
relationship between a User and Clinics,
Clinitians, and App Admins

PII stands for Personal Identifiable
Information and PHI stands for Protected
Health Information

Changes
None of the tables changed but the
fields within the tables did change as we
built out the app. The other important thing
to note is that we are using temporary
tables to track the status of .dcm files being
processed but due to their effemiral nature
we didn't include them in this ER diagram

Algorithm 1 Vietoris-Rips Filtration

Require: X = {x1, x2, ...xk} ⊂ Rn, a point cloud embedded in Rn

Ensure: P = {(b1, d1), (b2, d2), ..., (bk, dk)}, a list of birth death pairs corre-
sponding to L under the Vietoris-Rips Filtration, aka the persistence barcode
B ← {B1(x1, 0),B2(x2, 0), ...,Bk(xk, 0)} . List of radius 0 n-balls at x ∈ X
P ← {(∅, ∅), (∅, ∅), ...(∅, ∅)} . Empty list of birth-death pairs
for r ∈ R do

B ← {B1(x1, r),B2(x2, r), ...,Bk(xk, r)}
for i ∈ {1, 2, ..., k} do

for j ∈ {2, ..., k} do
if Bi ∩ Bj 6= ∅ then

(bi, di) ∈ P ← (0, r)
B ← B \ Bi

end if
end for

end for
end for
return P

Above is the theoretical algorithm implementing the Vietoris-Rips filtration,
perhaps the most foundational persistent homology technique. This will be our
method of obtaining topological descriptors of point cloud data, in the form of
a discretization of a CT scan. In practice, of course the filtration occurs over a
sparse representation of R, and terminates once the final birth-death tuple has
been updated. For the sake of brevity, we include the theoretical algorithm to
convey the core mathematical principles at hand. It is also worth mentioning
that the true implementation of the Vietoris-Rips filtration records all homology
groups arising throughout the inflation of n−balls, whereas our implementation
only records the birth and death of 0−dimensional connected components. For
the purpose of recording the shape of potentially cancerous features in a scan,
only recording connected components is sufficient.

1

Algorithm 2 K-Nearest Neighbor for Persistence

Require: P = {P1, P2, ...Pn}, a list of persistence barcodes, C =
{C1, C2, ..., Cn}, a list of Boolean classifications, Pq, a query barcode, and
k ∈ N

Ensure: True or False classification for Pq

N ← ∅ . Initialize list of nearest neighbor indices
count = 0
for i ∈ {1, 2, ..., k} do

if dW (Pm, Pq) = argmin(dW (P, Pq)) then
N ← m
P ← P \ Pm

end if
end for
for i ∈ N do

if Ci = True then
count + +

end if
end for
if count ≥ n/2 then return True
else

return False
end if

In order to classify the cancer diagnosis of a given unknown CT scan, we
feed the resulting persistence barcode through a k-nearest neighbor implemen-
tation. In this way, we find the k nearest classifications of a query barcode,
and classify this barcode with whichever Boolean value is most prevalent in its
neighbors. Distance is defined by the Wasserstein distance, a common metric
between persistence barcodes. The Wasserstein distance is defined by comparing
the probability distributions constructed by a kernel density estimation among
persistence barcodes. This is our chosen distance measure as a holistic cate-
gorization of distance among the whole of a barcode, and is particularly well
established in the TDA research community.

2

This architecture was created meticulously and deliberately. For example, in the use-case
diagram and the sequence diagram, we decided to sacrifice scalability for security and control
when we decided that each technician needs to be manually provisioned by a clinic and each
clinic needs to be provisioned by an app admin. The alternative would have been to make each
user fully responsible for their own account creation.

Another trade-off we decided to make is depicted in the sequence diagram along with the
component diagram. We decided to outsource the preprocessing computation and the delegation
of database storage to the server instead of the client. In this case, we traded a few seconds of
additional computation time (the time it takes to outsource this functionality over the network) in
order to take a load off the front-end and make it asynchronous.

As for the database schema, we decided to represent the parent-child inheritance relationship
between the abstract User class and it’s concrete children with single-table inheritance. This will
mean that the table will have many null fields but it will be faster to query. Because we don’t
expect memory space in this table to be a problem, this tradeoff made sense.

It’s important to note that we also use a Model Controller View (MVC) design pattern to
compute and display information on the user interface.

We used a unique tech stack that combines low-code platforms with custom code. Because of
this, our MVC design pattern consists of various platforms and scripts instead of traditional
classes and objects.

14

Our controller consists of a suite of endpoints some of which are hosted Xano and some of
which are hosted in a Flask script on Google Cloud Run. Here is an example of some of these
endpoints:

@app.route('/api/v1/diagnose', methods=['POST'])

def diagnose():

##scanURL = request.form['scan_url']

##fileName = request.form['file_name']

content = request.get_json(force = True)

scanURL = content['scan_url']

fileName = content['file_name']

scanStorage = "scanFolder"

pathToScan = "./" + scanStorage + "/" + fileName

download the scan from the given URL

wget.download(scanURL, out=scanStorage)

send the scan through the dianosis ML model

theResult = processScan.full_predict_new(pathToScan, 'scan_out', 'scan_out.npy',

'./Basic-CNN.model')

delete the downloaded scan to remove scan file clutter

os.remove("scan_out.npy")

for rmvFile in os.listdir('scan_out/' + os.listdir('./scan_out')[0]):

os.remove(os.path.join('scan_out/' + os.listdir('./scan_out')[0], rmvFile))

for f in os.listdir(scanStorage):

os.remove(os.path.join(scanStorage, f))

return theResult

(One of the Flask Endpoint)

15

(Two of the Xano Endpoints)

Our model consists of various Xano and Python functions. Here is the code from our Python
function that preprocesses and diagnoses the lung cancer scan:

import zipfile

import numpy as np

import Preprocess as p

import tensorflow as tf

from tensorflow.keras import layers, models

import os

def unzip(filepath, outpath):

with zipfile.ZipFile(filepath, 'r') as zip_ref:

zip_ref.extractall(outpath)

def stage_np(in_np, model_shape):

new_np = np.resize(in_np, (1, model_shape[1], model_shape[2], model_shape[3]))

return new_np

do full prediction given new input

In: input .zip, output for unzipped .dcms, output for preprocessed np array, model

def full_predict_new(zipfile_in, zipfile_out, npy_save, model_path):

unzip(zipfile_in, zipfile_out)

zipfile_OG_dir = os.listdir(zipfile_out)[0]

p.save_npy(zipfile_out + '/' + zipfile_OG_dir, npy_save)

16

in_np = np.load(npy_save)

To plot fully preprocessed lung, uncomment

#pad_value = 170

#p.plot_3d((~(in_np[0] == pad_value)).astype(int), 0)

model = tf.keras.models.load_model(model_path)

new_np = stage_np(in_np, model.input_shape)

prediction = model.predict([new_np])

outputs = ['false', 'true']

return outputs[int(prediction[0][0])]

Our view is implemented with Bubble’s UI renderer. Here is an example of the UI component
that presents the results of a diagnosed scan:

Nevertheless, our pattern abides by the traditional MVC principles. When a client triggers an
action or makes a request, our controller handles that request by passing it to the appropriate
function in our model. After the model completes the request, it sends the resulting data back to
the controller. Once the controller has the resulting data, it passes that data to the view to render
as a UI component on the client’s browser.

Alternative design patterns we considered can be found in Appendix J.

17

Development Standards

We abided by the ACM/IEEE Software Engineering Code of Ethics and Professional Practice
[18]. Additionally, we abided by some of the W3C standards for web design and applications
[19].

As for our technology stack, here are the technologies, frameworks, and platforms that were used
to build the Topo Health App:

● Front-End: Bubble.io [20]
● Server: Google Cloud Platform

○ All backend scripts were written in Python. For the model, the Dionysus library
was used for the Vietoris-Rips filtration, GUDHI was used for the cubical
complex filtration, and TensorFlow was used for deep learning.

