Compilers Portfolio
CSCI 468 — Spring 2023

Cory Janes and Dillon Shaffer

CatScript Documentation

CSCI 468 - Compilers Capstone

Teamwork

The team | worked with for this project consisted of myself, Dillon Shaffer, and Cory Janes. We spent time
writing documentation for each others languages and testing/fixing bugs in each others code throughout
the development process. We did this by writing tests for each other and trying to find issues in each others
compilers by writing programs.

Design Patterns

Given that CatScript is a simple language, there are only a few design patterns that go into its
development. Once you exclude guard patterns there are only two or three unique structures in the
language.

Compositional Patterns

CSCI 468 - Compilers Capstone

« Composite Pattern

The composite pattern is used in the structure of Statements and Expressions. Both are base types
that inherit a shared rarseelenent type. parseelement S for a tree-like structure that

The utilities of this pattern can be seen in the verify, execute, compile, and transpile methods.
o [terator Pattern

While we don't really create an official iterator in the CatScript compiler, both the Tokenizer and Parser
use iterator-like behavior.

o The tokenizer has a while loop checking that there are more characters in the input. This loop
matches the next character or set of characters and creates a token based on it.

o The parser is similar to the tokenizer in that it has a while-loop checking that there are more
tokens. This loop calls the parse method to generate AST nodes.

Behavioral Patterns
« Facade Pattern

The Bsytecodecenerator class, used during bytecode generation, is a facade over the org.objectweb.asn
library. We provide some abstractions to simplify the generation of functions and creation of operation
codes.

¢ Tree-Construction Parser

The catscriptrarser class uses recursive consumption of tokens to form our Abstract-Syntax Tree
(AST). This is simple and efficient method for creating tree-like structures from linear data structures.
We see this in practice with the consumption of tokens (stored in a linked list) as they are moved into a
tree of expressions.

1 Introduction

CatScript is static but weakly typed programming language that used a recursive descent parser to
evaluate expressions, statements, primitive types and compiles those into JVM bytecode.

2 Expressions
Expression: any valid unit of code that resolves to a value. With a recursive descent parser, the

expressions are evaluated in a specific order given below:

1) Equality Expression
a. Implements equal to and not equal to.
b. Operators are == and '-.

Examples:
intl == int2
var == 25

val() != 25

CSCI 468 - Compilers Capstone

2) Comparison Expression
a. In1p|ennents greater than 1less than, greater than or equal to, less than or equal to.
b. Operators are >, <, >= and <-.

Examples:
intl > int2
int2 < int3
int3 >= int4

int4 <= int5
3) Additive Expression
a. Implements addition and subtraction .

b. Operatorsare ‘+‘and ‘ —".
Examples:
X +y
int2 - int3
4) Factor Expression
a. Implements multiplication and division .
b. Operators are « and /.
Examples:
intl * int2
int2 / int3
5) Unary Expression
a. Implements not and negative .
b. Operatoris - or not
Example:
-5
6) Identifier Expression

Implements variables with a stored string. The value of the variable is located by using the symbol table in
the program.

7) Primary Expression
Implements the basic expressions:
i. ldentifier
ii. Integer literal

iii. String literal

CSCI 468 - Compilers Capstone

iv. Boolean literal
v. List literal
vi. Null literal
vii. Parentheses

viii. Function call

3 Statements

Similar to the recursive descent of the expressions, the statements in CatScript have a specific order to
change the program state:

1) Print Statement
a. Called with the ‘print’ string, followed by an expression
b. Returns value to standard output in CatScript

Examples:
print("Detroit Lions")

print(detroitLions)

2) Assignment Statement

Assigns or alters the value of a defined variable.

Examples:
int97 = 2023

goatRB = "Barry Sanders"

3) If Statement

A conditional statement that requires certain symbols in a particular order to be
Functional:

i. Starts with the ir keyword

ii. Followed by a (symbol

iii. Followed by an expression

iv. Followed by a) symbol

v. Followed by a { symbol

vi. Followed by statement

vii. Followed by a 3 symbol

viii. Conditional e1se keyword can follow or eise if as well

Example:

CSCI 468 - Compilers Capstone

if (detroitLions == "Super Bowl Champs") {
print("2024!");

} else {
print("then 2025 for sure!");

}

4) For Statement

A statement that iterates through objects, it is similar to the if statement in that it requires certain symbols to
be functional:

i. Starts with the ‘for’ keyword
ii. Followed by a ‘(* symbol
iii. Followed by a variable
iv. Followed by an expression
v. Followed by a ‘)’ symbol
vi. Followed by a ‘{' symbol
vii. Followed by statement
viii. Followed by a ‘}' symbol
Example:
for (var in variables) {

print(var);

