Compilers Portfolio
CSCI 468 — Spring 2023

Cory Janes and Dillon Shaffer

CatScript Documentation

Section 1: Program

The link to our zipped file in the project directory: capstone/portfolio/source.zip

Section 2: Teamwork

Most of the work was done on an individual basis, but there was plenty of ideas and concepts that
Dillon and I discussed throughout the compiler project. Communication and teamwork became
more involved as the semester drew to a close and we collaborated with test writing,
documentation structure and finalizing our capstone.

Dillon and I created additional unit tests for each of our projects to test the robustness of our coding
in the project. Dillon’s tests can be found in the directory
test/java/edu.montana.csci.csci468/partnertests/CatscriptParserLocationTest and below are a few
of the tests:

@Test
public void integerLiteralExpression() {
IntegerLiteralExpression expression = parseExpression("1");
MatchToken token = new MatchToken().start(0).end(1).line(1).offset(0);

assertEquals(token, expression.getStart());

token = new MatchToken().start(0).end(1).line(1).offset(0);

assertEquals(token, expression.getEnd());

@Test

public void stringLiteralExpression() {
StringLiteralExpression expression = parseExpression("\"hello\"");
MatchToken token = new MatchToken().start(0).end(7).line(1).offset(0);
assertEquals(token, expression.getStart());

assertEquals(token, expression.getEnd());

@Test
public void stringLiteralExpressionWithEscapes() {
StringLiteralExpression expression = parseExpression("\"\\\"hello\\"\"");

MatchToken token = new MatchToken().start(0).end(11).line(1).offset(0);

CatScript Documentation

assertEquals(token, expression.getStart());

assertEquals(token, expression.getEnd());

@Test

public void identifierLiteralExpression() {
IdentifierExpression expression = parseExpression("foo", false);
MatchToken token = new MatchToken().start(0).end(3).line(1).offset(0);
assertEquals(token, expression.getStart());

assertEquals(token, expression.getEnd());

@Test

public void booleanLiteralExpression() {
BooleanLiteralExpression expression = parseExpression("true");
MatchToken token = new MatchToken().start(0).end(4).line(1).offset(0);
assertEquals(token, expression.getStart());

assertEquals(token, expression.getEnd());

expression = parseExpression("false");
token = new MatchToken().start(0).end(5).line(1).offset(0);
assertEquals(token, expression.getStart());

assertEquals(token, expression.getEnd());

@Test

public void nullLiteralExpression() {
NullLiteralExpression expression = parseExpression("null");
MatchToken token = new MatchToken().start(0).end(4).line(1).offset(0);
assertEquals(token, expression.getStart());

assertEquals(token, expression.getEnd());

CatScript Documentation

Section 3: Design Patterns

One of the design patterns used in Catscript is the Memoization method. Also known as tabling,
memoization is a technique that stores expensive function calls and returns that cached result when
the same input is used or inputted in the program. The benefit of this method is a speed boost by
remembering results and bypassing the function calls needed for those results. Below is a code
snippet with a memoization example:

private static final Map<CatscriptType, CatscriptType> LIST TYPES = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST TYPES.get(type);
if (listType == null) {
listType = new ListType(type);
LIST TYPES.put(type, listType);
}

return listType;

Section 4: CatScript Documentation

Introduction

The CatScript programming language is a simple, non-Turing complete scripting language. Due to a lack of assignment

expressions,custom data types, and a module/package system—the language is largely incomplete at this time.

¢ Non Turing-Complete

o Thelanguage does not support list assignment Basic
+ Type System

o Integer, String, List types

o Generic Object, Null, and Void
+ Function support & top-level statements Simple

+ for-loops and complete if-statements

Features

The CatScript scripting language has the basic statements and expressions found in most C++/Java-based programming

languages. It has support for basic if statements, for-statements.

Type System

CatScript Documentation

The CatScript type system is statically but weakly typed. This means that all types are known by the compiler at

compile time but the “boundaries” between different types are soft (see the object type).

Assignable Types

Integers

The syntax for integers in Catscript is similar to that in which you will find in most programming languages: Regex: [0-
9]+
Type Keyword: int
Type Size: 4 bytes

Given CatScript’s simple type system, there is only a single (32-bit) signed integer in the language.

Booleans
Once again, the syntax for booleans is similar to most Java/C++ inspired programming languages.

Regex: true|false

Strings

Like integers and booleans, the syntax for string tokens are similar to many other mainstream programming languages:
Regex: “[(W7)|(\n)[.]*”
Type Keyword: string
As you can see in the grammar, CatScript strings allow quotation and newline escaped characters.
n — ASCII 10 - Linefeed
+ — ASCII 34 - Quotation

CatScript does not provide anyway to use unicode escapes

Lists
Like other simple scripting and programming languages, CatScript the simple array syntax for lists.
Regex: \[(<expr> (, <expr>)*)?\]
<expr> is the regex for a CatScript expression
Type Keyword: list or list<<type>>
<type>is any CatScript type (including another list)
If not specified, the component type of a list defaults to object

CatScript lists are read-only (this is the main feature making the language not Turing complete!)

Object

In CatScript, everything is an object. All types listed above this entry are assignable to object. It is the only type to

which null can be assigned.

CatScript Documentation

Non-Assignable Types

Void
The void type is not an assignable type (this means that values cannot be assigned to a variable of type void, nor can

variables be declared with type void!) This type is used primarily in functions that return no value.

Null

The “null” type is a valid CatScript type, though it has few uses. It is intended for future CatScript updates in which
functions will absolutely return a null value. It exists as an alternative to void since a Null type has size as opposed to

the zero-size null type.

