
Yellowstone Ecological Research Group

Mobile Data Collection Application

Natalia Eigner, Grayson O’Leary

Montana State University

Spring 2022

Table of Contents

Introduction…………………………………………………………………………………………………….…3

Qualifications………………………………………………………………………………………………….….4

Background…………………………………………………………………………..…………………….…….6

Work Schedule…………………………………………………………………………………………….……..7

Proposal Statement…………………………………………………………………………..…..……….…….9

Methodology………………………………………………………….……………………………….………..11

Appendix…………………………………………………………………….………………..…………………15

References…………………………………………………………………………………..…………………..32

2

Introduction

The Yellowstone Ecological Research Center (YERC) aims to provide communities surrounding

the Greater Yellowstone Region with comprehensive data on the health and changes of this ecosystem

in order to empower data-driven decision making. YERC utilizes various forms of data collection

including satellite imagery, weather history, environmental sensors and infield data collection.

Currently, users manually transfer this data to YERC’s online database, EPIIC. This method is not only

inefficient for users, but also increases errors and creates a lack of standardization in the data. This

cross-platform mobile application will replace manual collection and transfer, thus streamlining the

data collection process. Users log in with their YERC credentials and the user preferences associated

with their account will determine which data forms they have access to. Users are then able to access

these data forms remotely and are able to upload them to the EPIIC platform when they are back in

service. The data forms are populated directly from YERC’s database and can thus be updated by

administrators asynchronously without need to update the mobile application. This will also allow

YERC to develop new data forms in the future as needed. In sum, this mobile application will

streamline the data collection process of the Yellowstone Ecological Research Center resulting in more

accurate and standardized data.

3

Qualifications

4

5

Background

The Yellowstone Ecological Research Center (YERC) is committed to restoring and protecting

the fragile ecosystem of the Greater Yellowstone Region. They believe that in order to do this, all

community stakeholders must be provided with a comprehensive understanding of the health of these

ecosystems through scientific data1. YERC utilizes a variety of sources to establish this holistic

collection of ecological data including satellite imagery, weather history, environmental sensors and

manual, infield data collection. They have recently created an platform, EPIIC, that allows for this data

to be input into their database through an online dashboard. The infield data collection, however, is still

done manually using a pen and paper and transferred onto the dashboard. This method is not only

cumbersome for users, but also increases errors in their data. While YERC had a mobile application for

data collection in the past, it was not robust enough to sustain upgrades and is no longer functional.

The goal of this project, therefore, was to create a cross-platform mobile application that will

streamline the data collection process. The application is robust enough to sustain device and library

upgrades and can adapt as the needs and tools used by YERC change. This application also

interfaces seamlessly with the EPIIC platform and allows users to both save forms to the device in the

field and upload this data when back in service.

The project outlined in this document is specific to YERC and their processes. As a result, it is

important to define the semantics used by YERC for their data collection process. A field project

defines what kind of data an individual is collecting, whether it be a soil sample, water quality, or fish

tag. Each field project has a sample design which defines what kinds of observations are being

collected (i.e. temperature, pH, date, photos, etc.), where and how these observations are collected,

and the field project’s time frame. The protocol informs users when they are in the field exactly how to

carry out the sample collection according to the sample design. The observations specified by the

sample design are then recorded into a data form. The data forms differ for each field project and are

defined in the EPIIC platform.

It is important to note that there is a similar tool to what we created called Survey123 from

ArcGIS2. This tool, however, has some key differences from our solution. First, our application interacts

directly and seamlessly with the EPIIC platform and their database without the extra steps needed to

adapt Survey123 to YERC’s specific needs. Our solution can also be utilized by users with little to no

initial training or guidance, unlike Survey123. We have accomplished this through a simple interface

and clear application flow. Survey123 is also limited to infield data collection, while our mobile

2
https://survey123.arcgis.com/

1
https://www.yellowstoneresearch.org/

6

application will provide YERC with the ability in the future to integrate other tools such as mammal

tracking and environmental sensors if needed.

Work Schedule

To complete this project we utilized the Agile development life cycle. This iterative development

life cycle allowed us to continually refine our mobile application so that the final product is a holistic

solution to the problem presented by YERC. We began by developing the basic structure for each

page of the application. This allowed us to test the flow of the application and refine the structure as

needed. We then added the basic front-end functionality for each page, making sure that all potential

use cases were considered and accounted for in the design. At the same time, one of our team

members worked on the back-end functionality, linking the front end to pull data from YERC’s

database. Finally, the remaining time was used to add the rest of the requirements for the front-end

and to test the application. We kept track of each milestone using GitLab.

