CSCI 468: Compilers
Spring 2023

Travis Brase
Aurora Duskin

Section 1: Program

Catscript is a statically typed functional programming language that was developed over
the course of this project. The source code for the project is located in the
‘main/java/edu.montana.csci.csci468’ folder within the contained zip file. The testing
suite is located in the test/java/edu.montana.csci.csci468’ folder within the contained zip
file. The tests given from the Documentation and Testing Engineer are in the
‘test/java/edu.montana.csci.csci468/tradedTests’ folder. All other files not mentioned are
part of the resources used to make this project.

For all source code, see the source.zip in this directory.

Section 2: Teamwork

For this project, both team members worked individually and had separate portfolios.
The initial starting code for the project was provided by the capstone instructor. During
the course of the semester, the Primary Engineer (Team Member 2) was responsible for
completing the four sections of code, which included the tokenizer, parser, evaluation,
and bytecode.

After the Primary Engineer finished their part, the team switched codes, and the
Documentation and Testing Engineer (Team Member 1) of this portfolio took over. They
were responsible for completing the documentation for section 4, as well as handling all
debugging and checks in the testing suite while adding some extra tests.

The team's approach allowed each member to focus on a specific set of tasks, which
helped to maximize their productivity and efficiency. Overall, the team's collaborative
effort resulted in a successful project outcome, with each member playing a crucial role
in completing the project.

The estimated percentage of time for this project is shown below:
Total Estimated Hours: 60
Code Development 83.33% : (Member 1) 50 Hours split evenly across the 4 sections

Technical Writing 6.67% : (Member 2) 4 Hours

Testing/Debugging 3.33% : (Memeber 2) 2 Hours

Portfolio Completion 6.67% : (Member 1) 4 Hours

Section 3: Design pattern

In our program, we decided to use the Memoization Pattern. Memoization is an
optimization method that is commonly utilized to enhance the speed of computer
programs. It involves storing the output of resource-intensive function calls and
returning the cached result when the same inputs are encountered again. Besides
improving program performance, memoization has also been applied in various other
situations, including simple mutually recursive descent parsing.

The Memoization Pattern in our program stores the list type into a hashmap to use for a
later call with the same argument. We decided to use this pattern to optimize the
runtime of the function call. The pattern is located in the
‘main/java/edu.montana.csci.csci468/parser/CatscriptType.java’ file lines 38-46 (Shown
Below).

public static final Map<CatscriptType, CatscriptType> LIST_TYPES = new
HashMap<>();

public static CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST_TYPES.get(type);
if(listType == null) {
listType = new ListType(type);
LIST_TYPES.put(type,listType);
}

return listType;

Section 4: Technical writing

Introduction

Catscript is a statically typed functional programming language. Included in this
language is a small type system that includes:

int - a 32 bit integer

string - a java style string

bool - a boolean value

list - a list of value with the type X’
null - the null type

object - any type value

With these types, you can create simple to complex code programs using the features

in the following section. Here is a simple code example:

var x = "foo";
print(x);

Features

Print Statement

The ‘Print Statement’ is a statement that displays output on the console or terminal. It
allows you to print text, variables, or expressions to the console. In Catscript, the print
statement can be written like this:

print(1);
print(“Apple”);
The output for the above statements would look like this:

o

Apple

Variable Statement

The ‘Variable Statement’ is a statement that declares a variable and optionally assigns
an initial value to it. A variable can hold a number, string, or boolean. Following its
declaration, a data type can be applied. In Catscript, the variable statement can be
written like this:

var x;

var x = 10;

var x = ‘apple’;

var x :int=10;

var X : string = ‘apple’;

Return Statement

The ‘Return Statement’ is a statement that is used to exit a function and return a value
to the calling code. When a return statement is executed within a function, the function
terminates immediately, and the control is passed back to the calling code along with
the returned value. In Catscript, the return statement can be written like this:

return (i);

return (combine);

return(flag == true);