The null type is not an “assignable” type meaning that it cannot be used in type declarations

Syntax
Now that we have covered the type-system, we can talk more about the format of the syntax of the language.
CatScript has three major types of AST elements—declarations, statements, and expressions— listed here

hierarchically.

Declarations

In CatScript, there are only two kinds of declarations:

Function Declaration

In CatScript, functions are the only form of code abstraction. Since there are no object-oriented types there are no

methods meaning CatScript is a purely non-pure functional language.
Regex: <type>1 <ident>’ \((<ident>" (: <type>)?5),*3 \) { <stmt>* }
1. The return-type of the function. The function must return a value of this type.
2. The name of the function, <ident> = [a-zA-Z][a-ZA-Z0-9]+
3. A function can have zero or more arguments as seen here, they must be comma separated

4. Each argument has a name of its own, each argument must have a name unique from the other arguments

of that function

5. Each function argument, may optionally be specified a type. If not specified, the type defaults to
object

CatScript Documentation

function doublelt (value: int): int {

return value + value;

function zero(): int {

return 3; // lol why not :D

Statement Declaration

This declaration is really just a wrapper around some statement. Since CatScript is a scripting language, we find it

useful to be able to execute statements at the global level.

Statements

Print Statement

In catscript, in order to print out values we must use the JVM. For this reason, the print function is abstracted into a

language keyword.
Regex: print(<expr>)

Var Statement

The variable statement is responsible for creating variables.
Regex: var <ident> (: <type>)? = <expr>

Examples:

If Statement

The if-statement is responsible for conditional branching.
Regex: if (<expr — bool>) { (<stmt>)* } (else if (<expr — bool>) { (<stmt>)* })* (else { (<stmt>)* })?
The if-statement allows support for else-if branches as well as a singular, final else branch.

Examples:

For Statement

The for-statement in CatScript is a simple loop statement that allows iteration over elements in a list. The iteration

variable is declared in the loop declaration and is read-only.

CatScript Documentation

Regex: for (<ident> in <expr>) { (<stmt>)* }

Return Statement

The return statement is used to exit a function early and optionally return a value. If no value is specified, the function

returns null.

Regex: return (<expr>)?

Expressions

Given that CatScript is a very simple language, it is missing around half of the operators that most OO languages
have. These include the increment operators, access operators, index operators, bitwise, and boolean-algebra

operators.

Binary Operators

CatScript supports the following binary operators:
¢+ -, =, /: addition, subtraction, multiplication, division
¢ =, 15, <, >, <=, >= equality, inequality, less than, greater than, less than or equal, greater than or equal
¢ 1, not: logical AND, logical OR, logical NOT
Precedence
1. Assignment
Equality
Comparison

Addition

a > w0 BN

Multiplication

®

Unary

7. Primary

Expressions

Expressions are the core of any programming language. In CatScript, we have the following expressions: Literals:
+ Integer, string, null, and list literals

¢ Variables: accessing the value of a variable function

¢ Calls: calling a function with arguments

+ Binary operators: performing operations on two values Unary

¢ Operators: performing operations on a single value list

¢ Operations: list access and list membership operators

CatScript Documentation

Section 5: UML

The UML for parse elements was given in the class and a portion of it was modified to show
understanding of the subject, seen below:

Catscript Division Sequence Diagram

User CatScript Lexer Farser ParseTree
| 1 [| |
I I I I
| evaluate ("2/1") | |
| P | |
| | I
I I I
I I I
I I I
I B I
I ! I
| parse(tokens) > |
I I I
| | parseExpression() I
I I :' I
I I I
I I I
| | parseFactorExpression() |
I I I
I I I
: : parselntegerLiteral() :
I I |
I I I
| ParseTree |
| ¢ ------- r-—=—---- an
| I |
| | execute()

I I I
| | L] III
2
| ¢ - ------ S e
I
I< I'|2II
I
I

I |
I |
___________ T I |
I I
I I

1) The program is asked to evaluate a statement

2) The CatScript tokenized in the Lexer and sent to the parser

3) Through recursive descent, the Parser finds the appropriate function for the tokens
4) The function is executed and the ParseTree returns the outcome to the user

CatScript Documentation

Section 6: Design trade-offs

CatScript has some trade-off because of its educational design. Simplifying the compiler creates
some limitations while letting students learn the basics of its generalized process. CatScript uses
a recursive descent algorithm instead of the often-taught parser generator. Recursive descent
parsers are slower at parsing large expressions, but being loop-based, the parser has less
problems. As mentioned, the recursive descent algorithm gives novices a better picture of how a
compiler works with straight forward coding blocks and it can be easily debugged.

Another trade-off for ease of understanding is the depth of expression layers that are not reached
in CatScript. Java has 12-14 expression layers, while CatScript has only 6 layers for its
expressions.

Section 7: Software Development Life Cycle

The Test-Driven Development model was used in this project. This is a process that relies on
software requirements that are turned into test cases. Unlike testing after a finished product, this
is done during software development to test new code repeatedly against all test cases. This
greatly increases the robustness of the software dynamically.

CatScript Documentation

10

	Introduction
	Features

	Type System
	Assignable Types
	Integers
	Booleans
	Strings
	Lists
	Object

	Non-Assignable Types
	Void
	Null

	Syntax
	Declarations
	Function Declaration
	Statement Declaration

	Statements
	Print Statement
	Var Statement
	If Statement
	For Statement
	Return Statement

	Expressions
	Binary Operators
	Expressions

