CAPSTONE DOCUMENTATION

Compilers Capstone 2023
Samuel Mocabee, Computer Science Professional

Montana State University Bozeman

Author Note
“Computers are incredibly fast, accurate, and stupid. Human beings are incredibly slow,
inaccurate, and brilliant. Together they are powerful beyond imagination.”

- Albert Einstein, physicist

CAPSTONE DOCUMENTATION

Abstract

The contents of this portfolio will go through a detailed report over the intricacies of the
Catscript compiler. Technical documentation will be included to show readers a basic
understanding of the Catscript language and function as a guide to learn how to code in
Catscript. Teamwork was applied to the project as well, as team member one created additional
tests to ensure the successfulness of executing programs in the Catscript language compiler.
Several UML design diagrams are also included to show simplistic examples of how the
compiler process works, and we will also look at a specific design pattern used in the process of
coding and the trade-offs that came with those choices and their justification. Lastly will be
viewing the software development life cycle model that was used to develop the capstone
project.

Keywords: Source code, Teamwork, Design Pattern, Technical Writing, UML, Design

Trade-offs, Software Development Life Cycle Model.

CAPSTONE DOCUMENTATION

Section 1: Program
Attached to the document is a zip file of the final repository for CSCI 468, compilers. It
holds the completed base source code for the compiler that was written over the course of the

semester.

Section 2: Teamwork

Coding for this project was done individually allowing for team member 1 and I to get a
deeper understanding of the compiler allowing us to work through the tokenization, parsing, and
evaluation process at our own pace and through our own coding process. The primary
contribution of team member 1 to this capstone project was through the tests that he wrote to
ensure the validity of the compiler’s structural ability and the technical documentation of the
Catscript programming language.

Having team member one create additional test and the documentation for the language
allows a separation in roles, as | function as the primary engineer responsible for the creation of
the compiler and team member one who acts as the documentation and testing engineer. With
this structure the roles are also reversed as | generate tests of my own to not only further
evaluate my own compiler but to also be the role of the documentation and testing engineer and
send the tests and technical documentation for team member 1’s capstone project.

The following are the tests for my compiler created by team member 1. The first test
makes sure that the if else statements work in a function declaration, the second test ensures that
for loop and return statements work within a function declaration, and the third test checks

complex expression evaluation and string concatenation.

CAPSTONE DOCUMENTATION

edu.montana.csci.cscid68

edu.montana.csci.cscid468.CatscriptTestBase
org.junit.jupiter.api.Test

java.util.Arrays

org.junit.jupiter.api.Assertions.assertEquals
org.junit.jupiter.api.Assertions.assertNull

CapstoneTests CatscriptTestBase {

@Test
functionDefinitionWithIfStatementTest () {
String input =
+

String expectedOutput =
assertEquals (expectedOutput, executeProgram(input))

@Test
functionDefinitionWithForLoopTest () {
String input =

String expectedOutput =
assertEquals (expectedOutput, executeProgram (input))

@Test
complexExpressionEvaluationTest () {
String input =
String expectedOutput =
assertEquals (expectedOutput, executeProgram (input))

input =
expectedOutput =
assertEquals (expectedOutput, executeProgram (input))

CAPSTONE DOCUMENTATION 5

Section 3: Design Pattern

One specific design pattern used in the capstone project is a memoization pattern located
in the CatscriptType.java class in the function getListType. Memoization is an optimization
technique to speed up computer programs by storing the results of function calls and returning
the cached result when the same input occurs again. In the context of the compiler, when we call
the getListType function with a CatscriptType; for this example let us use an int type. It
investigates the hash map to see if the map contains the type of int. If not, it returns null and from
there, we create a new list type or a list of int in this case and then puts this data into the hash
map and returns the list type. Now if we run the function again the program will not re-initialize
a list of type int, it will instead return the original list type we created. Allowing us to save
computation of renewing a list type when it we call the function with the same type repeatedly.

The following is the Memoization pattern code used in the project.

Map<CatscriptType, CatscriptType>
HashMap<> ()
CatscriptType getListType (C
CatscriptType listType =
(listType ==) {
listType = ListType (typ
.put (type

listType

CAPSTONE DOCUMENTATION 6

Section 4: Technical Writing

Catscript Programming Language Technical Documentation
Provided by Team member 1

Introduction

Catscript is a small user-friendly programming language designed with simplicity in mind. It
provides a straightforward syntax that enables programmers to write clear code. Catscript is a
small functional and statically typed language. This documentation serves as a comprehensive
guide to Catscript grammar and syntax. In this documentation, you will find detailed
explanations of the various components of the Catscript language, including program structure,
statements, control structures, functions, expressions, literals, and types. We will also provide
examples and use cases to help you better understand the concepts and apply them yourself.