Our initial schedule was as follows:

Milestone Assigned To Time Frame Duration

Initial Exploration and Decisions Both 07/21 - 01/22

Front End

Create application pages - basic
structure and content

Tali 01/19/22 - 01/28/22 9 days

Establish overall architecture and
application flow

Grayson 01/19/22 - 01/28/22 9 days

Test then integrate feedback Both 02/01/22 - 02/08/22 7 days

Back End

Storage and search for dataforms Tali 02/09/22 - 02/23/22 14 days

Upload function Tali 02/24/22 - 03/10/22 14 days

Link upload with EPIIC Tali 03/11/22 - 03/25/22 14 days

Create JSON link between EPIIC
and data form format

Grayson 02/09/22 - 02/23/22 14 days

Link login credentials from EPIIC to
mobile app

Grayson 02/24/22 - 03/10/22 14 days

7

Create new account functionality Grayson 03/11/22 - 03/25/22 14 days

Test then integrate feedback Both 03/25/22 - 04/01/22 7 days

Final Steps

Add functionality for other capstone
protects if time allows

Both 04/01/22 - 04/15/22 14 days

Stress test application in the field Both 04/01/22 - 04/15/22 14 days

Revise any errors Both 04/15/22 - 04/22/22 7 days

Create documentation Tali 04/22/22 - 04/27/22 5 days

Inevitably, certain milestones in this schedule took more time than we anticipated while others
took less. As a result, our work schedule this semester looked like this:

Milestone Assigned to Time Frame

App screenflow Tali 12/09/2021 - 1/25/2022

App handshake Grayson 12/09/2021 - 1/25/2022

Create home page Tali 1/26/2022 - 2/15/2022

Link login query with page Grayson 1/26/2022 - 3/4/2022

Create consistent app design Tali 2/2/2022 - 2/15/2022

Create sample JSONs for data forms Grayson 2/9/2022 - 2/17/2022

Revise file structure Tali 2/15/2022 - 2/15/2022

Create observation type selection that updates app state Tali 2/15/2022 - 3/7/2022

User preferences and data form query builder Grayson 3/4/2022 - 4/22/2022

Update data form page to populate from JSON Tali 3/8/2022 - 4/8/2022

Enable dropdown widget Tali 3/25/2022 - 3/25/2022

Link API calls with data form building Grayson 4/8/2022 - 4/22/2022

Display saved data forms on home page Tali 4/14/2022 - 4/19/2022

Add ability to save data forms locally Tali 4/12/2022 - 4/14/2022

Add photo picker field Tali 4/14/2022 - 4/28/2022

8

Proposal Statement

Functional

All of our primary functional requirements for this project were met. The user is able to log in to

the application using their credentials which are then verified by the EPIIC platform. The application

then queries the database and returns the user’s available data form definitions. After they have

logged in, the user can select a field project type and open the corresponding data form. The user can

then record observations in this data form and save the data form to their device while they are in the

field and potentially out of service. The data forms allow for text input, date selection, and image

selection. The functionality to upload the data form to the EPIIC platform has been created, but as

YERC has not yet created this API call, the upload cannot currently be completed. The user is also

able to edit the data form after it has been saved. Potential further work for this project includes the

ability to apply different filters for sorting the saved data forms and adding more specialized field types

to the data forms.

Non-Functional Requirements

We have met the non-functional requirements of using JSON files to update the data forms for

each field project type. This will allow YERC administrators to edit the data forms or add new ones

without having to update the entire application. We have also met the non-functional requirement of

having a clear and easy to navigate interface so that the application can be used out in the field

without intensive instruction.

Performance Requirements

We have met the primary performance requirements of being able to save data forms to the

device when users are in an area without service. There is also adequate storage allocated for saving

the data forms, ensuring that no data is lost.

Interface Requirements

The primary interfaces for our application are communication between the user and the mobile

application and between the mobile application and the database. We have met these requirements by

allowing for the data forms to both be saved to the device and uploaded to the EPIIC database. As

was stated previously, data forms cannot currently be uploaded to the database because this API call

9

has not yet been created, but the functionality for this is present in the code. The design and flow of

the interface is also easy to navigate and interact with so that minimal effort is needed from the user to

use this application.