}

5) Function Definition Statement

The function definition statement defines functions in CatScript. These functions can return a type or return
nothing, a void function, when called with a valid function name elsewhere in the program. The format need
for functionality:

i. Starts with a valid function name
ii. Followed by a ‘(" symbol
iii. Followed by argument(s) (multiple separated by a comma)
iv. Followed by a ‘)’ symbol
Example:

function lionsWin(year: int): boolean {
return false

}

CSCI 468 - Compilers Capstone

6) Return Statement

The return statement in CatScript requires a valid function and is called inside of the function itself. The
statement will return a value when the following requirements are met:

i. Starts with a ‘return’ keyword
ii. Followed by an CatScript type to be returned
Example:
fn double(value) {
value = value + value;

return value;

}

4 Type System

The CatScript's type system is statically typed and the types are divided into two categories, assignable
and non-assignable types:

Assignable
1. Integer
There is a single 32-bit signed integer in CatScript.
2. Strings

CatScript strings behave similar to often used programming languages, allowing newline and quotation
characters, \n and \" respectively.

3. Booleans

CatScript has the traditional Boolean type, true and fatse
4. Lists

CatScript provides component specifiable lists:

o list specifies a list of objects

e list<type> specifies a list of only type elements
5. Elements

The CatScript language assigned all of the types to an object.

Non-Assignable
6. Null

The nutl type in CatScript is non-assignable because it cannot be used in type declarations.

7. Void

CSCI 468 - Compilers Capstone

The void type is non-assignable because variables cannot be declared with the type void and visa-
versa.

UML

The most complicated part of the compiler is the parser. Given the complex grammar rules and embedded
rules, it is not easy to just write a parser (unless you already know what you're doing). To combat this issue,
we designed our parser before we wrote it &

argument,
return types list component types

parseFunctionDefinition parseTypeLiteral
parseStatement I

[—™ parseVarStatement)i
[—™ parseForStatement
parseEquality
— parselfStatement <
else if parseComparative

== or I=

—J

> or >= or < or <=

[—* parsePrintStatement
parseAdditive
+
[—® parseCallStatement d or
function defintions only * or /
—®| parseReturnStatement —
[J
vy Y v ¥ v

[parselnvokation] [parselnteger] [parseString J [parseList] [parseldentifierJ

Design Trade-Offs

Although CatScript is technically a scripting language, it is not Turing complete. Given that this language
was created in only three months, some corners had to be cut.

e There is not support for custom types (classes)

e There is no module/import system

Weak Type System

CatScript has a weak type system, this makes it simpler to write code without more advanced language
features and without an IDE. This comes with the upside of smaller code bundles but slower run-time.

Hidden Reference Types

CatScript has reference types similar to Java, passing values under the object type boxes them and
creates a reference. The primitive values link int and noolean are not boxed until they are passed into

CSCI 468 - Compilers Capstone

object parameters or variables. This has the side effect of using extra memory but easy data sharing.

Test Driven Development

The CatScript compiler is developed solely based on testing. There is a series of tests for each major stage
of the compiler. Our compiler has five stages—tokenizing, parsing, execution, compilation, and
transpilation. Each stage has a set of tests that ensures that its respective stage is working properly. There
are some edge cases that are not covered and there are some cases that are hard to test, but for the most
part the compiler should work as expected.

We also added the following tests:

@Test
public void ifStatementWithElseIfParses() {
IfStatement expr = parseStatement("if(x > 10){ print(x) } else if { print(10) }", false);
assertNotNull(expr);
assertTrue(expr.getExpression() instanceof ComparisonExpression);
assertEquals(1, expr.getTrueStatements().size());
assertEquals(1, expr.getTrueStatements().size());

}

@Test
void assignmentTypeError() {
assertEquals(ErrorType.INCOMPATIBLE_TYPES, getParseError("var x = 30\n" +
"x = false"));

}

@Test
public void parseStringLiteralWorks() {
StringLiteralExpression expr = parseExpression("\"Calvin Johnson\"");
assertEquals("Calvin Johnson", expr.getvalue());

CSCI 468 - Compilers Capstone

	Introduction
	Features

	Type System
	Assignable Types
	Integers
	Booleans
	Strings
	Lists
	Object

	Non-Assignable Types
	Void
	Null

	Syntax
	Declarations
	Function Declaration
	Statement Declaration

	Statements
	Print Statement
	Var Statement
	If Statement
	For Statement
	Return Statement

	Expressions
	Binary Operators
	Expressions

