Catscript Compiler

CSCI 468

Capstone Project Portfolio

Bryce Leighton
Simeon Shirshov
Montana State University

Spring 2023

Section 1: Program

The source code for this project is included in this directory titled source.zip.

Section 2: Teamwork

This capstone project was completed with a team of 2 people, team member 1 (Bryce Leighton)
and team member 2 (Simeon Shirshov). The project was split into 2 different parts; one of which
was done independently and the other which was done collaboratively between the two team
members. For the first part, the two team members independently developed the CatScript code
using test-driven development with a series of test suites curated by Carson. For the other part,
the team members created unit tests for each other’s Catscript code and traded them with each
other. In addition to collaborating on creating the unit tests, teamwork was also used in creating
the documentation for the structure of Catscript seen in section 4. Team member 2 wrote all the
Catscript documentation for this project, and team member 1 wrote all the Catscript
documentation for team member 2’s project. The workload for this project between the two
members was about 90% for team member 1 and 10% for team member 2. This was the
opposite for team member 2’s project. For this project team member 1 was the primary engineer
and team member 2 was the documentation and test engineer.

Partner tests file path: src/test/java/ledu/montanal/csci/csci468/demo/Scratch.java

Section 3: Design Pattern

An example of a design pattern used within the Catscript parser is the Memoization Pattern.
Memoization involves caching computational results so that they can be efficiently retrieved
from a cache later, rather than recomputing the results. The motivation of the Memoization
Pattern design choice is to minimize memory utilization through the use of caching. The snippet
of code pictured below is taken from the Catscript compiler and showcases this design pattern.
The code uses a single ListType object to be referenced throughout the compilation process
rather than creating multiple identical ListType objects. The result is that there is better space
efficiency within the compiler and the performance improved.

Map<CatscriptType, CatscriptType> HashMap<>()

CatscriptType getlListType(CatscriptType type) {

CatscriptType listType = .get(type)
(listType ==) {
listType = ListType(type)
.put(type, listType)

listType

File path: src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java

Section 4: Catscript Documentation

Technical Documentation for Catscript

Introduction:

Catscript is a relatively simple and small programming language that would be suitable for
beginners. Catscript is a similar language to Java or Python. The language supports dynamic
typing, loops, conditionals, functions,and lists. Catscript is based on a relatively lean grammar
(seen below) which dictates the structure of the language and is used to parse and interpret it.
An example of what Catscript looks like is shown below with a simple ‘hello world’ program as
well as throughout the rest of the Technical documentation.

‘Hello World’ Example
var x = "catscript”
print(x)

Statements:

For Loop Statement:

In Catscript For Loop Statements are used to iterate over a list of elements and execute code
for each element of said list taking in an identifier and an expression. Catscript allows for For
Loop Statements to execute further statements within the for loop. This allows for all sorts of

algorithm structures including nested for loops.

For Loop Example:

(x [1, 2, 314
print(x) }

If Statement:

If Statements in Catscript are used to execute a block of code if a certain condition is true.
Catscript also allows for an optional else statement which can execute a different block of code
if the condition is false.

If Statement Example:

(x 1
print(x)

}

Print Statement:

Print Statements in Catscript are used to output the value of an expression to the console. In
addition to this the Catscript parser will evaluate any expressions inside the print statement and
print the result.

Print Statement Example:
print("Hi Hunter")

Variable Statement:

Variable Statements in Catscript are used to declare and optionally assign a value to a variable.
It can also have an optional type annotation. Catscript also allows for variables to be assigned a
type both Implicitly and Explicitly.

Variable Statement/Catscript Types Example:

: int
: bool

mo

. string

LI

. object

: list-int

Assignment Statement:

Assignment Statements in Catscript are used to assign a new value to an existing variable. One
important stipulation is that Catscript only allows reassignment of a variable if the new
assignment value is of the same type as the previous assignment. As an example an integer
can only be assigned an integer.

Assignment Statement Example:
var a 10

Function Call Statement:

The Function Call Statement in Catscript is used to call a predefined function with a set of
arguments if applicable. A function call statement requires that all required input function
variables are given.

