
Gage Hilyard 1

Section 1: Program
The zip file is included in this repository.

Section 2: Teamwork
I was the Primary Engineer, and my partner was the Documentation and testing
Engineer. As the Primary Engineer did the primary work on the parser and functionality
of Catscript and my partner wrote three tests in my CatscriptPartnerTests.java file, as
well as my technical writing.

My partner gave me three tests in the same format as the TDD tests as stated below. My
partner’s tests were very helpful as he had found several holes in my code that I had to
make some changes to the execution of my Catscript code in order to satisfy the
functionality of Catscript’s grammar.

My partner also wrote my technical guide on Catscript. I believe it to explain the
grammar of Catscript very thoroughly.

Section 3: Design pattern
Memoization was used from line 37 – 45 in CatscriptType.java. I used the pattern to
cache the list type and save a little on computation.

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new
HashMap<>();
public static CatscriptType getListType(CatscriptType type) {
 CatscriptType listType = LIST_TYPES.get(type);
 if(listType == null) {
 listType = new ListType(type);
 LIST_TYPES.put(type, listType);
 }
 return listType;
}

Gage Hilyard 2

Section 4: Technical writing.
Catscript Guide

Introduc)on

This guide provides an overview of the Catscript language, wri7en by Cole Reimer for Gage
Hilyard. We have completed the code for wri@ng a compiler for the programming language
“CatScript”. Catscript is a simple, sta@cally typed programming language used to demonstrate
the basics.

The Five Stages of Catscript are:

● Tokenizing
● Parsing
● Evalua@ng
● Transpiling to Javascript
● Compiling to JVM Bytecode

Program Structure:

A CatScript program is made up of a set of statements. Statements can be either program
statements or func@on declara@ons. A program statement can be one of the following:

● statement
● func@on_declara@on

A func@on declara@on looks like this:

func3on func3on_name(parameter_list)[: return_type]{

func3on_body_statement_1
}

Func@on parameters can be of a specific type, specified in the parameter list, and the func@on
can return a specific type, specified in the return type.

Gage Hilyard 3

Statements:

A statement is a command that performs an ac@on. The different types of statements in
CatScript include:

● for_statement
● if_statement
● print_statement
● variable_statement
● assignment_statement
● func@on_call_statement
● return_statement

For Statement:

A for statement is used to loop through a collec@on of items. The for statement takes an
iden@fier that represents the current item in the collec@on, an expression that represents the
collec@on itself, and a set of statements to execute for each item in the collec@on. The syntax for
the for statement is:

for (iden3fier in expression) {

statement_1
statement_2

}

Gage Hilyard 4

If Statement:

An if statement is used to execute a set of statements if a condi@on is true. The if statement
takes an expression that represents the condi@on and a set of statements to execute if the
condi@on is true. The syntax for the if statement is:

if (expression) {

statement_1
statement_2

}
[else if (expression_2) {

statement_3
statement_4

}]
[else {

statement_5
statement_6

}]

Print Statement:

A print statement is used to output a value to the console. The print statement takes an
expression that represents the value to output. The syntax for the print statement is:

print(expression)

Variable Statement:

A variable statement is used to declare a variable and op@onally ini@alize it with a value. The
variable statement takes an iden@fier that represents the variable name, an op@onal type
expression that specifies the variable type, and an op@onal expression that ini@alizes the
variable with a value. The syntax for the variable statement is:

var iden3fier[: type_expression] = expression;

Gage Hilyard 5

Assignment Statement:

An assignment statement is used to assign a value to a variable. The assignment statement
takes an iden@fier that represents the variable name and an expression that represents the
value to assign. The syntax for the assignment statement is:

iden@fier = expression;

Func8on Call Statement:
A func@on call statement is used to call a func@on. The func@on call statement takes an iden@fier
that represents the func@on name and an argument list that contains the arguments to pass to
the func@on. The syntax for the func@on call statement is:

func3on_name(argument_list);

Return Statement:

A return statement is used to end the execu@on of a func@on. The return statement returns
control and the value to the calling func@on. The syntax for the return statement is:

return [expression]

Expressions:

An expression is a combina@on of values, variables, and operators that can be evaluated to a
single value. There are different types of expressions in CatScript, including:

● equality_expression
● comparison_expression
● addi@ve_expression
● factor_expression
● unary_expression
● primary_expression

Equality Expression:

An equality expression is used to compare two values for equality. The equality expression takes
two comparison expressions and an operator that represents the equality opera@on. The syntax
for the equality expression is:

Gage Hilyard 6

comparison_expression_1 != comparison_expression_2
comparison_expression_1 == comparison_expression_2

Comparison Expression:

This expression allows us to compare two expressions using comparison operators such as >, <,
>=, <=. It consists of addi@ve_expression op@onally followed by one or more comparison
operators followed by another addi@ve_expression. The syntax for the comparison expression is:

addi3ve_expression_1 >= addi3ve_expression_2
addi3ve_expression_1 <= add3ve_expression_2
addi3ve_expression_1 > addi3ve_expression_2
addi3ve_expression_1 < addi3ve_expression_2

Addi8ve Expression:

This expression allows us to add or subtract two expressions. It consists of factor_expression
op@onally followed by one or more addi@on or subtrac@on operators followed by another
factor_expression. The syntax for the addi@ve expression is:

factor_expression_1 + factor_expression_2
factor_expression_1 - factor_expression_2

Factor Expression:

This expression allows us to mul@ply or divide two expressions. It consists of unary_expression
op@onally followed by one or more mul@plica@on or division operators followed by another
unary_expression. The syntax for the factor expression is:

unary_expression_1 / unary_expression_2
unary_expression_1 * unary_expression_2

Gage Hilyard 7

Unary Expression:

This expression allows us to apply unary operators such as nega@on or logical nega@on to an
expression. It consists of a unary operator followed by another unary_expression, or a
primary_expression. The syntax for the unary expression is:

not unary_expression_1
- primary_expression

Primary Expression:

This expression represents the smallest unit of an expression. It can be a variable iden@fier, a
literal value such as a string, integer, boolean or null, a list literal, a func@on call, or an
expression wrapped in parentheses. The syntax for the primary expression is:

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
 list_literal | func3on_call | "(", expression, ")"

Catscript Typesystem

The types of all variables and func@ons/parameters are known at compile @me. Catscript can
make certain guarantees about the run@me types.

CatScript is sta@cally typed, with a small type system as follows

CatScript Types:

● int - a 32 bit integer
● string - a java-style string
● bool - a boolean value
● list - a list of value with the type 'x'
● null - the null type
● object - any type of value

Catscript does have one complex type: list
You can declare a list with “list<T>”

Gage Hilyard 8

Examples:

list<int> - list of integers
list<object> - list of objects

What does assignability look like in Catscript?

● Nothing is assignable from void
● Everything is assignable from null
● Otherwise we check the assignability of the backing java classes

Gage Hilyard 9

Section 5: UML.

Gage Hilyard 10

Section 6: Design trade-offs
We decided to create our own Recursive-Descent Parser instead of using a parser
generator like ANTLR.

The pros of creating our own parser were that we could easily debug the parser and add
or remove what we wanted from it. A con for creating our own parser was that time
would be spent creating the parser.

It was clear that the pros outweighed the cons in this scenario as the parser was easy to
make and understand. The final code is very easy to read, can be modified easily to add
any new keywords and operations. Which compared to the parser generators which are
nearly impossible to read and understand at a glance.

Section 7: Software development life
cycle model
We used Test Driven Development (TDD) for this project. TDD was very helpful as it
made it quite clear what to implement next and if any changes we made had
fundamentally broke any functionality of our code since we could easily run the tests
again.

I do not think it hindered the development of Catscript in any sort of way since the tests
were nontrivial and tested the code in ways that it would realistically be used in.

I personally find TDD to be very helpful because of how reassuring it is just to run the
tests after any change to confirm whether any large modifications to the code changed
its functionality.