Development Standards and Tools Used

The mobile application was developed using Flutter, a UI development kit that utilizes the

programming language Dart. Developers on Mac systems used IntelliJ as an IDE, XCode for simulating

on iOS devices and Android studio for simulating on Android devices. Developers on Windows used

Visual Studio Code. GitLab was used for version control and for tracking and resolving issues.

Communication between the team and with our stakeholder took place over Slack. The application

was tested on simulated devices as well as with the EPIIC platform for compatibility.

10

Methodology

Use Case Diagram

11

Class Diagram

12

Component Diagram

As is evident in our class diagram, the builder pattern was implemented in our project design.

We chose this pattern as our specifications were to communicate updates from the EPIIC platform to

the data form structure on the mobile application. Thus, the application implements a data form

builder that builds a data form to the specifications set via an input JSON file. The application then

builds this data form according to these specifications. As a result, users will not have to manually

update their applications every time an update is applied to EPIIC. Instead, the application updates its

list of data forms and their structure when the user logs in while in service.

Our first course of action with this project was to decide what languages and software

development kit to use. In our decision making process, we singled out two of the biggest and most

feature complete mobile application development kits on the market: React Native and Flutter3. In

3
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021

13

making the decision between these two, we noted that they were very similar in the features they offer:

cross-platform compatibility, hot reload, and an extensive package selection. Since they are very

similar, our choice between the two came down to the difference between writing in JavaScript with

React or Dart with Flutter. As Dart is a newer language and seems to be preferred over JavaScript for

mobile applications we chose Flutter.

Another design choice we made was to integrate the data form types as a JSON file instead of

hard coding them into the application. By using a JSON file YERC administrators will be able to edit

the JSON files on the database and the mobile application will automatically receive these updates

when the user logs in and will populate the data forms accordingly. As a result administrators will not

have to update and redistribute the application every time a data form needs to be updated or added.

14

Appendix
Design Pattern
The Builder Pattern is implemented in json_to_form.dart and data_form_page.dart. A data form builder
is created within json_to_form.dart. The type of data form and its required field types are encoded in a
JSON and sent to the builder. The builder then creates this unique data form within the structure
created in the data form page. For example, an aquatic insect data form will require a time field, two
text input fields for number of kick samples and notes, and a photo selection field.

Code
main.dart
import …
void main() {
runApp(MyApp());

}
class MyApp extends StatelessWidget {
const MyApp({Key? key}) : super(key: key);
@override
Widget build(BuildContext context) {
return MaterialApp(
debugShowCheckedModeBanner: false,
title: 'YERC Mobile Application',
theme: ThemeData(
// Theme of application.
primarySwatch: Colors.lightGreen,

),
home: const LoginPage(title: 'YERC'),

);
}

}

data_form_page.dart
import …
class DataFormPage extends StatefulWidget {
const DataFormPage({
required this.storage,
required this.Form,
required this.typeState,

});
final FileStorage storage;
final String Form;
final String typeState;
@override
_DataFormPageState createState() => _DataFormPageState();

}
class _DataFormPageState extends State<DataFormPage> {
dynamic response;
File? image;

Icon fab = const Icon(Icons.check_box_outline_blank);
int fabIconNumber = 0;
generateFileName() {
String dataFormId = widget.typeState.replaceAll(' ', '-');
DateTime curDate = DateTime.now();
String formattedDate = DateFormat('yyyy-MM-dd–kk:mm').format(curDate).toString();

15

String filePath = dataFormId + formattedDate;
return filePath;

}
@override
Widget build(BuildContext context) {
Map formMap = json.decode(widget.Form);
return Scaffold(
appBar: AppBar(
title: Text('DataForm Page', style: TextStyle(fontSize: 16, color: Colors.grey[800])),
backgroundColor: Colors.white,
automaticallyImplyLeading: false,

),
body: Row(
children: <Widget>[
Expanded(
child: JsonForm(

storage: FileStorage(),
formMap: formMap,
typeState: widget.typeState,
onChanged: (dynamic response){
this.response = response;

}
),

),
],

),
floatingActionButton: Wrap(
children: <Widget>[
Container(
margin:EdgeInsets.all(5),
height: 40,
width: 80,
child: FloatingActionButton(
heroTag: "cancelBtn",
onPressed: () {
Navigator.pop(context);

