

CSCI 468: Compilers

Spring 2023

Camille Custer

Avery Jacobson

CAPSTONE Documenta�on

Sec�on 1:

See atached zip “source” file

Sec�on 2:

My team member and I shared the workload of our capstone project at approximately and 80-20
ra�o. I developed the code for the en�rety of the compiler, and my team member wrote
challenging tests that tested the farthest edge-cases and the Catscript documenta�on of my
progra. By working together to test our code, I can ensure that the CatScript language func�ons
as it should. The tests are as follows:

Sec�on 3:

We used the memoiza�on design patern in our Catscript compiler. Memoiza�on is a
programming language design that creates a “cache” data structure to store the results of
func�on calls. If a func�on is called again and the results have already been cached, the cached
result is returned instead of recompu�ng the same result. An instance of the memoiza�on
design patern in our code can be found in CatscriptType.java in the getListType() Method. This
checks if the list is already stored in the “LIST_TYPES” HashMap. If it is not, it will then store it in
the map. If it is, it will reference the list object in the map.

Here is an example of the code:

Sec�on 4:

Sec�on 5:

The following sequence Diagram shows the process of the CatScript Parser when compiling
(3*5). You can see how the Parser tokenizes, lexes, parses, and compiles the statement.

Sec�on 6:

The Catscript language relies on Recursive Descent Parsing. Recursive Descent parsers are fairly
easy to implement and debug. This method of parsing works well for Catscript, but o�en run
slowly compared to other parser generators when paired with large or complex grammars. We
could of implemented a parser generator instead which would greatly improve parsing
performance, but in turn are rather complex to implement and leave the developer with less
control over the parsing process.

Sec�on 7:

The so�ware development lifecycle model that we used is the Test Driven Development model.
This method is a Linear sequen�al model that is broken down into tests that make up stages.
Each test within the stage is completed before moving onto the next stage. In our Catscript
Parser these stages were as follows: Tokeniza�on, Expression Parsing, Statement Parsing,
Evalua�on tes�ng, and Compila�on.

 These stages were verified using tes�ng func�ons that ensured our algorithm worked properly.
This model helped my team as we were unable to move forward without completely polishing
the aspects of the compiler that would become dependent as we advanced onwards. This
hindered our progress as well, since we may of not been able to directly take what we learned
from lecture and put it into our code, as we were s�ll working on tests that were weeks behind
what was being covered in lecture.