● Secure Database and File Storage: Xano
● Normal Database: Bubble.io Database
● User Authentication: Bubble.io User Authentication
● UX Mockups: Static Bubble.io

During the planning stages of this app, we thought we were going to use Amazon Web Services
(AWS) instead of Google Cloud Platform (GCP) but later we went with GCP because it had
better support for machine learning.

Results

In the end, we implemented an AI model to detect lung cancer and successfully hosted this
model online in an intuitive, secure web application. At the beginning of the project, we had set
a benchmark for our best model to achieve 65% accuracy with a processing time less than five
minutes per scan. Not only was this benchmark surpassed, but the general accuracy of our
winning AI model performed better than the general accuracy of the average radiologist. For
more details on how we determined the general accuracy of the average radiologist, see
Appendix A. We also had set the goal of predicting the survivability of cancer. Predicting
survivability was reliant on a Cox Proportional Hazards model which is only accomplished
through the use of TDA. Since the 2D CNN ultimately beat out our TDA model, survivability
was no longer possible to implement for our application. For more details on specific model
architectures, statistical significance and preprocessing, see Appendix B.

Ultimately, we achieved the following machine learning results:

Model Results:

1. We found that both a 2D and a 3D CNN outperform or are comparable to our benchmark
of a conventional radiologist, and that our TDA model falls short of this success.

18

2. The 2D CNN was our most accurate model, achieving a general accuracy rate of 82% and
a sensitivity rate of 70%, performing slightly better on general accuracy than a human
radiologist (79.2% accurate) and slightly worse than a human radiologist on sensitivity
(75% sensitivity).

3. The 3D CNN achieved comparable results, demonstrating 78% accuracy and a 72%
sensitivity rating.

4. Both outperformed our TDA model substantially, which achieved only a 63% accuracy
rating in the limited tests that were conducted. However, it is worth noting that significant
pruning measures were necessary to make the TDA model computable in a reasonable
timeframe, which likely hampered the success of the model greatly.

As for the web-app, we were successfully able to develop a comprehensive product that can be
used by technicians, clinics, and app admin. In addition to all the features of the app discussed in
Appendices H and E, we were able to make the app intuitive and build with HIPAA compliance
in mind.

Results From The Web Application

1. We were able to make the app intuitive enough for 90% of first-time users to use the app
without any guidance. For more information on how we conducted this usability study,
reference Appendix C.

2. We successfully implemented a “HIPAA-Ready” web app. We’re not naive enough to
believe our app is fully ready for a HIPAA audit but by storing all of our personal
identifiable information (PII) and personal health information (PHI) on a HIPAA
compliant database (separate from the normal database), our app is in a good position to
achieve HIPAA compliance in the future.

Broadly speaking, we achieved the expected result of building a product to streamline,
democratize, and generally improve the process of lung cancer diagnosis from the current
radiology workflow. Admittedly, our models fall short of achieving an accuracy rate as high as
95% which is the ceiling reached in the deep learning research community However, we feel
proud with our achievement of creating a AI model that performs slightly better than the average
radiologist and wrapping that AI in a web-app ready for use by technicians.

Source Code

Preprocessing

Our full preprocessing implementation was adapted/taken from [23]. The code was originally
written in 2017, so many small tweaks needed to be made throughout the preprocessing

19

implementation to make the code up to date. This probably represented about 85% original code
and 15% ours, so for brevity most of the preprocessing was left out. However, I will include the
full batch preprocessing implementation, which we wrote ourselves. This preprocessing
implementation was our third attempt at gaining a robust input to the model, and was
undoubtedly crucial for our success.

First, we begin with quite a lot of imports needed to preprocess the data. (I’ll just include them
because they’re referenced throughout, and are necessary to read through the source code.)

import numpy as np

import pandas as pd

import pydicom

import os

import scipy.ndimage

import matplotlib.pyplot as plt

from skimage import measure, morphology

from PIL import Image

from mpl_toolkits.mplot3d.art3d import Poly3DCollection

from scipy.ndimage.morphology import

binary_dilation,generate_binary_structure

from skimage.morphology import convex_hull_image

from scipy.ndimage.interpolation import zoom

from scipy.io import loadmat

import warnings

from multiprocessing import Pool, cpu_count

from functools import partial

import time

import matplotlib.pyplot as plt

import csv

import tensorflow as tf

from tensorflow.keras import datasets, layers, models

from sklearn.model_selection import KFold, cross_val_score

This small function is useful to plot the 3D dicom, just to see what it looked like before
preprocessing.

def view_unprocessed(path, thresh):

patient_img, patient_spacing = get_pixels_hu(load_scan(path))

plot_3d(patient_img, threshold=thresh)

20

Then, here is the function that preps our full input directory of dicoms, saving the output as
numpy arrays for us to load into a model.
def full_prep(path):

list of already prepared dicoms

prepped = [f[:-10] for f in os.listdir('../input/staging_processed')]

times = []

num_unprepped = len(os.listdir(path)) - len(prepped)

for f in os.listdir(path):

if f not in prepped:

start = time.time()

print("Preprocessing", f)

cur_path = path + f + '/'

save_npy(cur_path, f)

end = time.time()

times.append(end-start)

print(f, "Done in ", end - start, "Sec")

ave_time = sum(times)/len(times)

num_unprepped -= 1

print("ETA: ", ave_time * num_unprepped, "Sec")

This script allows us to read in a CSV with class values (‘0’ or ‘1’) and output an NP array in
the expected format for Tensorflow.

def init_classes(path, input_length):

rows = []

with open(path, newline='') as f:

reader = csv.reader(f)

count = 0

for row in reader:

if count < input_length:

if row[0] + '_clean.npy' in

os.listdir('../input/processed/'):

print(row[0])

rows.append([row[0], int(row[1])])

count += 1

return np.asarray(rows)

Also, for Tensorflow to work, we needed to have every input image be the same shape. This
script finds the maximal shape in our set of images (saved as numpy arrays) in order to change
the shape of every image to make the shape equivalent. This is done by padding every image

21

with zero vectors, if in any dimension the shape was originally smaller.

def find_max_shape(path, classes):

max_i, max_j, max_k = 0, 0, 0

for i in range(len(classes)):

cur_np = np.load(path + classes[i][0] + '_clean.npy')

if cur_np.shape[1] > max_i:

max_i = cur_np.shape[1]

if cur_np.shape[2] > max_j:

max_j = cur_np.shape[2]

if cur_np.shape[3] > max_k:

max_k = cur_np.shape[3]

return max_i, max_j, max_k

Then we had to actually resize all of our data. This is the implementation to do so, and to split
the data at an 80/20 ratio for training and testing sets. This hardcoded version was useful (and
often actually completely necessary) when we would run into kernel restart issues because of
the volume of our data. For some reason the hard coded splits would often work, whereas the
sklearn cross validation splits somehow pushed the system over the edge.

def stage_data_hardcoded(input_length):

classes = init_classes('../input/stage1_labels.csv', input_length)

train_classes, test_classes = classes[:int(0.8*input_length), :],

classes[int(0.8*input_length):, :]

train_data_arr, test_data_arr, train_class_arr, test_class_arr = [],

[], [], []

max_shape = find_max_shape('../input/processed/', classes)

for i in range(input_length):

if i < len(train_classes):

cur_np = np.load('../input/processed/' + classes[i][0] +

'_clean.npy')

pad with zeros to fit max_shape

cur_np = np.resize(cur_np, (1, max_shape[0], max_shape[1],

max_shape[2]))

train_data_arr.append(cur_np)

train_class_arr.append([int(train_classes[i][1])])

classification in test_classes, load test set

else:

cur_np = np.load('../input/processed/' + classes[i][0] +

'_clean.npy')

cur_np = np.resize(cur_np, (1, max_shape[0], max_shape[1],

max_shape[2]))

