
Eric Wanner-Garnier

CSCI 476 Spring 23

Capstone Document

26 April 2023

Section 1: Program
Accompanying zip file: source.zip

Section 2: Teamwork
Team Member 2 wrote the documentation for the compiler as well as a high level test suite for the Catscript features and Team Member 1
wrote the source code to the grammar, features, and tests.

Section 3: Design pattern
We used memoization in src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java so that once a list type was checked for the first
time, we wouldn’t have to reinitialize a CatscriptType object each time the getListType method was called, and instead the initial
CatscriptType object is stored in a hash map and reused.

Section 4: Technical writing
Introduction
Catscript is a simple scripting langauge. Here is an example:

var x = "foo"

print(x)

Features

Catscript types

Catscript is statically typed using the following types:

int - a 32 bit integer

string - a java-style string

bool - a boolean value

list - a list of values of a given type

null - the null type

object - any type of value

Statements

For loop:

General syntax

'for', '(', IDENTIFIER, 'in', expression ')', '{', { statement }, '}';

Example

 var array = ["a","b","c"]

 var numElements = 0

 for(x in array){

 print(x)

 numElements = numElements + 1

 }

 print("There were " + numElements + " elements in the array")

If statment:

General syntax

'if', '(', expression, ')', '{', { statement }, '}' ['else', (if_statement | '{', { statement },'}')];

Example

 var a = 1

 var b = 5

 if(a > b){

 print("a is greater than b")

 } else {

 print("a is less than b")

 }

Print statement:

General syntax

'print', '(', expression, ')'

Example

print("Hello from CatScript!")

Variable statment:

General syntax

'var', IDENTIFIER, [':', type_expression,] '=', expression;

Example

var a = 1

var b:int = 4

print(a + " and " + b + " are both of type int")

Assignment statement:

General syntax

IDENTIFIER, '=', expression;

Example

var a = 3

var b = a*2

print("a is " + a + " and b is " + b)

Function declaration statement:

General syntax

'function', IDENTIFIER, '(', parameter_list, ')' + [':' + type_expression], '{', { function_body_statement }, '}';

Example

function add(val1:int, val2:int){

 var result = val1 + val2

 return result

}

print("one plus two equals ")

print(add(1,2))

Function call statment:

General syntax

IDENTIFIER, '(', argument_list , ')'

Example

function add(val1:int, val2:int){

 var result = val1 + val2

 return result

}

print("one plus two equals ")

print(add(1,2))

Function return statment:

General syntax

'return' [, expression];

Example

function add(val1:int, val2:int){

 var result = val1 + val2

 return result

}

print("one plus two equals ")

print(add(1,2))

Expressions

Equality expression:

General syntax

comparison_expression { ("!=" | "==") comparison_expression };

Example

print(5 != 2)

Comparison expression:

General syntax

additive_expression { (">" | ">=" | "<" | "<=") additive_expression };

Example

print(5 >= 2)

Additive expression:

General syntax

factor_expression { ("+" | "-") factor_expression };

Example

print(5 - 1)

Factor expression:

General syntax

unary_expression { ("/" | "*") unary_expression };

Example

print(12 / 3)

Unary expression:

General syntax

("not" | "-") unary_expression | primary_expression;

Example

print(not true)

Primary expression:

General syntax

IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"| list_literal | function_call | "(", expression, ")"

Example

print("This is a primary expression!")

Section 5: UML diagram

Section 6: Design trade-offs
We decided to design our program with recursive descent instead of the alternative of taking the
specified grammar and using a parser generator. While a parser generator is quick, we did not
choose this option since the generated code can be both bloated and complicated to debug or
modify.

Section 7: Software development life cycle
model
We used a test driven development model during development. Starting the project we had a test
suite that specified the Catscript grammar and functionality. The main downfall I found with this
approach is that I did not consider all the edge cases all of the time, instead considering the tests
completion as complete functionality. However, it did help to give insight to the intended
functionality and cohesion from our team’s design.