Recursive descent parsing is a top-down parsing technique used by Catscript to analyze and
process its source code. This method starts at the highest level of the grammar and recursively
applies the rules of the grammar to break down the source code into smaller components. The
parser examines the input one token at a time, matching the grammar rules and constructing a
parse tree in the process. If a rule cannot be successfully applied, the parser backtracks to a
higher level in the grammar and attempts alternative rules. Recursive descent parsing is a popular
choice for its simplicity and ease of implementation, which makes it well-suited for Catscript's
limited features.

Types

In Catscript, types define the structure and behavior of data, determining the kind of values that
variables can hold and the operations that can be performed on those values. The language offers
a set of built-in types that cater to a variety of use cases, enabling you to create expressive
programs. The language consists of seven distinct data types, namely: String, Integer, Boolean,
List Literal, Object, Null, and Void. CatScript is statically typed and can be declared in variable
statements and function declarations. All the types in CatScript are built on those defined in Java.
At the time of evaluation CatScript also provides type checking in the validation step. When
declaring variables or function parameters, you can optionally specify their type to enable type
checking, which helps catch potential errors early in the development process. Types can also be
used in generic contexts, such as defining lists of specific element types.

CAPSTONE DOCUMENTATION 7

Integer:

In CatScript integers are built off the Integer.class in Java. It is important to note that in
CatScript integers are the only numeric type that are provided. Any number that is provided is
interpreted as a 32-bit integer.

Here is an example of declaring a variable as an integer and using it in an additive expression.

var X :int=

X+

Strings:
In CatScript strings are built on the String class in Java but have some characteristics of their
own. All strings are denoted with double quotes.

Here is an example of a variable string.

var str : string = "Hello World!"

str+" I am a string!"

Boolean:
In CatScript strings are built on the Boolean class in Java. A Boolean literal in CatScript is put
using the keywords “true” and “false”

var is_true : bool = true

is_true == false

Lists:
In CatScript lists are built into the language as list literals and can be composed of any type. It is
important to note that lists in CatScript can be composed of object types and therefore any mix of

types.

Here are some examples of lists.

var my_list : list <int>=[1, 2, 3]

Objects:
In CatScript objects are built on the object class in Java. They are the root of all types and so can
be the base for any type.

CAPSTONE DOCUMENTATION 8

Null:
In CatScript the null type is also based on the object class in Java. Anything can be set to null in

CatScript.

Expressions

In Catscript, expressions are fundamental building blocks used to represent values, perform
computations, and evaluate conditions. Expressions can consist of literals (e.g., integers, strings,
Booleans), variables, function calls, or combinations of these elements using various operators.
The language supports a rich set of operators, allowing you to create complex expressions
involving arithmetic, comparison, logic, and other operations.

Catscript expressions are organized hierarchically based on their precedence, which determines
the order in which operations are performed. The precedence levels, from highest to lowest,
include unary expressions (e.g., negation, logical NOT), factor expressions (e.g., multiplication,
division), additive expressions (e.g., addition, subtraction), comparison expressions (e.g., greater
than, less than), and equality expressions (e.g., equal, not equal).

When writing expressions in Catscript, parentheses can be used to group sub-expressions and
explicitly define the order of evaluation, overriding the default precedence rules. Expressions are
typically used as operands in various statements, such as assignments, conditional statements,
loops, and function calls, allowing you to create powerful and expressive Catscript programs.

Logic Operators:
Within the CatScript language there are the usual logic operators available to the user, greater
than, less than, greater than or equal to, less than or equal to, and equals.

Here are some examples of expressions using logic operators

CAPSTONE DOCUMENTATION 9

Arithmetic Operators:
Catscript offers the basic operations of addition, subtraction, multiplication, and division. It is
important to note that the addition operator can be used on integers or for string concatenation.

Here are a few examples.