},
child: Text('Cancel', style: TextStyle(fontSize: 12)),
backgroundColor: Colors.red[800],
foregroundColor: Colors.white,
shape: RoundedRectangleBorder(borderRadius: BorderRadius.all(Radius.circular(3.0))),

),
),
Container(
margin:EdgeInsets.all(5),
height: 40,
width: 80,
child: FloatingActionButton(
heroTag: "saveBtn",
onPressed: () {
for(var count = 0; count < formMap['dataFormsByIds'].length; count++){
if(formMap['dataFormsByIds'][count]['name'] == widget.typeState){
if(formMap['dataFormsByIds'][count]['filePath'] == ''){
String fileName = generateFileName();
formMap['dataFormsByIds'][count]['filePath'] = fileName;
widget.storage.writeDataform(response, fileName);
Navigator.pop(context);

}
else{
String fileName = formMap['dataFormsByIds'][count]['filePath'];

16

widget.storage.writeDataform(response, fileName);
Navigator.pop(context);

}
}

}
},
child: Text('Save', style: TextStyle(fontSize: 12)),
backgroundColor: Colors.lightGreen[600],
foregroundColor: Colors.white,
shape: RoundedRectangleBorder(borderRadius: BorderRadius.all(Radius.circular(3.0))),

),
),

],
),

);
}

}

json_to_form.dart
import …
class JsonForm extends StatefulWidget {
const JsonForm({
required this.formMap,
required this.onChanged,
required this.storage,
required this.typeState,

});
final Map formMap;
final ValueChanged<dynamic> onChanged;
final FileStorage storage;
final String typeState;
@override
_JsonFormState createState() => _JsonFormState(formMap);

}
class _JsonFormState extends State<JsonForm> {
final dynamic formGeneral;
// Initialize 2d array for pairs (fieldname, value)
dynamic response;
_JsonFormState(this.formGeneral);
@override
Widget build(BuildContext context) {
return Padding(
padding: const EdgeInsets.symmetric(horizontal: 5.0),
child: jsonToForm(),

);
}
Widget jsonToForm(){
final children = <Widget> [];
for (var count1 = 0; count1 < formGeneral['dataFormsByIds'].length; count1++){
if (formGeneral['dataFormsByIds'][count1]['name'] == widget.typeState){
children.add(
Padding(
padding: EdgeInsets.only(top: 20, bottom: 20),
child: Text(formGeneral['dataFormsByIds'][count1]['name'] + " Observation", style: TextStyle(fontSize: 26)))

);
for (var count = 0; count < formGeneral['dataFormsByIds'][count1]['attributes'].length; count++) {
response = List.generate(count, (i) => " ", growable: true);
Map item = formGeneral['dataFormsByIds'][count1]['attributes'][count];
if(item['widgetType'] == 'input' || item['widgetType'] == 'input') {
children.add(ListTile(

17

title: SimpleText(
name: item['name'],
labelText: item['labelText'],
hintText: item['hintText'],
required: item['required'],
inputValue: item['inputValue'],
widgetType: item['widgetType'],
response: response,
position: count,
pos1: count1,
onChange: onChange,

),
));

}
if(item['widgetType'] == 'Date Picker' || item['widgetType'] == 'date picker') {
children.add(ListTile(
title: DateField(
labelText: item['labelText'],
inputValue: item['inputValue'],
position: count,
pos1: count1,
onChange: onChange,

),
));

}
if(item['widgetType'] == 'attachment' || item['widgetType'] == 'attachment') {
children.add(ListTile(
title: PhotoField(
labelText: item['labelText'],
inputValue: item['inputValue'],
position: count,
pos1: count1,
onChange: onChange,

),
));

}
}

}
}
return ListView(
children: children,

);
}
void _handleChanged() {
widget.onChanged(formGeneral);

}
void onChange(int position, dynamic value, int pos1) {
setState(() {
formGeneral['dataFormsByIds'][pos1]['attributes'][position]['inputValue'] = value;
_handleChanged();

});
}

}

entry_fields.dart
import 'package:flutter/material.dart';
import 'data_form_page.dart';
import 'file_storage.dart';
class EntryField extends StatelessWidget {
final String name;

18

final String date;
final FileStorage storage;
final dynamic fileContents;
final String typeState;
EntryField({
required this.name,
required this.date,
required this.storage,
required this.fileContents,
required this.typeState,

