Eric Wanner-Garnier
CSCI 476 Spring 23
Capstone Document

26 April 2023

Section 1: Program

Accompanying zip file: source.zip

Section 2: Teamwork

Team Member 2 wrote the documentation for the compiler as well as a high level test suite for the Catscript features and Team Member 1
wrote the source code to the grammar, features, and tests.

Section 3: Design pattern

We used memoization in src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java so that once a list type was checked for the first
time, we wouldn’t have to reinitialize a CatscriptType object each time the getListType method was called, and instead the initial
CatscriptType object is stored in a hash map and reused.

Section 4: Technical writing

Introduction

Catscript is a simple scripting langauge. Here is an example:

var x = "foo"
print (x)

Features
Catscript types

Catscript is statically typed using the following types:
int - a 32 bit integer

string - a java-style string

bool - a boolean value

list - a list of values of a given type

null - the null type

object - any type of value
Statements
For loop:

¢ General syntax
'for', '(', IDENTIFIER, 'in', expression ')', '{', { statement }, '}';
¢ Example

var array = ["a","b","c"
var numElements = 0
for(x in array) {
print (x)
numElements = numElements + 1
}

print ("There were " + numElements + " elements in the array")
If statment:

¢ General syntax

'if', '(', expression, ')', '{', { statement }, '}' ['else',

¢ Example

var a 1
var b = 5

if(a > b){
print("a is greater than b")
} else {

print("a is less than b")

}

Print statement:

¢ General syntax
'print', '(', expression, ')'
e Example

print ("Hello from CatScript!")
Variable statment:

¢ General syntax

'var', IDENTIFIER, [':', type expression,] '=', expression;
e Example

var a = 1

var b:int = 4
print(a + " and " + b + " are both of type int")

Assignment statement:
* General syntax
IDENTIFIER, '=', expression;

e Example

var a = 3
var b = a*2
print("a is " + a + " and b is " + b)

Function declaration statement:

¢ General syntax

'function', IDENTIFIER, '(', parameter list, ')' + [':' + type expression],

e Example
function add(vall:int, val2:int) {
var result = vall + val2

return result
}

print ("one plus two equals ")
print (add(1,2))

Function call statment:

¢ General syntax

IDENTIFIER, '(', argument list , ')'
¢ Example

function add(vall:int, val2:int) {
var result = vall + val2

return result
}

print ("one plus two equals ")
print(add(1,2))

Function return statment:

¢ General syntax

(if statement

T

R

{ statement

{ function body statement },

AR

)

17

'return' [, expression];
¢ Example

function add(vall:int, val2:int) {
var result = vall + val2
return result

}

print ("one plus two equals ")
print(add(1,2))

Expressions
Equality expression:

¢ General syntax

comparison_expression { ("!=" "==") comparison_expression };
o Example

print (5 !'= 2)

Comparison expression:

¢ General syntax

additive_expression { (">" | ">=" | "<" | "<=") additive_expression };

o Example

print (5 >= 2)

Additive expression:
¢ General syntax

factor_expression { (m+" p "=-") factor_expression Y
o Example

print (5 - 1)

Factor expression:
¢ General syntax

unary_expression { [GAVAL B AL unary_expression };
o Example

print (12 / 3)

Unary expression:
¢ General syntax

("not"™ | "-") unary expression | primary_expression;
¢ Example

print (not true)

Primary expression:

¢ General syntax

IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"| list_literal

o Example

print ("This is a primary expression!")

Section 5: UML diagram

function_call

Catscript Multiplication Sequence Diagram

ParseTree

I
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

User CatScnpt Lexer Farser
| - | I
I I
| evaluate ("2 *5") |
| > |
I I
I I
I I
I I
| el
I (tokens)
parse(tokens
| -
I I
I I parseExpression()
I |
I I
| | |
| | parseFactorExpression()
| |
I |
: : parselntegerLiteral()
| |
I |
I parselree
O B - intadae s i e B I
| | I
| | execute()
| I I
I I ||.1 d_u
I ¢ - ----=-= e R
I
| "10"
e T
|
|

Section 6: Design trade-offs

We decided to design our program with recursive descent instead of the alternative of taking the
specified grammar and using a parser generator. While a parser generator is quick, we did not
choose this option since the generated code can be both bloated and complicated to debug or
modify.

Section 7: Software development life cycle
model

We used a test driven development model during development. Starting the project we had a test
suite that specified the Catscript grammar and functionality. The main downfall I found with this
approach is that I did not consider all the edge cases all of the time, instead considering the tests
completion as complete functionality. However, it did help to give insight to the intended
functionality and cohesion from our team’s design.