Function Declaration/Definition Statement:

Function Declaration/Definition Statement in Catscript is used to define a new function. The
Statement requires a name and a block of code (body) which the function executes. Optionally
Function Declaration Statements also allow for a list of parameters as input which can be used
within the function and can also have return type annotation. Function Definition Statements are
also able to have additional statements nested within the body.

Function Definition/Call Example:

function xCa, b, ©) {
print(a)
print(b)

print(c)

Return Statement:

The Return Statement in Catscript is used to return a value from a function. Additionally Return
Statements complete/break when hit. Return Statement’s can be assigned any expression
which will be executed when hit.

Return Statement Example:

function x() : int {
10

}

Expressions:

Equality Expression:

The Equality Expression in Catscript can either have a bang equal or equal equal which split
two different expressions. Equality Expression’s return a Boolean of True or False. Equal Equal
returns True when expressions on either side are equal. Bang Equal returns True when
expressions on either side are not equal.

Equality Expression Example:

"Hunter" "Hunter"

"Carson" "Hunter"

Comparison Expression:

The Comparison Expression in Catscript is very similar to the Equality Expressions. In Catscript
Comparison Expression’s are used to compare two values. They can use the ">" |, ">=" "<" or
"<=" operator. When the operator used is true for the two expressions on either side Catscript
returns True. When its false it returns False.

Comparison Expression Example:

Varl Var?

Additive Expression:

The Additive Expression in Catscript is used to perform addition or subtraction on two values. It
can use the "+" or "-" operator. In Catscript similar to the english language the values are
evaluated from left to right. The Additive Expression can also be used to concatenate strings
together with the “+” symbol.

Additive Expression Example:

n n

"Montana"

"Hunter"

Factor Expression:

The Factor Expression in Catscript is used to perform multiplication or division on two values. It
can use the "*" or "/" operator. The “*” operator is used for multiplication. The “/” operator is used
for division. Factor Expressions similar to Additive expressions are evaluated left to right.

Factor Expression Example:

Unary Expression:
The Unary Expression in Catscript is used to apply a unary operator to an expression. It can use
the "not" or "-" operator. Generally the “not” operator is used to negate a value such as a

boolean, int, or string. The “-” operator is used to symbolize a negative integer. The “-” operator
can only be used with integers.

Unary Expression Example:

100

not False
not True

Primary Expression:
The primary expression in Catscript is a basic unit of code that produces a value. It can be an
Identifier/variable, a string, an integer, a boolean, a null value, a list literal, or a function call.

Identifier/Variable: An identifier or a variable in Catscript is a string chosen by the user to
represent something.

String: A string in Catscript is a java-style string.

Integer: An integer in Catscript is a 32 bit integer.

Boolean: A boolean in Catscript is an expression used to represent True or False Values.
Null Value: A null value in Catscript is an expression used to show an absence of value.

List Literal: A list literal in Catscript is used to create a new list. It takes a series of expressions
as inputs.

Function Call: A function call in Catscript is used to call a function with a set of arguments.

Primary Expression Examples:

varl

"Hello"

True False

[1,2,3] ["Hunter","Carson"]

func("var", 23, b}

Type Expression:
A type expression in Catscript is used to annotate a variable or a function parameter with a data
type. It can be "int", "string", "bool", "object", or "list" with an optional generic type annotation.

catscript_program = { program_statement };

program_statement = statement |
FfFunction_declaration;

statement = for_statement |
if_ statement |
print_statement |
variable statement |
assignment_statement |
Ffunction_call statement;

for_statement = “"for®, '(', IDENTIFIER, "in', expression '}",
“{", { statement }, '}';

if_statement = 'if", '(', expression, "}", '{’,
{ statement },
'} [‘else', { if_statement | ‘{', { statement }, "}') 1;

print_statement = "print’, "(", expression, '}

variable_statement = 'war', IDENTIFIER,
[':', type_expressicn,] '=', expression;

function_call statement = functiom_call;

assignment_statement = IDENTIFIER, '=", expression;