});
@override
Widget build(BuildContext context) {
return Container(
margin: const EdgeInsets.only(top: 5.0),
child: Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
SizedBox(height: 12),
Column(
children: <Widget> [
Text(name, style: TextStyle(fontWeight: FontWeight.bold)),
Row(
crossAxisAlignment: CrossAxisAlignment.center,
mainAxisAlignment: MainAxisAlignment.spaceAround,
children: <Widget> [
Container(
child: Text(date),

),
Container(
child: IconButton(
icon: Icon(Icons.create_rounded, color: Colors.grey[800]),
onPressed: () {
Navigator.of(context).push(MaterialPageRoute(builder: (context) => DataFormPage(storage: FileStorage(),Form:

fileContents, typeState: typeState,)));
},

),
),
Container(
child: IconButton(
icon: Icon(Icons.cloud_upload, color: Colors.grey[800]),
onPressed: () {
},

),
),

],
),

],
),
SizedBox(height: 12),
Container(height: 2, color: Colors.lightGreen[600]),

],
),

);
}

}

file_to_entry.dart
import …

19

class FileEntry extends StatefulWidget {
const FileEntry({
required this.fileNames,
required this.storage,
required this.typeState,

});
final List fileNames;
final FileStorage storage;
final String typeState;

@override
_FileEntryState createState() => _FileEntryState();

}

class _FileEntryState extends State<FileEntry> {
String name = '';
String date = '';
int loc = 0;
_FileEntryState();

@override
Widget build(BuildContext context) {
return Padding(
padding: const EdgeInsets.symmetric(horizontal: 5.0),
child: fileToEntry(),

);
}

Widget fileToEntry(){
final children = <Widget> [];
for (var count = 0; count < widget.fileNames.length; count++) {
final extension = p.extension(widget.fileNames[count]);
if(extension == '.json') {
File(widget.fileNames[count]).readAsString().then((String contents) {
dynamic jsonContents = json.decode(contents);
name = jsonContents['dataFormsByIds'][loc]['name'];
//name = jsonContents['dataFormsByIds']['filePath'];
//name = name.replaceAll('-',' ');
for (var count = 0; count < jsonContents['dataFormsByIds'][loc]['attributes'].length; count++) {
Map item = jsonContents['dataFormsByIds'][loc]['attributes'][count];
if (item['widgetType'] == 'Date Picker' || item['widgetType'] == 'date picker') {
date = item['inputValue'];
children.add(ListTile(
title: EntryField(
date: date,
name: name,
storage: widget.storage,
fileContents: contents,
typeState: widget.typeState,

),
));

}
}

});
}

}
return ListView(
children: children,

);
}

20

}

login_page.dart
import …
import 'package:http/http.dart' as http;
import 'home_page.dart';
import 'file_storage.dart';

class loginInfo {
final String user;
final String pass;
loginInfo(this.user, this.pass);
Map<String, dynamic> toJson() => {
'username': user,
'password': pass,

};
}
Future<bool> signIn(http.Client client, String loginInfo) async{
final headers = {"Content-type": "application/json"};
final response = await client.post(Uri.parse("https://epiic-api-dev.azurewebsites.net/api/auth/signin"), headers: headers,

body: loginInfo);
if (response.statusCode == 200){
Map<String, dynamic> body = jsonDecode(response.body);
var $YOUR_PERSONAL_ACCESS_TOKEN = body["access_token"];
final _httpLink = HttpLink(
'https://epiic-api-test.azurewebsites.net/graphql',

);
final _authLink = AuthLink(
getToken: () async => ('Bearer ' + $YOUR_PERSONAL_ACCESS_TOKEN),

);
Link _link = _authLink.concat(_httpLink);
final GraphQLClient client = GraphQLClient(
cache: GraphQLCache(),
link: _link,

);
const String queryUserPrefs = r'''
{
dataFormsByIds(ids: "aquatic-insects") {
id
name
attributes {
name
labelText
hintText
required
dataType
unit
widgetType
}

}
}
''';

final QueryOptions options = QueryOptions(
document: gql(queryUserPrefs)

);
final QueryResult result = await client.query(options);
if (result.hasException) {
print(result.exception.toString());

} else {
print(result);

21

}
return true;

} else {
return false;

}
}
class LoginPage extends StatefulWidget {
const LoginPage({Key? key, required this.title}) : super(key: key);
final String title;
@override
State<LoginPage> createState() => _LoginPageState();

