
CatScript
Robert Marsh, Jaclyn Saunders

Gianforte School of Computing, Montana State University

CSCI 468: Compilers

Mr. Carson Gross

Spring 2023



Section 1: Program

Source code is in attached zip folder.

Section 2: Teamwork

For this version, Team member 1 worked as the primary engineer; Team member 2

worked as test engineer. As primary engineer, Team member 1 was responsible for

writing the tokenizer, parser, evaluator, and bytecode generator. Throughout the

semester, team member 1 developed all of the (new) source code for this project, based

on the scaffolding provided by the instructor, Carson Gross. First, they implemented the

tokenizer to read in string tokens from CatScript source code. Then they implemented

the parser to turn the tokens into a statement/expression tree based on the CatScript

EBNF grammar. Then they implemented the evaluation logic to interpret CatScript

programs, and finally they implemented the bytecode generator, to be able to compile

CatScript programs. Team Member 2, as test engineer, wrote tests for the evaluation

portion of the project, acting as integration tests that combined the tokenizer, parser and

evaluator. Team Member 2 also created the Catscript Guide and Documentantion that is

included in this portfolio. For this version, Team Member 1 spent 80% of the time and

Team Member 2 spent 20%. For the project as a whole, Team members 1 and 2 spent

equal amounts of time on the project, since they traded roles when working on Team

Member 2’s version of the project.



Section 3: Design Pattern

One design pattern we used in this project was the memoization pattern. It is used in

the CatscriptType class, in the method “getListType”. On lines 36-44. This method is

used to lookup Catscript List Types that contain a list of a specific Catscript Type.

Rather than generate a new ListType object of the correct class each time the method is

called, we implemented memoization with a Hashmap (line 36). When a certain list type

is created, we check if it is in the map before creating a new one, and if not then we

create a new one and store it in the map. We used this pattern to avoid the repeated

computation of creating a new instance of the class each time that the method is called

with the same input arguments. While this adds a little bit of overhead to maintain the

map, a map lookup is faster than creating a new instance of the object each time, so it

provides helpful optimization for larger programs.

3.1 Design Pattern Source Code

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new
ConcurrentHashMap<>();
public static CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST_TYPES.get(type);
if (listType == null) {
listType = new ListType(type);
LIST_TYPES.put(type, listType);

}
return listType;

}



Section 4: Technical Writing

The technical writing for this portfolio is a guide on how to use Catscript:

Catscript Guide

Introduction
Catscript is a small, scripting programming language. It is very similar to the Java syntax. It
uses recursive descent all throughout the language. There are a few major components
including types, expressions, statements, and more within this language which are outlined
below.

Types
The Catscript type system is statically typed with the following variables: int, string, bool,
list, null, and object. The way these types are used are very similar to those in Java, but they
vary slightly.

Expressions
Expression
The expression evaluates an equality expression.

Equality Expression
The equality expression evaluates whether or not two comparison expressions equal each
other using “==” and “!=”.

true != false;

Comparison Expression
The comparison expression evaluates whether two additive expressions are greater than,
less than, greater than or equal to, or less than or equal to each other using “>”, “<”, “>=”, and
“<=” respectively.

15 >= 10;

Additive Expression
The additive expression evaluates the addition “+” or subtraction “-” between two factor
expressions.

(15 * 100) - 2;

Factor Expression



The factor expression evaluates the multiplication “*” or division “/” between two unary
expressions.

-1 * 100;

Unary Expression
The unary expression evaluates whether or not a primary expression or unary expression
has a “-” or “not” label prepended to it.

not true;

Primary Expression
The primary expression evaluates whether an expression starts with an identifier, string,
integer, true, false, null, a list, a function call, or an expression surrounded by parenthesis.

["banana", 1, true];

Identifier and String, Integer, Boolean, Null, and List Literals Expressions
These are the foundations of all the other expressions. Each of these expressions evaluate
to exactly what their names suggest such as string, true, or the name of a function
(identifier).

Function Call Expression
An expression starting with an identifier (count) and followed by a parenthesized argument
list (numOne,…).

count(numOne, numTwo, numThree);

Statements
Program Statement
The program statement executes a statement or function definition statement.