22

cur_arr = cur_np.tolist()

test_data_arr.append(cur_arr)

test_class_arr.append([int(test_classes[i -

len(train_classes)][1])])

print("MAX SHAPE:", max_shape)

train_data = np.concatenate(train_data_arr)

print(train_data.shape)

train_class = np.array(train_class_arr).reshape(-1, 1)

print(train_class.shape)

test_data = np.concatenate(test_data_arr)

print(test_data.shape)

test_class = np.array(test_class_arr).reshape(-1, 1)

print(test_class.shape)

return train_data, train_class, test_data, test_class, max_shape

Here is the data staging without hard coded splits. This is built to later use test set/training set
splitting from sklearn.

stage data/classes into one large np array for cross validation

def stage_data(input_length):

classes = init_classes('../input/stage1_labels.csv', input_length)

data_arr = []

class_arr = []

max_shape = find_max_shape('../input/processed/', classes)

for i in range(input_length):

cur_np = np.load('../input/processed/' + classes[i][0] +

'_clean.npy')

pad with zeros to fit max_shape

cur_np = np.resize(cur_np, (1, max_shape[0], max_shape[1],

max_shape[2]))

data_arr.append(cur_np)

class_arr.append([int(classes[i][1])])

print("MAX SHAPE:", max_shape)

out_data = np.concatenate(data_arr)

print(out_data.shape)

23

out_classes = np.array(class_arr).reshape(-1, 1)

print(out_classes.shape)

return out_data, out_classes, max_shape

And finally, here is the 2D CNN implementation, which calls in a parameter for virtually every
aspect of the model architecture for hypertuning.

def init_2d_model(input_length, num_layers, filters, window, activ_fcn,

pool_size, cross_validation=False, k_fold_splits=0):

for hardcoded data staging (80-20 ratio)

if not cross_validation:

train_data, train_class, test_data, test_class, max_shape =

stage_data_hardcoded(input_length)

model = models.Sequential()

for i in range(num_layers):

model.add(layers.Conv2D(filters, window, activation=activ_fcn,

input_shape=max_shape))

model.add(layers.MaxPooling2D(pool_size))

model.add(layers.Conv2D(2 * filters, window, activation=activ_fcn))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10))

Compile the model

print("Compiling Model")

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

model.summary()

with tf.device("/cpu:0"):

print("Evaluate Model Fitness")

24

history = model.fit(train_data, train_class, epochs=10,

validation_data=(test_data, test_class))

Uncomment to save model

#model.save('./output/Test-CNN.model')

plt.plot(history.history['accuracy'], label='accuracy')

plt.plot(history.history['val_accuracy'], label='val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.ylim([0.5, 1])

plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_data, test_class,

verbose=2)

for cross validation

elif cross_validation:

all_data, all_class, max_shape = stage_data(input_length)

model = models.Sequential()

for i in range(num_layers):

model.add(layers.Conv2D(filters, window, activation=activ_fcn,

input_shape=max_shape))

model.add(layers.MaxPooling2D(pool_size))

model.add(layers.Conv2D(2 * filters, window, activation=activ_fcn))

model.add(layers.Flatten())

model.add(layers.Dense(64, activation='relu'))

model.add(layers.Dense(10))

Compile the model

print("Compiling Model")

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

model.summary()

k_fold = KFold(k_fold_splits)

test_acc = 0

25

for train_idcs, test_idcs in k_fold.split(all_data):

train_data_arr = [all_data[i].tolist() for i in train_idcs]

train_class_arr = [all_class[i] for i in train_idcs]

test_data_arr = [all_data[j].tolist() for j in test_idcs]

test_class_arr = [all_class[j] for j in test_idcs]

train_data, train_class = np.array(train_data_arr),

np.array(train_class_arr).reshape(-1, 1)

test_data, test_class = np.array(test_data_arr),

np.array(test_class_arr).reshape(-1, 1)

print(train_data.shape)

print(train_class.shape)

history = model.fit(train_data, train_class, epochs=10,

validation_data=(test_data, test_class))

uncomment for plotting

#plt.plot(history.history['accuracy'], label='accuracy')

#plt.plot(history.history['val_accuracy'],

label='val_accuracy')

#plt.xlabel('Epoch')

#plt.ylabel('Accuracy')

#plt.ylim([0.5, 1])

#plt.legend(loc='lower right')

loss, acc = model.evaluate(test_data, test_class, verbose=2)

if acc > test_acc:

test_acc = acc

return test_acc

In order to use a 3D CNN, which expects data of one more dimension, we needed to reshape
our data to be compatible with 3D convolutions. We just did this by adding a dimension
corresponding to the 0/1 boolean value saying whether or not that pixel was in the binary mask
associated with lung tissue.

26

def stage_3d_data(input_length):

train_data, train_class, test_data, test_class, max_shape =

stage_data(input_length)

new_train_data, new_test_data = [], []

for lung in train_data:

train_lung = (~(lung[0] == 170)).astype(int)

train_combined = np.concatenate(lung.astype(int), train_lung)

new_train_data.append(train_combined)

for lung in test_data:

test_lung = (~(lung[0] == 170)).astype(int)

test_combined = np.concatenate(lung.astype(int), test_lung)

new_test_data.append(test_combined)

out_train_data = np.concatenate(new_train_data)

out_test_data = np.concatenate(new_test_data)

return out_train_data, train_class, out_test_data, test_class

Then we implemented the 3D CNN using Tensorflow. Currently, this is a hardcoded model,
and we never abstracted away parameters in the 3D CNN in the way that was done with the 2D
case. This choice was due to runtime and computability issues, we were limited to a low
number of filters for our model to compile and train correctly (due to the size of our data) even
when using environments in Google cloud.

def init_3d_model(input_length):

train_data, train_class, test_data, test_class, max_shape =

stage_data(input_length)

model = models.Sequential()

model.add(layers.Conv3D(2, (3, 3, 3), activation='relu',

input_shape=(max_shape[0], max_shape[1], max_shape[2], 1)))

model.add(layers.MaxPooling3D((2, 2, 2)))

model.add(layers.Conv3D(2, (3, 3, 3), activation='relu'))

model.add(layers.MaxPooling3D((2, 2, 2)))

model.add(layers.Conv3D(4, (3, 3, 3), activation='relu'))

model.add(layers.Flatten())

model.add(layers.Dense(4, activation='relu'))

model.add(layers.Dense(10))

27

Compile the model

print("Compiling Model")

model.compile(optimizer='adam',

loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),

metrics=['accuracy'])

model.summary()

with tf.device("/cpu:0"):

Uncomment to save model

model.save('./output/Basic-CNN.model')

print("Evaluate Model Fitness")

history = model.fit(train_data[:, :, :, :, np.newaxis],

train_class, epochs=10,

validation_data=(test_data[:, :, :, :,

np.newaxis], test_class))

plt.plot(history.history['accuracy'], label='accuracy')

plt.plot(history.history['val_accuracy'], label='val_accuracy')

plt.xlabel('Epoch')

plt.ylabel('Accuracy')

plt.ylim([0.5, 1])

plt.legend(loc='lower right')

test_loss, test_acc = model.evaluate(test_data, test_class,

verbose=2)

return test_acc

Below is our hypertuning script that was used to optimize the performance of our 2D CNN.

import CNN

optimize performance of 2d CNN

IN: CNN dimension (2 or 3), max number of layers, list of filter numbers,

list of windows, list of activation fcns, list of pool sizes

OUT: CNN optimal parameters and resulting accuracy

def tune_CNN(max_depth, num_filters, windows, activ_fcns, pools,

CNN_dim=2):

accuracy = 0

params = []

for depth in range(max_depth):

28

for f in num_filters:

for window in windows:

for fcn in activ_fcns:

for pool in pools:

if CNN_dim == 2:

cur_acc = CNN.init_2d_model(50, depth, f,

window, fcn, pool)

else:

cur_acc = CNN.init_3d_model(50, depth, f,

window, fcn, pool)

if cur_acc > accuracy:

accuracy = cur_acc

params = [depth, f, window, fcn, pool]

return accuracy, params

Now, in what follows we will include our full implementation of a TDA-based model, which
despite being unsuccessful in the end represented a major endeavor. For starters, here is a list
of all of the modules we used in our TDA Python environment.