}
class _LoginPageState extends State<LoginPage> {
@override
Widget build(BuildContext context) {
String user = "";
String pass = "";
return Scaffold(
body: SingleChildScrollView(
child: Container(
color: Colors.grey[200],
width: MediaQuery.of(context).size.width,
height: MediaQuery.of(context).size.height,
child: Column(
children: <Widget>[
Padding(
padding: const EdgeInsets.only(bottom: 10.0),
child: Center(
child: Container(
width: MediaQuery.of(context).size.width,
//height: 150,
child: Stack(
children: <Widget>[
Container(
child: Image.asset('assets/images/yellowstone.jpg'),

),
Container(
margin: const EdgeInsets.all(30.0),
child: Row(
children: <Widget>[
Container(
child: Image.asset('assets/images/yerc_logo.png', height: 30, width: 60),

),
Container(
margin: const EdgeInsets.all(10),
child: Text("YERC", style: TextStyle(fontWeight: FontWeight.bold, fontSize: 40, color: Colors.white)),

),
],

),
),

],
),

),
),

),
Padding(
padding: EdgeInsets.symmetric(horizontal: 15),
child: TextField(
onChanged: (text){
user = text;

22

},
decoration: InputDecoration(

border: OutlineInputBorder(),
labelText: 'Email',
hintText: 'ie: abc@example.com'

),
),

),
Padding(
padding: EdgeInsets.only(left: 15, right: 15, top: 15),
child: TextField(
onChanged: (text){
pass = text;

},
decoration: InputDecoration(
border: OutlineInputBorder(),
labelText: 'Password',
hintText: 'Password',

),
obscureText: true,

),
),
Padding(
padding: EdgeInsets.all(20),
child: Container(
height: 40,
width: 150,
decoration: BoxDecoration(

color: Colors.grey[800], borderRadius: BorderRadius.circular(10)
),
child: FlatButton(
onPressed: () async{

loginInfo signin = loginInfo(user, pass);
var success = await signIn(http.Client(), jsonEncode(signin.toJson()));

if (success){
print("go");
Navigator.of(context).push(MaterialPageRoute(builder: (context) => HomePage(storage:FileStorage(),)));

} else {
showDialog(

context: context,
builder: (context) {

return Dialog(
shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(40)),
elevation: 16,
child: Column(

children: <Widget>[
Padding(

padding: EdgeInsets.all(14),
child: Text(

"Error",
style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16, color: Colors.red),

),
),
Padding(

padding: EdgeInsets.all(14),
child: Text(

"Incorrect username or password. Please try again or click Forgot Password.",
style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16, color: Colors.red),

),

23

),
],

),
);

}
);

}
},
child: Text(
'LOGIN',
style: TextStyle(color: Colors.white, fontSize: 18),

),
),

),
),

],
),

),
),

);
}

}

home_page.dart
import …
String json = "";
class JsonReturn {
String timestamp = "";
String collectionMethod = "";
String collectionTime = "";
String dataset = "";
String filename = "";
String mobId = "";
String name = "";
String value = "";
JsonReturn(Map<String, dynamic> json){
timestamp = json['Timestamp'];
collectionMethod = json['collection_method'];
collectionTime = json['collection_time'];
dataset = json['dataset'];
filename = json['filename'];
mobId = json['mob_id'];
name = json['name'];
value = json['value'];

}
Map<String, dynamic> toJson() => {

'Timestamp': timestamp,
'collection_method': collectionMethod,
'collection_time': collectionTime,
'dataset': dataset,
'filename': filename,
'mob_id': mobId,
'name': name,
'value': value

};
}
class HomePage extends StatefulWidget {
HomePage({
required this.storage,
required this.inJson,

24

});
final FileStorage storage;
final String inJson;
@override
_HomePageState createState() => _HomePageState();

}
class _HomePageState extends State<HomePage> {
bool box = false;
var userList = [];
String curState = '';
String readFile = '';
String name = '';
dynamic attributes = '';
String date = '';
String fileContents = '';
List fileNames = [];
@override
void initState() {
userList.add(Modal(name: 'Aquatic Insects', isSelected: false));
userList.add(Modal(name: 'Water Quality', isSelected: false));
super.initState();
getFiles();

}
getFiles() async {
final directory = await getApplicationDocumentsDirectory();
final path = directory.path;
final dir = Directory(path);
final List<FileSystemEntity> entities = await dir.list().toList();
final Iterable<File> files = entities.whereType<File>();
String strFiles = files.toString().replaceAll('File: ', '');
strFiles = strFiles.replaceAll("')", '');
strFiles = strFiles.replaceAll("('", '');
fileNames = strFiles.split("', '");
return fileNames;

