
 Catscript Compiler

 CSCI 468

 Capstone Project Portfolio

 Rory Myer

 Montana State University

 Spring 2023

 Section 1: Program

 A zip file of the source code is included in this directory in source.zip.

 Section 2: Teamwork

 The capstone project was executed through a series of test driven development

 sessions. Team member one (Rory Myer) invested 90% of time spent and team

 member two (Amanda Faulconer) invested 10% of time spent into the completion of all

 the sets of tests. The final set of tests were developed by team member two, they were

 subsequently provided to team member one. Team member one executed the tests

 provided which completed the final round of testing. Both team member’s tests can be

 found in the CapstonePartnerTest.java file within the parser tests folder.

 Section 3: Design Pattern

 The memoization design pattern was used to complete the catscript compiler. A specific

 example of the use of memoization is seen in the getListType function of the

 CatscriptType file. The pattern is used to store the computation results in the

 LIST_TYPES hashmap in order to save the computation of a new list on each call to

 getListType(). Memoization was included as opposed to coding the new list directly

 each time for space efficiency.

 Section 4: Technical Writing

 Catscript Guide
 Introduction
 Catscript is a sophisticated yet simple, statically typed scripting language. An example

 of the Catscript language can be seen here with more example to follow in the featured

 section:
 var x = "foo"

 print(x)

 Features

 Catscript Type System
 Type Literals

 Type Literals (Type Expressions) are simple pieces of data within the Catscript

 language. The data is stored in tokens and the type is recognized by the

 tokenizer. The parser will then store the data in a structure to evaluate and

 compile it at runtime. Type Literals may consist of INT, STRING, BOOLEAN,

 OBJECT, NULL, VOID, and LIST.
 type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,

 type_expression, '>']

 int
 A 32-bit integer

 string
 A java-style string

 bool
 A Boolean value (true/false)

 list
 A list of values with the type ‘x’.

 list< type literal >

 null
 The null type

 object
 Any type of value

 void
 The type of no type (a function that does not return a value)

 Catscript Keywords
 else, if, for, function, not, null, print, return, true, false, var

 Expressions
 Primary Expressions

 Primary Expressions are defined by eight expressions: Identifier, String Literal, Integer

 Literal, Boolean Literal, Null Literal, List Literal, Function Call Expression, and

 Parenthesized Expressions.

 primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" |

 "null" | list_literal | function_call | "(" , expression, ")"

 ● Identifiers are expressions that represent a keyword or variable that is defined

 by the user.
 X

 y

 z

 ● String Literals are expressions that represent a string of character values

 surrounded by quotation symbols.
 "Hello, World"

 ● Integer Literals are expressions that represent integer values.
 1

 2

 3

 ● Boolean Literals are expressions that represent true or false values.
 true

 false

 ● Null Literals are expressions that represent null values.
 null

 ● List Literals are expressions that represent a list of values. These can be

 Integer, String, Boolean or a combination of values.
 ["a" , "b" , "c"]

 [1 , 2 , 3]

 ● Function Call Expression contains information within the function parameters

 that is being called at runtime.
 foo(1 , 2 , 3)

 ● Parenthesized Expressions are a set of expressions or values that are

 surrounded by parentheses. These expressions can be of any type.
 1 + (1 + 1)

 ("foo" + "foo")

 Additive Expressions

 Additive Expressions are expressions that have two arguments separated by a

 plus or a minus symbol. The separated expressions may be Integer Literals,

 String Literals, or Parenthesized Expressions that contain Integer Literals or

 String Literals. The evaluation order is: LHS to RHS by precedence of the

 operator.

 Examples:
 ("+" | "-")

 "a" + "b"

 2 - 1

 Comparison Expressions

 Comparison Expressions consist of two Integer Literal expressions that are

 separated by a less then, greater than, less than or equal to, greater than or

 equal to symbol.

 Examples:
 1 < 2

 3 > 1

 x <= y

 y >= x

 Equality Expressions

 Equality Expressions are expressions that are separated by either a double equal

 (both sides are the same) or a bang equal symbol (both sides are not the same).

 Examples:
 True == True

 True != False

 Unary Expressions

 Unary Expressions are expressions with a single argument. These expressions

 contain the ‘not’ symbol and the negative symbols. They may be applied to

 Boolean Expressions and Integer Literals.

 Examples:
 ("not" | "-")

 var x = - 3

 if (not false) {...}

 Factor Expressions

 Factor Expressions consist of two expressions that are separated by a

 multiplication (asterisk) or division (slash) symbol. The two expressions may be

 either Integer Literals or Parenthesized Expressions that contain Integer Literals.

 Examples:
 ("*" | "/")

 2 * 2

 6 / 3

 (4 * 2) / 2

 Statements
 For Statement (For Loops)

 For Loops allow for iteration over lists while performing operations for each

 iteration. They will continue as long as there is a next element in the list. These

 statements are able to contain any other type of statement within it.

 Example :
 for (x in [1 , 2 , 3]) {

 print(x)

 }

 If Statement

 If Statements handle conditional branching that restricts access to portions of the

 code until the conditional statement is true or met. They are typically followed by

 an Else Statement which will contain the false condition of the If Statement.

 Example :
 if (int : x > int : y) {

 print ("x is greater than y") //true statements

 } else {

 print ("x is less than y") //false statements

 }

 Print Statement

 The Print Statement recognizes the print command and will print the expression

 inside the parentheses to standard out. These statements can bring Integer and

 String values.