import math

import dionysus as d

import rpy2 as r

from sklearn.neighbors import KernelDensity

import numpy as np

from sklearn.metrics import DistanceMetric

import open3d as o3d

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

import similaritymeasures as sim

In the beginning of the project, we actually were initially storing all of our processed lung data
as STL files, because it was a format that Nic had familiarity with, and it was nice to visualize.
We pretty quickly moved over to just using saved .npy files, but here is the initial conversion
of STL files to a numpy pointcloud for input into a Vietoris-Rips filtration.

def stl_to_input(stl_path):

mesh = o3d.io.read_triangle_mesh(stl_path)

pcd = o3d.geometry.PointCloud()

29

pcd.points = mesh.vertices

arr_points = np.asarray(pcd.points)

return arr_points

For time complexity reasons, we also very quickly implemented methods to thin our input with
a discretization parameter.

take as input np array cloud and a natural, keeping every nth entry

def thin_input(cloud, thinning_param):

del_idcs = []

x, y, z = [], [], []

for i in range(len(cloud)):

if (i % thinning_param) == 0:

x.append(cloud[i][0])

y.append(cloud[i][1])

z.append(cloud[i][2])

thinned_cloud = np.column_stack([x, y, z])

return thinned_cloud

Here is a nice, short function to visualize the point cloud data we were working with, to view
the lung data (and thinned versions of it).

def visualize_cloud_3d(cloud):

arr_points = np.asarray(cloud)

print(cloud)

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

x, y, z = [], [], []

for i in range(len(arr_points)):

x.append(arr_points[i][0])

y.append(arr_points[i][1])

z.append(arr_points[i][2])

ax.scatter(x, y, z, c=z, alpha=1)

plt.show()

This function does the same thing as the above, but with a saved STL.

def visualize_stl(stl_path):

mesh = o3d.io.read_triangle_mesh('./stl/cube.stl')

pcd = o3d.geometry.PointCloud()

pcd.points = mesh.vertices

arr_points = np.asarray(pcd.points)

30

print(arr_points)

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

x, y, z = [], [], []

for i in range(len(arr_points)):

x.append(arr_points[i][0])

y.append(arr_points[i][1])

z.append(arr_points[i][2])

ax.scatter(x, y, z, c=z, alpha=1)

plt.show()

While generating persistence diagrams, it is also useful to view them, which is done below.

def show_pd(dgms):

d.plot.plot_diagram(dgms[0], show=True)

Here is the short function where the magic is happening from a TDA perspective: we generate
persistence diagrams here from the Vietoris-Rips filtration, halting the filtration at
3-dimensional simplices (tetrahedra) and halting the expansion of balls after a radius of 2.
There are some serious choices here between performance and efficacy! The default is what
we found to strike a nice balance.

Run Vietoris-Rips Filtration on np array

def run_rips(cloud, img_idx, max_dim=3, max_rad=2):

print('Generating filtration for img', img_idx)

max dimension = 3, max radius = 2

f = d.fill_rips(cloud, max_dim, max_rad)

p = d.homology_persistence(f)

dgms = d.init_diagrams(p, f)

for visualization

d.plot.plot_diagram(dgms[0], show=True)

return dgms

Also implemented is a height filtration, though this is a less natural filtration for the use case.
Nonetheless, we tried it to see if there would be any performance benefits.

def run_height(cloud):

f_lower_star = d.fill_freudenthal(cloud)

f_upper_star = d.fill_freudenthal(cloud, reverse=True)

p = d.homology_persistence(f_lower_star)

dgms = d.init_diagrams(p, f_lower_star)

31

return dgms

We also constructed a kernel density based distance between persistence diagrams in the 0th
homology dimension. This was for computational complexity purposes when constructing our
distance matrix to do k-nearest-neighbors. In theory, our implementation pairing a one
dimensional Gaussian kernel computation with a linear Frechet distance should’ve been linear
in time complexity. In practice, the benefits were outweighed by the still relatively high
computational costs of computing Gaussian kernels for each point in the persistence diagram,
and summing them together. When compared to the built in and ultra-optimized
implementations for Wasserstein and Bottleneck distance that we used, the time difference was
insignificant. As seems to be the story with TDA in this project, this method was abandoned,
though it represented an interesting attempt.

def kde_dist(x, y):

kde1 = KernelDensity(kernel='tophat', bandwidth=0.2).fit(x)

kde2 = KernelDensity(kernel='tophat', bandwidth=0.2).fit(y)

density1 = kde1.score_samples(x)

density2 = kde2.score_samples(y)

disc1 = []

disc2 = []

init proper dimensional vectors

for i in range(len(x)):

disc1.append([x[i][1], density1[i]])

for j in range(len(y)):

disc2.append([y[j][1], density2[j]])

dist = sim.frechet_dist(np.array(disc1), np.array(disc2))

return dist

Additionally, here are the two standard distances used in TDA between persistence diagrams.
We in the end opted for the bottleneck distance, which is the induced L-infinity norm among
persistence diagrams. The prior code snippet is an attempt to approximate the Wasserstein
distance for only connected components in linear time.

Won't work without a bijection.

def wass_dist(diag1, diag2):

return d.wasserstein_distance(diag1, diag2)

32

def bottle_dist(diag1, diag2):

return d.bottleneck_distance(diag1, diag2)

After implementing the required persistent homology techniques, we had to implement a way
to write them in a CSV format for reference later. In what follows, we provide an
implementation to do so, both for saved numpy arrays as input and for STLs as input in the
preliminary version.

import csv

import math

import Persist as p

import os

import numpy as np

batch write pd for already saved npy arrs

def batch_write_pd_diag(disc, max_dim, max_rad, input_path):

count = 0

for f in os.listdir(input_path):

count += 1

name = input_path + '/' + f

lung_np = np.load(name)

lung = (~(lung_np[0] == 170)).astype(int)

lung_list = []

for i in range(lung.shape[0]):

for j in range(lung.shape[1]):

for k in range(lung.shape[2]):

if lung[i][j][k] == 1:

lung_list.append([float(i), float(j), float(k)])

lung_shaped = np.asarray(lung_list)

thinned_lung = p.thin_input(lung_shaped, disc)

diag = p.run_rips(thinned_lung, max_dim, max_rad, count)

gen_pd_arrs(diag, count, f[:-10])

input discretization param, dimension bound, radius of balls bound

def batch_write_pd(disc, max_dim, max_rad, len_stl):

for i in range(53, len_stl):

cur_name = "./input/stl/NSCLC/LUNG1-" + f"{i:03}.stl"

33

handle deleted entries due to image corruption

if os.path.isfile(cur_name):

in_file_name = "./input/stl/NSCLC/LUNG1-" + f"{i:03}.stl"

lung_pts = p.stl_to_input(in_file_name)

thinned_lung = p.thin_input(lung_pts, disc)

diag = p.run_rips(thinned_lung, max_dim, max_rad, i)

gen_pd_arrs(diag, i)

else:

pass

def gen_pd_arrs(diag, i, name='', path_0="./output/out_stage/out_dgms_0/",

path_1="./output/out_diag/out_dgms_1/",

path_2="./output/out_diag/out_dgms_2/"):

path_0 += name

path_1 += name

path_2 += name

arr_diag_0 = []

arr_diag_1 = []

arr_diag_2 = []

remove all points dying at infinity

for point in diag[0]:

if point.death != math.inf:

arr_diag_0.append([point.birth, point.death])

for point in diag[1]:

if point.death != math.inf:

arr_diag_1.append([point.birth, point.death])

for point in diag[2]:

if point.death != math.inf:

arr_diag_2.append([point.birth, point.death])

out_file_name = path_0 + f"{i:03}"

write_pd_arr(arr_diag_0, out_file_name)

out_file_name = path_1 + f"{i:03}"

write_pd_arr(arr_diag_1, out_file_name)

out_file_name = path_2 + f"{i:03}"

write_pd_arr(arr_diag_2, out_file_name)