Statements

In Catscript, statements are the primary building blocks that define the behavior and flow of a
program. They represent instructions that the program should execute, and are used to declare
variables, define functions, control the flow of execution, and perform computations or other
operations. Statements in Catscript are executed sequentially, from top to bottom, in the order
they appear in the source code. However, control structures can alter the order of execution by
branching or looping based on specified conditions. To group multiple statements together, you
can use curly braces {} to create a block of code, which is particularly useful when defining the
body of a function or the scope of a control structure.

For Loops:

In Catscript, for loops are used to iterate over a given range or collection, executing a block of
code for each element. The loop variable is specified by an identifier and can be used within the
loop body. For loops provide a convenient and readable way to perform repetitive tasks or
process elements in a sequence.

Here is an example of how to write a loop in CatScript.

for (xin [1, 2, 3])
{

}

print(x)

CAPSTONE DOCUMENTATION 10

If Statements:

If statements are conditional constructs that allow you to execute a block of code if a specified

expression evaluates to true. Optionally, you can include an “else” block to execute code when

the condition is false. If statements are essential for controlling the flow of your program based
on conditions.

Here is an example of how to use it for statements in CatScript.

Assignment Statement:

Assignment statements are used to assign a new value to an existing variable, identified by its
name. This is a fundamental operation in any programming language, allowing you to store and
update values in your program.

Here is an example of how to write an assignment statement after a variable has been created.

var X :int =

X =

Variable Statement:

Variable statements are used to declare new variables with a specified identifier and an initial
value. Optionally, you can also define the type of variable, which provides type checking and
helps to catch potential errors early in the development process.

Here is an example of how to instantiate a variable in CatScript.

=

bool = true
string = "hello"
object = "foo"

CAPSTONE DOCUMENTATION 11

Print Statement:

The print statement outputs the value of an expression to the console, allowing you to display
information or debug your program. It is a useful tool for understanding the behavior of your
code during development and testing.

Here is an example of the print statement.

Function Definition Statements:

Function definition statements are used to create new functions with a specified identifier,
parameter list, and a return statement. The function body consists of a series of statements that
define the behavior of the function. Functions are essential for organizing your code into
reusable, modular units.

Here is an example of defining a function in CatScript.

for (xin [1, 2, 3])
{

print(x)
}

Function Call Statement:

Function call statements are used to invoke a previously defined function with a list of
arguments. The function call statement evaluates the return value of the called function, which
can be used in other expressions or statements.

Here is an example of how to call the function above.

print(foo(10))

Return Statements:

Return statements are used within function bodies to specify the value that should be returned by
the function when it is called. A return statement can include an expression that evaluates the
return value. If no expression is provided, the function returns "null".

Here is an example of a return statement in a function.

for (x in [1, 2, 3])
{

print(x)
}

CAPSTONE DOCUMENTATION

Section 5: UML

12

In this section I have included four sequence diagrams showing the process of parsing a

numerical expression, a string concatenation expression, an if statement with a print, and a

function definition containing a for loop with a print, a return statement, and a print with a

funciton call statement.

Catscript Parse Expression Sequence Diagram

User

CatScript

Lexer

L

evaluate ("9 * (56 / 7)") >

Parser

lex("9 * (56 / 7)")

tokens

parse(tokens)

j———————]

parseExpression()

i

parsePrimaryExpression()

i

parseFactorExpression()

s

parselntegerLiteral()

i

ParseTree

parseParenthesizedExpression()

CAPSTONE DOCUMENTATION 13

Catscript Parse String Expression Sequence Diagram

User GatScript Lexer Parser ParseTree

e |
|
evaluate ("Hello World " + 2023) > |

lex("Hello World " + 2023)

parse(tokens)

parseExpression()

i

parsePrimaryExpression()

L

parsePrimaryExpression()

i

parse3tringLiteral()

i

|
|
|
|
|
|
|
|
|
|
: parseAdditiveExpression()
|
|
|
|
|
|
|
|
|
|

parseTree

"Hello World 2023"

CAPSTONE DOCUMENTATION

Catscript Parse If Statement Sequence Diagram

User

evaluate (var x = 1
iffx=1) {

print("Yes")
bl

CatScript

Lexer

-

»
Lt

ey e Rt E

Parser

lex(varx =1
iffx=1){
print("Yes")

parse(tokens)