}
@override
Widget build(BuildContext context) {
getFiles();
print('File names in home page');
print(fileNames);
return Scaffold(
appBar: AppBar(
title: Text("Field Project: " + curState, style: TextStyle(fontSize: 16, color: Colors.grey[800])),
backgroundColor: Colors.white,
actions: <Widget>[
Container(
padding: EdgeInsets.all(0),
width: 60,
child: FlatButton(
onPressed: (){
showDialog(
context: context,
builder: (context) {
return Dialog(
shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(40)),
elevation: 16,
child: Stack(
alignment: Alignment.center,
children: <Widget>[
Container(

25

width: MediaQuery.of(context).size.width,
height: 200,
decoration: BoxDecoration(
borderRadius: BorderRadius.circular(15),

),
padding: EdgeInsets.all(20),
child: const Text("Select a Field Project Type",

style: TextStyle(fontSize: 16, fontWeight: FontWeight.bold),
textAlign: TextAlign.center

),
),
ListView.builder(
shrinkWrap: true,
itemCount: userList.length,
itemBuilder: (context, index){
return Container(
padding: EdgeInsets.all(10),
height: 50,
child: Row(
crossAxisAlignment: CrossAxisAlignment.start,
mainAxisAlignment: MainAxisAlignment.spaceBetween,
children: [
IconButton(
icon: _iconControl(userList[index].isSelected),
onPressed: () {
setState(() {
userList.forEach((element) {
element.isSelected = false;

});
userList[index].isSelected = true;
curState = userList[index].name;
(context as Element).reassemble();

});
},

),
Text(

userList[index].name
),

], //Widget
), //Row

);
},

),
],

),
);

},
); //Show Dialog

},
shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(3)),
child: Icon(Icons.create_rounded, color: Colors.lightGreen[600], size: 30),

),
),

],
),
body: Column(
children: <Widget>[
const Padding(
padding: EdgeInsets.all(20),

),

26

const Text("Saved Observations", style: TextStyle(fontSize: 22, fontWeight: FontWeight.bold)),
Expanded(
child: FileEntry(
storage: FileStorage(),
fileNames: fileNames,
typeState: curState,

),
),

],
),
floatingActionButton: FloatingActionButton(
onPressed: () {
if(curState == ''){
showDialog(
context: context,
builder: (context) {
return Dialog(
shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(40)),
elevation: 16,
child: Stack(
alignment: Alignment.center,
children: <Widget>[
Container(
width: MediaQuery.of(context).size.width,
height: 100,
decoration: BoxDecoration(

borderRadius: BorderRadius.circular(15),
),
padding: EdgeInsets.all(20),
child: const Text("Please select an field project type",

style: TextStyle(fontSize: 16, fontWeight: FontWeight.bold),
textAlign: TextAlign.center

),
),

],
),

); //Return Dialog
},

);
}
else{
Navigator.of(context).push(MaterialPageRoute(builder: (context) => DataFormPage(storage: FileStorage(), Form:

inJson, typeState: curState,)));
}

},
child: const Icon(Icons.add, color: Colors.white),
backgroundColor: Colors.lightGreen[600],

),
);

}

_iconControl(bool box) {
if (box == false) {
return Icon(Icons.check_box_outline_blank_rounded);

} else {
return Icon(
Icons.check_box_rounded,
color: Colors.lightGreen[600],

);
}

27

}
}

class Modal {
String name;
bool isSelected;
Modal({required this.name, this.isSelected = false});

}

28

References

1. Yellowstone Ecological Research Center (YERC) - https://www.yellowstoneresearch.org/
2. ArcGIS Survey123 - https://www.esri.com/en-us/arcgis/products/arcgis-survey123/overview
3. EPIIC - https://www.yellowstoneresearch.org/epiiccenter
4. Flutter vs React -

https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021
5. JSON - https://docs.flutter.dev/development/data-and-backend/json

29

https://www.yellowstoneresearch.org/
https://www.esri.com/en-us/arcgis/products/arcgis-survey123/overview
https://www.yellowstoneresearch.org/epiiccenter
https://www.thedroidsonroids.com/blog/flutter-vs-react-native-what-to-choose-in-2021
https://docs.flutter.dev/development/data-and-backend/json