34

persistence diagram array save to csv (hardcoded for rips-filtration)

def write_pd_arr(persist_arr, out_file):

with open(out_file, 'w') as csvfile:

creating a csv writer object

csvwriter = csv.writer(csvfile)

writing the data rows

csvwriter.writerows(persist_arr)

Here, we implement a short script to classify a new scan according to a computed distance
matrix.

import Persist as p

import CSV_Writer as csvw

import KNN as knn

give path to CT scan (str), thinning param, max dimension (default=3)

max filtration radius (default=5), img index (default=1),

def classify_new(stl_path, thin=10, max_dim=3, max_rad=5, idx=1,

class_dim=2):

diag = run_pipeline(stl_path, thin, max_dim, max_rad, idx)

knn.k_nearest_bottle(10, diag, class_dim)

def run_pipeline(stl_path, thin, max_dim=3, max_rad=5, idx=1):

scan_arr = p.stl_to_input(stl_path)

thinned_arr = p.thin_input(scan_arr, thin)

diag = p.run_rips(thinned_arr, max_dim, max_rad, idx)

store in corresponding csvs

#csvw.gen_pd_arrs(diag, 1, 'new')

return diag

Finally for ease of computation, we save a distance matrix of bottleneck distances among
persistence diagrams, and refer to that to find the k nearest neighbors of a given persistence
diagram.

35

import os.path

import numpy as np

import Persist as p

import csv

import persim

import CSV_Writer as csvw

import math

Print distances, given number of dgms and

dist = 'kde' or 'bottle' for bottleneck dist or kde + frechet dist

def gen_dist_mtx(dgms_path, dgms_len, dist):

dist_mtx = []

dgms = []

for f in os.listdir(dgms_path):

cur_name = dgms_path + '/' + f

if os.path.isfile(cur_name):

file = open(cur_name, "r")

csv_reader = csv.reader(file)

dgm = []

for row in csv_reader:

dgm.append(row)

dgms.append(dgm)

else:

pass

kde + frechet distance, using our persist module

if dist == 'kde':

for i in range(dgms_len):

print("NOW COMPUTING DISTANCES FOR DGM ", i)

for each dgm, compute distance to all other diagrams

for j in range(dgms_len):

dist = p.kde_dist(dgms[i], dgms[j])

print("Dist(", i, j, ")", dist)

bottleneck distance, using persim module

elif dist == 'bottle' or 'wass':

for i in range(dgms_len):

print("NOW COMPUTING DISTANCES FOR DGM ", i)

cur_i = np.asarray(dgms[i])

x = cur_i.astype(np.float)

#maintain distances to append to dist matrix

dists_to_x = []

36

for j in range(dgms_len):

cur_j = np.asarray(dgms[j])

y = cur_j.astype(np.float)

if j != i:

print("ON ITER: i = ", i, "j = ", j)

if dist == 'bottle':

if len(x) != 0 and len(y) != 0:

d = persim.bottleneck(x, y)

print(d)

dists_to_x.append(d)

else:

dists_to_x.append(math.inf)

elif dist == 'wass' and (len(x) != 0 and len(y) != 0):

Ms = range(5, 100, 2)

ds = [persim.sliced_wasserstein(x, y, M=M) for M in

Ms]

print(ds[99])

dists_to_x.append(ds[99])

append to matrix

dist_mtx.append(dists_to_x)

write matrix to file

out_fname = "./output/out_diag/" + dist + "_mtx1"

csvw.write_pd_arr(dist_mtx, out_fname)

To conclude the source code section, we include select key methods from the web app. To
begin, below is the Python script running in a docker container which unzips a new DICOM
image, stages the dicom in the fully preprocessed numpy format, and then conducts the full
cancer diagnosis.

import zipfile

import numpy as np

import Preprocess as p

import tensorflow as tf

from tensorflow.keras import layers, models

import os

def unzip(filepath, outpath):

with zipfile.ZipFile(filepath, 'r') as zip_ref:

zip_ref.extractall(outpath)

37

def stage_np(in_np, model_shape):

new_np = np.resize(in_np, (1, model_shape[1], model_shape[2],

model_shape[3]))

return new_np

do full prediction given new input

In: input .zip, output for unzipped .dcms, output for preprocessed np

array, model

def full_predict_new(zipfile_in, zipfile_out, npy_save, model_path):

model = tf.keras.models.load_model(model_path)

unzip(zipfile_in, zipfile_out)

zipfile_OG_dir = os.listdir(zipfile_out)[0]

p.save_npy(zipfile_out + '/' + zipfile_OG_dir, npy_save)

in_np = np.load(npy_save)

To plot fully preprocessed lung, uncomment

#pad_value = 170

#p.plot_3d((~(in_np[0] == pad_value)).astype(int), 0)

new_np = stage_np(in_np, model.input_shape)

prediction = model.predict([new_np])

outputs = ['false', 'true']

classidx = np.argmax(prediction, axis=1)

if classidx > 0:

return outputs[1]

else:

return outputs[0]

def diagnose(scanURL, fileName):

scanStorage = "scanFolder"

pathToScan = "./" + scanStorage + "/" + fileName

download the scan from the given URL

wget.download(scanURL, out=scanStorage)

send the scan through the dianosis ML model

theResult = processScan.full_predict_new(pathToScan, 'scan_out',

'scan_out.npy', './Basic-CNN.model')

delete the downloaded scan to remove scan file clutter

38

os.remove("scan_out.npy")

for rmvFile in os.listdir('scan_out/' + os.listdir('./scan_out')[0]):

os.remove(os.path.join('scan_out/' + os.listdir('./scan_out')[0],

rmvFile))

for f in os.listdir(scanStorage):

os.remove(os.path.join(scanStorage, f))

return theResult

This is a POST endpoint that receives zipped dicom scan files ready for analysis. We
download the scan given a URI, and run the scan through the model to receive a “true” or
“false” diagnosis. Finally, to maintain the state in the application before the method is called,
we remove the downloaded scan from the file structure.

@app.route('/api/v1/diagnose', methods=['POST'])

def diagnose():

##scanURL = request.form['scan_url']

##fileName = request.form['file_name']

content = request.get_json(force = True)

scanURL = content['scan_url']

fileName = content['file_name']

scanStorage = "scanFolder"

pathToScan = "./" + scanStorage + "/" + fileName

download the scan from the given URL

wget.download(scanURL, out=scanStorage)

send the scan through the dianosis ML model

theResult = processScan.full_predict_new(pathToScan, 'scan_out',

'scan_out.npy', './2d-CNN.model')

delete the downloaded scan to remove scan file clutter

os.remove("scan_out.npy")

for rmvFile in os.listdir('scan_out/' + os.listdir('./scan_out')[0]):

os.remove(os.path.join('scan_out/' + os.listdir('./scan_out')[0],

rmvFile))

39

for f in os.listdir(scanStorage):

os.remove(os.path.join(scanStorage, f))

return theResult

Check Out The Finished Product

To check out the finished product, reference the Appendix E to view the product captures or
follow the instructions in Appendix G to test out the app yourself.

40

References

[1] Lung cancer statistics: How common is lung cancer? American Cancer Society.
(n.d.). Retrieved September 30, 2021, from
https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html.

[2] Blandin Knight, S., Crosbie, P. A., Balata, H., Chudziak, J., Hussell, T., & Dive, C.
(2017, September). Progress and prospects of early detection in lung cancer.
Open biology. Retrieved September 30, 2021, from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627048/.

[3] Wexier, A. (2021, February 10). Lung cancer stages: Survival rate, prognosis, and
more. Medical News Today. Retrieved September 30, 2021, from
https://www.medicalnewstoday.com/articles/316198#survival-rates.

[4] Salary: Radiologist | glassdoor. Glassdoor. (n.d.). Retrieved October 22, 2021, from
https://www.glassdoor.com/Salaries/radiologist-salary-SRCH_KO0,11_IP3.htm.