Assignment Statement

The ‘assignment statement’ is a statement that assigns a value to a variable. In
Catscript, the assignment statement can be written like this:

x =10;

’

y = ‘foo’;

Zz = true;

For Statement

The ‘for statement’ is a type of control structure that allows you to iterate over a
sequence of values and perform a set of actions for each value in the sequence. The
sequence can be a range of numbers, a list of values, or any other iterable object. In
Catscript, the for statement can be written like this:

numbers = [1, 2, 3, 4, 5]
for (num in numbers){
print(num);

}’
o

words = [‘banana’,’apple’,’orange’]
for (word in words){

print(word);
2

The output for the above statements would look like this:

O, ODN -

banana

apple
orange

If Statement

The ‘If Statement’ is a type of control statement that allows you to execute a block of
code conditionally based on a boolean expression. The boolean expression is evaluated
and, if true, the code inside the statement is executed. If the boolean expression is
false, the code inside the if statement is skipped. An if statement can also hold else
statements. In Catscript, the if statement can be written like this:

number = 5;
If (number > 0) {
print(“The number is greater than zero”);

}’
T

word = ‘apple’;

If (word.equals(‘banana’)) {
print(“This is a banana”);

} else {
print(“This is NOT a banana”);

2
The output for the above statements would look like this:
The number is greater than zero

This is NOT a banana

Function Body Statement

The ‘Function Body Statements’ are statements that belong to a Function Definition
Statement. The function definition statement can have one or more function body
statements. The function body statements must end in a return statement. In Catscript,
the function body statement(s) can be written like this:

inti=1;
i++;
return (i);

string combine = x + i;

return (combine);

return(flag == true);

Function Definition Statement

The ‘Function Definition Statement’ is a statement that defines a named block of code,
function body statements, that can be called later in the program. Following its
declaration, a data type can be applied that corresponds to that function's return value.
They can optionally accept input arguments and return output values. In Catscript. The
function definition statement can be written like this:

function func1() {
inti =1;
return (i);

o

string x = “The number is

inti=2;

function func2(string x, int i}{
string combine = x + i;
return (combine);

I3

flag = true

function func3(bool flag):bool{
return(flag == true);

}

The returned value for the above statements would look like this:
1

‘The number is 2’;

true

Function Call Statement

The ‘Function Call Statement’ is a statement that invokes a named function previously
defined in the program, passing it any required input parameters. In Catscript, the
function call statement can be written like this:

func1();

inti=2;
string word = ‘apple’;
func2(word, i);

bool flag = true;
func3(flag);

Section 5;: UML

In this sequence diagram is the compile function of the forStatement class in the project.
It begins with the Actor calling the compile() method, followed by the activation of the
forStatement class.

From there, the forStatement class calls the ByteCodeGenerator class then the
GenerateMethod class. This is all done to get the next available storage slot on the
stack.

The forStatement class then calls the Expression class to compile the expressions that
were given from the Actor.

Multiple calls are then completed from the forStatement and ByteCodeGenerator to
complete the bytecode section of the compiled expressions.

Once that is complete, the forStatement class moves into the parsing stage where the
expression is split even more and placed into a ParseTree.

After a few more calls to the generators, the given code has been compiled and is ready
for evaluation.

| Expression I I ParseElement | | CatscriptType |

1.4.1:addMethodinstruction
1.5.1 saddVarinstnection

1.7 1 addVarinstruction
1.10.1 ;addJumplnstruction
1.11.1:addVarinstruction

1.13.1:addMethodinstruction

|
I
|
|
o
|
I
I
+
I
|
I
|
I
I
|
I
ol
1.6, 1 :addlabel
A |
I
I
I
|
1.9.1:addMethodinstruction
I
|
I
ol
|
|
I
|
AR |