function_declaration = ‘function', IDENTIFIER, '{', parameter_list, *}' +
[':" + type_expression], '{', { function_ body statement }, "}°;

function_body_statement = statement |
return_statement;

parameter_list = [parameter, {°,' parameter }];
parameter = IDENTIFIER [, ":°, type_expression];
return_statement = 'return' [, expression];

expression = equality_expression;

equality_ expression = comparison_expression { ("!=" | "==") comparison_expression };
comparison_expression = additive expression { (">" | "»=" | "¢ | "<=")} additive_expression };
additive expression = factor_expression { ("+" | "-")} factor_expression };
factor_expression = unary_expression { ("/" | "*") unary_expression };
unary _expression = { "mot" | "-") unary_expression | primary_expression;
primary expression = IDENTIFIER | STRING | INTEGER | “true" | “false" | “null®|
list_literal | function_call | "{", expression, ")}"
list_literal = '[', expression, { *,', expression } "]°;

function_call IDENTIFIER, '{', argument_list , ")°'

argument_list = [expression , { ',' , expression }]

type_expression = "int' | ‘string' | 'bool’ | ‘object' | ‘list' [, '<' , type_expression,

Section 5: UML

The UML Diagram below shows the overall structure of Catscript. As we can see, the abstract
parent classes Expression and Statement hold many of the general components/logic that make
the entire Catscript compiler work. We see that the Expression and Statement classes are held
together by and inherit from the ParseElement class which helps properly set tokens, add
errors, and other fundamental methods.

The second diagram shows a sequence diagram for how Catscript deals with multiplication, or a
Factored Expression in Catscript. The sequence diagram helps demonstrate the ability of the
Catscript compiler and the program sequence that happens in the background when compiling
certain code.

Catscript Mutliplication Sequence Diagram

User CatScript Lexer Parser ParseTree
| - | | |
| | I
| evaluate ("20 * 2") | |
| > | |
| I I
| | I
| I I
I I I
|] I
| parse(tokens) |
| > |
| I I
I I parseExpression() |
| I :‘ I
| I I
| | I
| | parseFactorExpression() |
I I I
| I I
| |) I
| | parselntegerLiteral() |
| | I
| I |
| . |

parseTree
| - L i T
I I I
| | execute()
| | |
I I L] I!.
40
| € ------- R el R
| I
I‘ "40" I
I I
| I
| I

.
I
I
I
I
I

Section 6: Design Trade-Offs

The most important design trade-off of this project was developing a compiler for Catscript by
hand rather than using a parser generator tool. We used the recursive descent algorithm to
create the Catscript parser. Using a parser generator is much easier and faster than
hand-writing a compiler. However, due to its artificial generation, a generated parser can
become a “black box” where debugging is very difficult due to the developer not knowing the
inner workings of the code. Hand-writing the compiler gave us the benefit of knowing how the

entire compiler worked, so debugging and modification of the compiler is more intuitive. Now we
understand exactly how the Catscript grammars work from the bottom up. These reasons are
why the design trade-off decision is justified.

Section 7: Software Development Life Cycle Model

Test-Driven Development (TDD) was the software development life cycle model used for the
development of the Catscript compiler. This method of software development consists of the
creation of test suites for each piece of required functionality of the software being developed,
and then the tests are what guide the actual coding process. For the Catscript compiler, the
tests were split into 4 separate test suite categories: tokenization, expression parsing, statement
parsing + eval, and compilation. These test studies were designed to be a comprehensive
coverage of Catscript functionality. In addition, these tests were built on top of one another so
that one would need to finish tokenization before moving to expression parsing, and so on. This
test design aided the development in many ways, the most prevalent being the debugging of
code. The subsequent structure of the test suites allowed for easier discovery of code that was
necessary to implement, and made it easy to find where code was failing in the case of a failed
test. Overall we believe this was the best approach to the development of this project because
of the way it helped us maintain efficiency by providing clear goals and a much more clear
understanding of the functionality we were building. The sequential manner in which the tests
were set up provided a clear path for development.