[5] Find an NCI-designated cancer center. National Cancer Institute. (n.d.). Retrieved
October 22, 2021, from
https://www.cancer.gov/research/infrastructure/cancer-centers/find.

[6] Del Ciello, A., Franchi, P., Contegiacomo, A., Cicchetti, G., Bonomo, L., & Larici, A.
R. (2017). Missed lung cancer: When, where, and why? Diagnostic and
interventional radiology (Ankara, Turkey). Retrieved September 30, 2021, from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338577/.

[7] Somasundaram, E., Litzler, A., Wadhwa, R. R., & Scott, J. G. (2020, January 1).
Persistent homology of tumor ct scans predicts survival in lung cancer. medRxiv.
Retrieved September 30, 2021, from
https://www.medrxiv.org/content/10.1101/2020.12.06.20244863v1.full.

[8] Simon, S. (2017, February 2). Lung cancer screening rates remain low. American
Cancer Society. Retrieved October 22, 2021, from
https://www.cancer.org/latest-news/lung-cancer-screening-rates-remain-low.html.

[9] Rice, S. (2015, February 6). Medicare will pay for lung CT scans for cancer
screening. Modern Healthcare. Retrieved October 22, 2021, from
https://www.modernhealthcare.com/article/20150205/NEWS/150209967/medicar
e-will-pay-for-lung-ct-scans-for-cancer-screening.

41

https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627048/
https://www.glassdoor.com/Salaries/radiologist-salary-SRCH_KO0,11_IP3.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5338577/
https://www.medrxiv.org/content/10.1101/2020.12.06.20244863v1.full

[10] Islami F, Miller KD, Siegel RL, et al. National and State Estimates of Lost Earnings
From Cancer Deaths in the United States. JAMA Oncol. 2019;5(9):e191460.
doi:10.1001/jamaoncol.2019.1460

[11] Henderson JT, Webber EM, Sawaya GF. Screening for Ovarian Cancer: Updated
Evidence Report and Systematic Review for the US Preventive Services Task
Force. JAMA. 2018;319(6):595–606. doi:10.1001/jama.2017.21421

[12] How to check for ovarian cancer: Ovarian cancer screening. American Cancer
Society. (n.d.). Retrieved October 22, 2021, from
https://www.cancer.org/cancer/ovarian-cancer/detection-diagnosis-staging/detecti
on.html.

[13] “Gudhi Library.” GUDHI,
https://gudhi.inria.fr/python/3.0.0/cubical_complex_user.html.

[14] “Vietoris–Rips Complexes.” Vietoris–Rips Complexes,
https://mrzv.org/software/dionysus2/tutorial/rips.html.

[15] Bukkuri, Anuraag, et al. “Applications of Topological Data Analysis in Oncology.”
Frontiers, Frontiers, n.d,
https://www.frontiersin.org/articles/10.3389/frai.2021.659037/full.

[16] Svoboda, Elizabeth. “Artificial Intelligence Is Improving the Detection of Lung
Cancer.” Nature News, Nature Publishing Group, 18 Nov. 2020,
https://www.nature.com/articles/d41586-020-03157-9.

[17] Ardila D, Kiraly AP, Bharadwaj S, Choi B;Reicher JJ, Peng L, Tse D, Etemadi M,
Ye W, Corrado G, Naidich DP, Shetty S, “End-to-End Lung Cancer Screening
with Three-Dimensional Deep Learning on Low-Dose Chest Computed
Tomography.” Nature Medicine, U.S. National Library of Medicine,
https://pubmed.ncbi.nlm.nih.gov/31110349/.

[18] Software engineering code - ACM ethics. ACM Ethics - The Official Site of the
Association for Computing Machinery's Committee on Professional Ethics.
(2018, December 19). Retrieved October 23, 2021, from
https://ethics.acm.org/code-of-ethics/software-engineering-code/.

[19] W3C. (n.d.). Retrieved October 23, 2021, from
https://www.w3.org/standards/webdesign/.

[20] The best way to build web apps without code. Bubble. (n.d.). Retrieved October 23,
2021, from https://bubble.io/.

42

https://www.nature.com/articles/d41586-020-03157-9
https://ethics.acm.org/code-of-ethics/software-engineering-code/
https://bubble.io/

[21] Al Mohammad, B, et al. “Radiologist Performance in the Detection of Lung Cancer
Using CT.” Clinical Radiology, The Royal College of Radiologists, 8 Oct. 2018,
https://www.clinicalradiologyonline.net/article/S0009-9260(18)30574-9/fulltext#:
~:text=When%20planning%20for%20a%20large,similar%20to%20cancer%20cen
ter%20radiologists.

[22] Lawson, Peter, et al. “Persistent Homology for the Quantitative Evaluation of
Architectural Features in Prostate Cancer Histology.” Nature News, Nature
Publishing Group, 4 Feb. 2019,
https://www.nature.com/articles/s41598-018-36798-y.

[23] Liao, Fangzhou, et al. “Evaluate the Malignancy of Pulmonary Nodules Using the 3d
Deep Leaky Noisy-or Network.” ArXiv.org, 22 Nov. 2017,
https://arxiv.org/abs/1711.08324.

[24] “Notebook on Nbviewer.” Jupyter Notebook Viewer,
https://nbviewer.org/github/bckenstler/dsb17-walkthrough/blob/master/Part%201.
%20DSB17%20Preprocessing.ipynb.

Appendix A: Calculating the Benchmark

In this section we discuss our methods for preparing a benchmark with which to compare
artificial intelligence to a human radiologist. Namely, due to the demonstrated sensitivity and
specificity rates determined in [21], we compute an expected accuracy rate for conventional
radiologists, assuming that they observe cancer positive or cancer negative patients with the
same frequency as is presented in our data. That is, in the Kaggle data science bowl dataset used
for training our neural networks, 70% of patients were classified as not having cancer, and 30%
of patients were cancer positive. This leaves the simple calculation:

(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 * 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜) + (𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 * 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑖𝑜)

= 0. 75 * 0. 7 + 0. 82 * 0. 3 = 0. 792 = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

Admittedly, our metric is resting on the major assumption that radiologists in practice experience
roughly 70% of patients being healthy and 30% of patients presenting lung cancer. We believe
that this is a reasonable assumption given that the Kaggle data science bowl strives for datasets
that are representative of the corresponding phenomenon in practice. However, such a jump
should undoubtedly be noted when assessing our benchmark for performance.

Appendix B: Model Architecture, Preprocessing, and Statistical Significance

43

This section covers the preprocessing techniques used, the model architectures we used for a 2D
and 3D CNN, and the statistical significance of our achieved accuracies.

Pre-Processing: Our implementation was adapted from the winning preprocessing
implementation of the 2017 Kaggle data science bowl. After successfully downloading the
DICOM dataset, we convert pixel data to Hounsfield Units, allowing us to select regions of a
scan according to radiodensity. We then use careful thresholding to identify background pixels
(water and air in the lung) and build a binary mask accordingly. Then, a handful of gaps
inevitably will exist in the subsequent lung mesh, which we fill. Finally, to remove noisy
esophageal structures, we separate each half of the lung, and delete the leftover networks. As a
final clean up step, we fill in the resulting excess gaps in 2D binary mask slices for our image,
and obtain after some careful thresholding a clean picture of only the lung and interior nodules.
The process is extremely robust, and is undoubtedly a primary factor in the success of our
implemented models.

(a) Before preprocessing at lung threshold (b) After preprocessing at lung threshold

2D CNN: After accomplishing a trustworthy preprocessing framework for our dicom data, our
most successful model implementation was a two-dimensional convolutional neural network,
with convolutions being conducted slice by slice in the overall image of the lung. This was
implemented using the standard Tensorflow Keras CNN framework. After hypertuning, we
found that the model performed best with four hidden layers, each with 32 filters, two dense
layers, and the Relu activation function. In support of the accuracy result achieved by the CNN,
our model was trained on a batch of 200 dicom images using five-fold cross validation, (with
80/20 training/test set splits) with a mean accuracy of 82%. This winning model was saved and is
the functioning classifier in our web application. It is worth noting that this model cannot be

44

trained on a standard laptop, and we were forced to depend on the free trial of Google cloud’s AI
platform to gain sufficient computing power.