 Examples:
 print("Foo Bar")

 Output: Foo Bar

 print(1 + 1)

 Output: 2

 Variable Statement

 Variable Statements are used to assign a value to a variable the user creates.

 These statements require the keyword ‘var’ so the parser knows to store the

 expression into the identifier that follows the keyword. Variables can be initialized

 explicitly or implicitly. To invoke a variable to be ‘null’, it must be done explicitly.

 Examples:
 var x : string = null

 var x = 1

 Assignment Statement

 Assignment Statements assign an expression to an identifier by looking for the

 equal symbol. These are used when a variable is being assigned to a different

 value.

 Examples:
 x = 10

 x = x + 10

 Function Call Statement

 Function Call Statements can be both an expression and/or a statement. Both

 the expression and statement require an identifier to start. The Function Call

 Expression will look for an identifier or function call and invokes the Function

 Definition Statement. The Function Call Statement will look for an assignment or

 a function call.

 Example:
 foo(10) //calling the function with the argument 10

 function foo (i : int) {

 print(i)

 }

 Function Definition Statement

 Function Definition Statements are the statements that define the functions that

 are being called within the program. They require the ‘function’ keyword to start,

 followed by an identifier, parameter list, an optional return statement, and a

 series of statements including a new return statement. The body of the Function

 Definition statement can contain any number and/or types of statements. All of

 which must be inside the function.

 Example :
 function x (a : int , b: int , c : int) {

 return (a * b * c)

 }

 Return Statement

 The return statement looks for the ‘return’ keyword, ends the function they are

 contained within, evaluates the expression, and assigns the return value to the

 function definition.

 Examples :
 return CatscriptType.INT

 return 1 + 1

 return null

 Grammar

 catscript_program = { program_statement };

 program_statement = statement |
 function_declaration;

 statement = for_statement |
 if_statement |
 print_statement |
 variable_statement |
 assignment_statement |
 function_call_statement;

 for_statement = 'for' , '(' , IDENTIFIER, 'in' , expression ')' ,
 '{' , { statement }, '}' ;

 if_statement = 'if' , '(' , expression, ')' , '{' ,
 { statement },
 '}' ['else' , (if_statement | '{' , { statement }, '}')];

 print_statement = 'print' , '(' , expression, ')'

 variable_statement = 'var' , IDENTIFIER,
 [':' , type_expression,] '=' , expression;

 function_call_statement = function_call;

 assignment_statement = IDENTIFIER, '=' , expression;

 function_declaration = 'function' , IDENTIFIER, '(' , parameter_list, ')' +
 [':' + type_expression], '{' , {

 function_body_statement }, '}' ;

 function_body_statement = statement |
 return_statement;

 parameter_list = [parameter, { ',' parameter }];

 parameter = IDENTIFIER [, ':' , type_expression];

 return_statement = 'return' [, expression];

 expression = equality_expression;

 equality_expression = comparison_expression { ("!=" | "==")
 comparison_expression };

 comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")
 additive_expression };

 additive_expression = factor_expression { ("+" | "-") factor_expression };

 factor_expression = unary_expression { ("/" | "*") unary_expression };

 unary_expression = ("not" | "-") unary_expression | primary_expression;

 primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" |
 "null" |
 list_literal | function_call | "(" , expression, ")"

 list_literal = '[' , expression, { ',' , expression } ']' ;

 function_call = IDENTIFIER, '(' , argument_list , ')'

 argument_list = [expression , { ',' , expression }]

 type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,
 type_expression, '>']

 Section 5: UML

 Figure 1: Factor Expression

 Figure 2: Print Statement

 Section 6: Design Trade-offs

 A handwritten recursive descent algorithm was used for the completion of the parser.

 The recursive descent algorithm was used in opposition to a parser generator, also

 used to develop parsers. Although either approach would result in a complete parser,

 the handwritten recursive descent parser initiated a more hands-on learning approach

 than the parser generator would have.

 Coding all aspects of the language by hand in the order in which they were coded

 initiated an understanding from the barebones of the JVM, up. Starting with

 tokenization, also referred to as lexical analysis, strings were split into individual tokens

 to be fed to the parser in the following steps. Expression parsing came next, at which

 point the strings from which the tokens were derived were parsed. Statement parsing

 and evaluation built on expression parsing, at which point bytecode followed.

 Had a parser generator been used, the previously examined steps would not have been

 understood in the depth the handwritten method allowed for. The purpose of the

 capstone course is for students to generate an in-depth knowledge of how all

 components of a parser work together to parse a language. The goal was achieved due

 to the nature of the recursive descent compiler.

 Section 7: Software Development Life
 Cycle Model

 Test Driven Development (TDD) was used to develop the catscript compiler. A test suite

 was provided and used incrementally throughout the semester to complete the parser.

 Tests would fail until corresponding code was corrected; the tests clearly outlined what

 was expected of the parser in order for them to pass. The use of the tests and debugger

 side by side paved the way for a functionally complete catscript compiler.

 The model helped drastically, it was a hands on approach that allowed for a deep

 understanding of how each part works individually. The test sets were sequentially

 deployed in a logical manner that allowed for the best understanding of how all these

 individual components work together under the hood.