Statement
The statement executes the for statement, if statement, print statement, variable statement,
assignment statement, or function call statement.

For Statement
The for statement works like a typical Java for loop would including an identifier (i),
expression (arguments), and statement (print(i)).

for (i : arguments) {

print(i);

}



If Statement
The if statement also works like a typical Java if/else statement including an expression
(i == 2), statement (return true), and optional if/else statements with more statements
inside of it.

if (i == 2) {

return true;

} else if (i == 1) {

return false;

}

Print Statement
The print statement visually displays or prints an expression (“hello”).

print("hello");

// output would look like this:

// hello

Variable Statement
The variable statement executes assigning an identifier (dogName) to an expression
(“Harlee”), optionally assigning a type (string) to that identifier.

var dogName : string = "Harlee";

Assignment Statement
The assignment statement is very similar to the variable statement, except it does not
initialize a new variable. An identifier (dogName) is assigned to an expression (“Chloe”).

dogName = "Chloe";

Function Call Statement
The function call statement executes a function call expression.

foo(dogName);

Function Definition Statement
The function definition statement declares a new function with an identifier (helloWorld),
parameter list (dogName), optional type expression (string), and one or many function
body statements, which is either a statement or return statement (print()).

function helloWorld(dogName) : string {

print(dogName + " says hello world!");

}

// prints: Harlee says hello world!



Return Statement
The return statement either stands by itself or has an optional expression following it.

return;

// or ...

return true;

Misc.
Parameter, Parameter List
A parameter is an identifier (height) followed by an optional type expression (int). A
singular or list of parameters can be used in a function definition statement.

function myFunc(height: int) ...

Argument List
An optional list of one to many expressions.

(numOne, myFunc, true);

Parenthesized Expression
An expression with parentheses around it.

Semantics
The Catscript compiler has four main stages: tokenizing, parsing, evaluating, and bytecode
generation. Further details about these stages can be found within the compiler itself in the
code. The examples shown above are only just a small portion in how types, expressions,
and statements work together, as there are thousands of different combinations in which
these components can be used.



Section 5: UML



Section 6: Design trade-offs

The main trade-off in this project was that we created our own bespoke parser for

catscript from scratch, rather than using a tool to generate a parser from the EBNF

language diagram. This allowed us to create a more intuitive parser using recursive

descent, in order to gain an in-depth understanding of how the grammar works and

maintain more control over how our parse tree was being generated. While parser

generators have a high upside because they require less handwritten code, they create

additional complexity. For one, they require one additional set of translations by the

author to turn the ENBF grammar into the parser-generator-specific language, before

translating it again into Java and actually working with it. It requires generator-specific

syntax to do things that would be easier to handwrite, because the author also doesn’t

have control over each of the classes that is being generated. In turn, this can require

additional implementation of a visitor pattern on top of the autogenerated classes in

order to affect their functionality. While it took more handwritten code, using a

handwritten recursive descent parser required less work to get started with as a student

that is just now learning about the field, so it was faster to write in the end, and provided

the opportunity to gain a better understanding.

Section 7: Software development life cycle model

For this project, we used a Test Driven Development (TDD) model. We started the

course with a large suite of tests built out by the instructor to specify all parts of the



language implementation - tokenizing, parsing, evaluation, and execution. When first

starting out, TDD offered a helpful way to break down the project into small pieces

which could be easily understood. Rather than worrying about the status of the project

as a whole, we could focus on just one test (or test suite) at a time, in a self-contained

environment. TDD was a helpful communication tool as well - since the specifications

were created by someone else, it is important that our team met every single one of the

specifications, and had tests to verify our code. Since the test were the specifications as

part of TDD, upon completion of each test suite we could be sure that we didn’t miss

anything. TDD also offered the benefit of ensuring that we have 100% test coverage,

since everything we wrote was centered around meeting the test specifications! Thanks

to this test coverage, it was easy to find errors generated later in the project when

making changes to support each new portion of the project (tokenizing, parsing,

evaluation, and execution). I enjoyed working with TDD on this project, due to the high

number of constraints and importance of meeting all specifications.