3D CNN: We achieved slightly less, though comparable, success with a three-dimensional
convolutional neural network, again using tensorflow. The strongest 3D CNN we could muster
achieved a 79.2% accuracy, and had three hidden layers and two dense layers. Despite achieving
close results to the 2D CNN, the three-dimensional implementation had clear shortcomings in
time complexity, which is expected as a consequence of its three-dimensional convolutions. In
order to train the 3D CNN on 200 images, the authors were forced to quickly use a free trial of
Google cloud’s AI platform, with a VM running 16 CPUs each with 128 GB of RAM.

TDA: We achieved the least success, in time complexity and in accuracy (63%), from a k-nearest
neighbor model derived from bottleneck distances between the persistence diagrams of a
Vietoris-Rips filtration on the preprocessed point data. This was done once for each homology
group (0,1 and 2), using a batch of 100 scans, and setting K=5. In particular, we were interested
in the 2nd homology group, which collects so-called ‘voids’ in data. In this way, TDA would
directly portray the presence or absence of nodules in a scan through collecting a series of
pockets. The reasoning behind this relatively quick abandonment of TDA came as a result of its
time complexity. Conducting a Vietoris-Rips filtration on a representative number of points is an
extremely computationally expensive process, and actually required leaving the model running
for multiple days (for 400 scans) over spring break. Obtaining a filtration, even on only 100
images, requires significant pruning of a dataset. Because nodules make up such a small subset
of the total points in a point cloud, thinning our data to a computationally reasonable degree
meant forgoing the actual topological features we were trying to detect in the first place.

Statistical Significance: The statistical significance of these models also suffers from the sheer
volume of our data, which is challenging to process with the standard laptop on large scales. That
said, we are able to bolster our results for the 2D CNN as maintained by 5-fold cross validation,
occurring in 2 batches each of 200 images. Higher cardinality training sets and cross validation
parameters were attempted, but exhausted the compute resources of Google’s AI platform
(dangerously close to the end of our free trial for the $1500/month compute resources). These
models should be taken with a grain of salt, and given more time and computational resources
we expect that these results could be bolstered further.

Appendix C: Usability Study

In order to test usability and intuitiveness of our app, we conducted a usability study where we
prompted 20 people who had never used the app to accomplish the task of analyzing a CT Scan
and telling us what the results of that scan were. 90% of these participants successfully

45

accomplished this task without us saying a word to them through the process. A few participants
even remarked, “That was it? That was super simple.” at the end of the test.

Appendix D: Customer Discovery Sprint

To understand the end users of the Topo Health App, we conducted a week-long customer
discovery sprint where we interviewed radiologists, radiology technicians, and oncologists.
Throughout this process we wanted to answer two main questions. We wanted to understand the
entire process of lung cancer diagnosis and treatment in detail and we wanted feedback as to how
we could build the app in the optimal way for day-to-day use by radiologists.

It was a bit difficult to find and interview radiologists and oncologists but ultimately we were
able to interview four radiologists and two oncologists (one of whom does research directly
related to AI diagnosis of lung cancer). We used a variety of interview methods. We created
reddit threads, we had conversations over the phone, and we conducted Zoom interviews.

46

47

Ultimately, we were able to answer our two questions. We gained a detailed understanding of
the lung cancer diagnosis and treatment process and we received feedback informing us how to
best design the Topo Health app for day-to-day use by radiology technicians.

Appendix E: Product Captures

Here are captures of the Topo Health App and short explanations of the functionality represented
by each screenshot. You can also reference Appendix G if you want to test out our app for
yourself.

Marketing Page

48

Our marketing page is meant to show off the Topo Health app to anyone who is interested in
learning about the app. We walk through how the app works and we explain the accuracy our AI
models. Additionally, visitors can watch a short demo of our app or read this portfolio by
clicking the top two buttons on the page.

Uploader Section

49

When you log in as a technician, you’re immediately directed to the “Uploader Section” of the
app. From here you can drag and drop multiple zipped CT scan files into the uploader window,
assign a patient to those scans and analyze them.

Results Section

As a technician in the “Results Section”, you can view past scans and their results. You can use a
variety of search and filter tools to find the exact scan that you’re looking for.

Patients Section

50

As a technician in the “Patients Section”, you can view all the patients belonging to your clinic.
You can use a variety of search and filter tools to find the exact patient that you’re looking for.
Additionally, you can create a new patient in this section and you can click into a patient to view
and update patient information and to view scans associated with that patient.

Profile Section

51

As a technician in the “Profile Section”, you can view and edit your profile.

Settings Section

As a technician in the “Settings Section”, you can contact us (the app admin) with any question
or to report a bug. You can also read up on frequently asked questions, you can view the terms

52

and conditions and privacy policy, and you can access additional settings by clicking on the
“settings” tab.

Clinic Admin Dashboard

As a clinic, you can view all the technicians that are currently working under your organization.
Each technician must be provisioned before they can access the app or your sensitive patient
information.

Appendix F: Old Work Schedule

Naturally, our work schedule changed as we started to work on the project. The old work
schedule simply lists the high-level tasks that we could predict. Our actual work schedule broke
these high-level tasks (epics) down into smaller tasks (stories) that could be accomplished in our
sprints. Below, is an exported representation of our old work schedule:

53

Old Work Schedule 1

Old Work Schedule
Name Assign Date Property Status

Cushion Not started

Testing Joaquin Monterrosa Nic Dzomba B Ben Not started

Testing Joaquin Monterrosa Nic Dzomba B Ben Not started

General
Market
Research

Joaquin Monterrosa Not started

Low Fidelity
Mockups

Joaquin Monterrosa Not started

High Fidelity
Mockup

Joaquin Monterrosa Not started

Implementing
Databases
and Storage

Joaquin Monterrosa Not started

Build Static
Front-End

Joaquin Monterrosa Not started

Implement
Server

Joaquin Monterrosa Not started

Write back-
end functions

B Ben Nic Dzomba Not started

Make Front-
end
functional

Joaquin Monterrosa Not started

Connect
Databases to
Front-end

Joaquin Monterrosa Not started

Connect
Server to
Front-end

Joaquin Monterrosa Not started

Preprocess
.dcm images

B Ben Not started

Implement &
Test TDA

B Ben Not started

Implement &
Test CNN

Nic Dzomba 2 weeks Not started

Implement &
Test Deep
Learning

Nic Dzomba B Ben Not started

Implement
Winning
Model On
Server

Nic Dzomba B Ben Not started

@May 1, 2022 → May 7, 2022

@April 17, 2022 → April 23, 2022

@April 24, 2022 → April 30, 2022

@January 23, 2022 → January 29, 2022

@January 23, 2022 → January 29, 2022

@January 30, 2022 → February 5, 2022

@March 20, 2022 → March 26, 2022

@February 6, 2022 → February 12, 2022

@April 3, 2022 → April 9, 2022

@April 3, 2022 → April 9, 2022

@February 13, 2022 → March 12, 2022

@March 27, 2022 → April 2, 2022

@April 10, 2022 → April 16, 2022

@January 23, 2022 → January 29, 2022

@January 30, 2022 → February 19, 2022

@January 30, 2022 → February 12, 2022

@February 13, 2022 → March 5, 2022

@March 6, 2022 → March 12, 2022

https://www.notion.so/Cushion-859eeec1632f42a5977b86ae87e48e98
https://www.notion.so/Testing-de540a2e7ecc4f4483fa4aee5e6d4031
https://www.notion.so/Testing-87e065d725364cafbb54b5557c101674
https://www.notion.so/General-Market-Research-e5bf0581303144a8a719dd6d4ff16f59
https://www.notion.so/Low-Fidelity-Mockups-18c7dedc8ce34a8eabeea69553787639
https://www.notion.so/High-Fidelity-Mockup-9a15563ec88e43dda25fe933101a5c16
https://www.notion.so/Implementing-Databases-and-Storage-ef32a3fc862c44d989d35f0e3efdb31c
https://www.notion.so/Build-Static-Front-End-f711bb04bcf940fb8eaa1e6d549ce4d5
https://www.notion.so/Implement-Server-2e3e5f7cb05242af85bfb354c129ec03
https://www.notion.so/Write-back-end-functions-d84b4d216d514ba4811f78ec053a1503
https://www.notion.so/Make-Front-end-functional-036e09ef8d7c42b58ca60af8724152ac
https://www.notion.so/Connect-Databases-to-Front-end-4885c5a6a3b04630878c336760d0cc7a
https://www.notion.so/Connect-Server-to-Front-end-b6bffca291ff492489ae52d5fb9b81e3
https://www.notion.so/Preprocess-dcm-images-edca0bd7dbc84bfbb4b1e7b7cde32621
https://www.notion.so/Implement-Test-TDA-d6f0475957814aca99cfe075c57836e5
https://www.notion.so/Implement-Test-CNN-081947cdcbcf489faa65deb1ab88d88e
https://www.notion.so/Implement-Test-Deep-Learning-f12b07158ba2499c8c2f72221f6d74ee
https://www.notion.so/Implement-Winning-Model-On-Server-91a465a828794a50befa0ba31bab2628

Old Work Schedule 2

Name Assign Date Property Status

Model
Results →
Interpreted
Results

Nic Dzomba B Ben Not started

Develop
Prognosis
Template

Nic Dzomba Not started

Spring Break
(Cushion)

Not started

@March 20, 2022 → April 2, 2022

@April 10, 2022 → April 16, 2022

@March 13, 2022 → March 19, 2022

https://www.notion.so/Model-Results-Interpreted-Results-c674d4c234f246e68c07ea3ebc5f6283
https://www.notion.so/Develop-Prognosis-Template-cb57e936ca0a4e7495ae3fc2e8d4f5d1
https://www.notion.so/Spring-Break-Cushion-6de67bf105b44a6a9efc80c00953dad4

Appendix G: Test Out The App

To test out the app, click the link below and follow the instructions presented:

https://eight-net-3e0.notion.site/Test-Out-Topo-Health-51bb452a8db24612b28773b905caacdf

Appendix H: Key Features

Some key features of the Topo Health app include:

HIPAA Database

We’re not naive enough to believe our app is fully ready for a HIPAA audit but by storing all of
our personal identifiable information (PII) and personal health information (PHI) on a HIPAA
compliant database (separate from the normal database), our app is in a good position to achieve
HIPAA compliance in the future.

Multi-Scan Uploading

Our “uploader window” allows for multiple scans to be uploaded and analyzed at one time. This
is important because radiologists told us that they would like to analyze scans in batches.

Strong User Access Managment

All technicians must first be provisioned by their parent clinic before they can access the app.
Clinics can control this provisioning through an admin dashboard on the app. Additionally,
clinics must be provisioned by app admin using the app admin dashboard. All in all, this allows
for strong user access management which is a vital part of the Topo Health app.

Scalable Capacity

Topo Health has been built to scale by using platforms that allow for elastic scaling. We use
AWS (through Bubble) to host our front-end and normal database and we use Google Cloud
Platform to host our AI models.

Search and Filter Options For Scans and Patients

Technicians can search and filter for patients and past scans using a variety of hand-picked
search and filter options.

CT Scan Storage

54

https://eight-net-3e0.notion.site/Test-Out-Topo-Health-51bb452a8db24612b28773b905caacdf

Topo Health allows users to securely store their CT scans on our database. This is a valuable
feature because CT scans are large files and they can be hard to send and store via traditional
platforms.

Fast Diagnosis

Our winning 2D CNN model is hosted and can execute rapidly (~90 seconds per scan) on a
cloud server.

Appendix I: Who Did What?

Joaquin Monterrosa

Joaquin was responsible for the entire product side of the Topo Health. He developed the
web-app, configured the Google Cloud Platform, designed the databases, added all the necessary
API endpoints, created the branding, designed the UI and userflow, conducted usability testing,
and did anything else related to the product. He also served as the Scrum Master for our agile
development lifecycle.

Ben Holmgren

Ben was responsible for the machine learning and data management side of Topo Health. He
constructed the pipeline for dicom datasets, found and adapted the preprocessing
implementation, and constructed the TDA model and CNNs. When the models weren’t possible
to train on large datasets locally due to high compute costs, he configured a Google cloud
environment to train the models. He also dealt with the statistical significance of the final chosen
CNN, implementing cross validation, and integrated the saved model into Google cloud to be run
in the final web application.

Nic Dzomba

Nic was responsible for working alongside Ben on the preprocessing of the dicom datasets and
the machine learning implementation. Additionally he did the initial set up & configuration of
the Google cloud environment.

Appendix J: Alternative Design Patterns

We used a unique tech stack that combined low-code platforms with custom code. Because of
this, we didn’t use a traditional object-oriented design and therefore didn’t include a class
diagram in the architecture section of this portfolio. That being said, we did design a class

55

diagram depicting how our app could be implemented in an object-oriented manner. This
alternative architecture is shown below.

56

User

-userId: int
-email: string
-avatar: image

+signUp()
+login()

Topo Health - class diagram
Joaquin Monterrosa | April 28, 2022

Clinic

-clinicName: string
-isProvisioned: boolean

-provisionClinician()
-createClinicianProfile()
-createClinicProfile()
+uploadScan()
+searchHistory()

Clinician

-firstName: string
-lastName: string
-parentClinic: Clinic
-isProvisioned: boolean
-jobTitle: string

-createClinicianProfile()

App Admin

-firstName: string
-lastName: string

-provisionClinic()
-createClinicProfile()
-createAppAdminProfile()

FAQ

-faqId: int
-question: string
-answer: string
-entryTime: timeStamp

+askQuestion()
+answerQuestion()
+viewFAQ()

Scan

-scanId: int
-dmcFile: string
-pngFile: string
-entryTime: timeStamp
-patient: Patient
-results: Result

+preprocess()
+analyzeScan()

Patient

-patientId: int
-clinician: Clinician
-firstName: string
-lastName: string
-DOB: date
-identifier: int

+archiveScanResults()

1

0..*

0..1

0..*

1
1

0..1
1..*

Notes

- create___Profile() methods also
include update functionality

- This class diagram is primarily conceptual.
These classes wilIl be implemented using a
web-framework not a strict OO language.

- Concrete user classes are created using a
Factory Pattern

- Result Class uses a decorator pattern to
add additional result fields and functionality
to positive results.

- All getters and setters are assumed
methods in each class

<<interface>>
Factory

+createClinic()
+createClinician()
+createAppAdmin()

Concrete Factory

+createClinic()
+createClinician()
+createAppAdmin()

Result

-resultId: int
-scan: Scan
-processTime: float
-isPositive: boolean
-additionalInfo: string

+generateResults()
+viewResults()

NegativeResult

+generateResults

ResultDecorator

+result: Result
-remainingLife: Float

+generateResults()

PositiveResultDecorator

+generateResults()

	Capstone Portfolio (1)
	Resume21
	DzombaResume111021
	Capstone Resume
	Work_Schedule
	Topo Health Use-Case Diagram
	Topo Health Use-Case Diagram
	Use case diagram

	Topo Health Sequence Diagram - Upload Scan
	Topo Health Sequence Diagram - Upload Scan
	Upload Scan

	Topo Health Component Diagram
	Topo Health Component Diagram
	Component Diagram

	Topo Health - ER Diagram
	Topo Health - ER Diagram
	ERD (crow's foot)

	Algorithms
	Old_Work_Schedule
	Topo Health - class diagram
	Topo Health - class diagram
	UML class diagram