ParseTree

F———— - —————

parseTree

A 4

parseStatemetn()

i

parseVarStatement()

i

parsePrimaryExpression()

i

parseEqualityExpression()

i

parsePrimaryExpression()

i

parselfExpression()

i

parseExpression()

i

parsePrimaryExpression()

i

parseEqualityExpression()

i

parsePrimaryExpression()

i

parseStatement()

i

parsePrintStatement()

i

parseExpression()

i

parsePrimaryExpression()

i

parseStringLiteral()

i

e

execute() |

4 |] ——

14

CAPSTONE DOCUMENTATION

Catscript Parse Funciton Definition, For Loop, Return and Print Statment Sequence Diagram

|

evaluate (function foo(x - int) - int { |
for(iin [1,2,3] |

print(i) 1

returm x :

|

print(foo(4)))

for(iin [1,2,3]4
print(i)

return x

}prim(fou(fl)))

|

|

|

|

|

|

|

|

|

lex(function foo(x - int) - int { |
i |
|

|

|

|

|

|

|

tokens

parse(iokens)

A 4

parseFunctionDefinitionStatement()

i

parseStatment()

I

parseForStatement()

i

parseExpression()

i

parsePrimaryExpression()

i

parsePrimaryExpression()

i

parseListLiteralExpression()

I

parsePrintStatment()

I

parseExpression()

i

parsePrimaryExpression()

i

parseReturnStatement()

i

parseExpression()

i

parsePrimaryExpression()

i

parsePrintStatement()

i

parseFunctionCallStatement()

i

parseExpression()

i

parsePrimaryExpression()

i

parseTree
o B f==--=- T

|
execute()

T >

e

"234"
i

!

CAPSTONE DOCUMENTATION 16

Section 6: Design Trade-offs

The most notable design trade-off present in this capstone project was the recursive
descent parser that was handwritten rather than writing lexical and language grammars to use a
parser generator tool to create the parser. The justification of writing our parser for this capstone
by hand was that we found this process more intuitive to observe a more in-depth view of how
grammar works in compilers. Using a hand-written recursive-descent parser also allows coders
in general to have complete control over the parser, enabling more opportunities that parser
generators cannot accommodate, such as in-depth error messages and error recovery. It also gave
us the chance to write more complicated code and taught us the process of which a compiler goes
through to parse a language.

The comparison of the recursive decent method to the use of a variety of different parser
generators tools like LAX, YAK, or ANTLR had a more educational advantage than using the
technique of a parser generator program. Which would typically take the input in the form of a
lexical grammar specified by a regular expression, and a language grammar in a EBNF
(Extended Backus-Naur Form) syntax. While objectively leading us to a compiler that would
parse and run Catscript just like the compiler created for the capstone, it robs us of looking at the
bare bones of the parser process but also the chance to learn and create our own language for

future coding endeavors.

CAPSTONE DOCUMENTATION 17

Section 7: Software Development Life Cycle Model

The software development model that was used during the semester for the capstone
project was test driven development which was an extremely helpful and useful model for this
coding project. This software model continually tested previous test sections as well as the
current section on which I was working. Each section of the tests would only pass if the previous
sections were running properly, but as you progress you can have tests that uncover hidden issues
that were missed but still passed in previous sections. For example, while working on the
evaluation section one, a test was not executing properly because I had forgotten to adjust line-
offset in a previous parsing function. Despite this error the tests in the parser section still passed.
Using this development cycle allowed for step-by-step testing of the compilers capability while
also checking previously coded sections.

When starting the process of creating our compiler we were given a series of tests that
described the Catscript programming language. The tests for this project were divided into four
sections: tokenizer, parser, evaluation, and bytecode. All these tests would eventually lead to a
completed compiler, but to start this coding journey we focused on the tokenizer section. In this
series of tests, a stream of text was broken into tokens while also attaching additional context to
the tokens. For instance, the different operator types in the language or what the type of field of
the token is, for example an int, bool, etc. The next section of development focused on parsing
expressions and statements, while also type checking and symbol checking the tokens that were
read into the parser, and asserting errors in the code if the given program did not follow the
Catscript programming language. Once parse tests were evaluated correctly, we moved onto the
evaluation process which would ensure the basic expressions, functions, and statements were

generating the correct output based on the tests. Finally, the last sections of the tests would take

CAPSTONE DOCUMENTATION 18

the Catscript code and would check to make sure that the basic expressions, functions, and
statements were compiled correctly into bytecode. Ensuring the process of reading in the
Catscript programming language, tokenizing the language, parsing, evaluating, and compiling
the code down to byte code allowed us to successfully create our Catscript compiler for the

capstone project.