K o o o o o o o o e

kb, — - - - —— — — —
k———————— — —
kb— - - — —

kb — - - - —— — — —

|
_
|
|
|
|
_
_
|
P |
: |
o ——] — T —]] — — — 1— 4 - — —]] — - —] 1— 5 — 7 —
n 3 |1 P __m _m _m EIRE "w | § _WJ.M Fin
4 _ 13 [I I I | 2 | | 3 I I I I
SHRR (I IR N {ONNE | N [T NS N /N N | N I (N N
g _ | § | £ 1§ I 1§ | § | £ 13 1§ | § | £ _m _
z _ 13| 13 | 2 _ | 2 EIRE I 8 | B EIE EI
£ _ NS |- | | = S IS I~ P=ll 1R =1
] _ | [[I I I | = RE [[| 2 I I
_ _ [[I I I I | | I |- I I
Ll ‘_‘ ‘_‘ | L] ,_f ,_. Ll L]

ForStatement
|
|1

i il JEE S e e
1 il HELR
IIIIIII S 2 | =E
ST T T T T T T T T Attt
R B B S —
& | :
llllll I I | N | 1§
 — | a o o | d.lll | | .
£ _m _ E _m I__ll_. ||||||||||| -4 : _
| . _ S | 3 ! oY
| _ CIE | L |
s [| s | g _ I _
cl Gl | _
| _ _ | m A i
i | | L : _ | _
_ _ _ [- _ | _
|| | | | s] |
ML#||I||||4IIHM|T|II|L|lu”,l_||_T||-h _ | : |
2] 1 | m || _ o [A S I S R B S
il 3 N IBREEE: i B IR B Y
] a @ g .
gl | |3 L ClE % | I - 2! N 3|
|| LR T AERARE R EEEE R R
Il | | HEHE 3 . | | B [N
G g HEEE R AR
- - | S a ! =
| R A]
o) L A e I A - | L | | . |
% e ,_‘__||_ﬂ|... L | i _ | | _ |
2 _ | 5 =TT~ T <__I- <..II.“|| ,_ﬁ_l L
: | | g _ _ I § F _ . _ T
g _ | 8 _ _ I3 |2 | i E
i _ | & ol e '3 L E |
5 | | & L] s | £ L g |3 |
L _ | _ _ |3 | 2 _ & 13 |
2 _ i 8 _ _ |5 ' § _ E I~ |
_ E _ _ 18 | & _ ¥] |
| 2 _ | = [I | & I |
| | B | _ I | _ k _ |
b ¥ | & _ | | _ |
L L _.h. L3 _,P

Section 6: Design trade-offs

For this project, we made the deliberate decision to construct the parser generator
manually rather than relying on a parser generator that uses regular expressions. The
motivation behind this decision was to develop a more intuitive recursive descent
algorithm, which would lead to a better understanding of the Catscript grammars and
their underlying mechanisms.

If we had opted to use a parser generator, the Lexical grammar would have been
expressed using a regular expression, and the language grammar would have been
written in Extended Backus-Naur Form (EBNF). However, taking this route would have
meant that the recursive descent algorithm would not have received the attention it
deserved. Consequently, it would have been difficult to provide a complete explanation
of how the parser works and generates parser trees from tokens.

By manually constructing the parser generator, we were able to gain a deeper
understanding of the Catscript grammar and how it functions. Additionally, we
developed a more intuitive recursive descent algorithm that provided a clear explanation
of how the parser works and generates parser trees from tokens. Overall, this approach
enabled us to build a more effective and efficient parser.

Section 7: Software development life cycle model

Our project team employed the Test Driven Development (TDD) methodology in the
development of our project. We were given a test suite to work in from the capstone
professor and the Documentation and Testing Enginner wrote some tests to go into it.
This approach proved to be advantageous as it enabled us to precisely define the
expected functionality of the code, including edge cases, well in advance of completion.
TDD is recognized for its ability to improve code quality and facilitate effective
collaboration among team members.

