
Section 2: Teamwork

For the teamwork section. I created three new tests for my

partner to verify that their Catscript compiler works as it

should. This is called quality assurance. I will first go

through the tests I created and ran and then the tests my

partner created for me to test my compiler as well. I try to go

through what is happening during each step and what it can tell

us is happening, such as a function statement or a list

expression being created and running successfully.

The first test I created was to test an if-else statement in a

function. This program takes a print statement, sends a function

call with the number nine, and then once in the function, if the

variable that was passed in is equal to 1, print 2, otherwise,

print 1. Once the if-else statement has been executed in the

function, it returns the value we passed into the function and

prints the result of that function we originally passed into the

print statement. This test was implemented in

“CatscriptFunctionArgsAndReturnEvalTest”, and the code for the

test is as follows.

@Test

void customFunctionIfStatmentInFunctionWorks() {

 assertEquals("1\n10\n", executeProgram(

 "function foo(y : int) : int {\n" +

 "if(y == 1){ print(2) }" +

 "else{ print(1)}" +

 "return y + 1" +

 "}\n" +

 "print(foo(9))"

));

The second test that I created for my teammate was to test a

function with multiple input variables ran through an if-else

and a for statement. This takes a function as a string, and then

parses the function, as a function definition statement, and

then executes that statement. The variables we put in are an

integer, known as variable b, and a Boolean, known as variable

c. The return type of the function is an integer. Once the

variables are passed into the function it first goes through the

if-else statement, testing whether variable c is true or false,

and then prints accordingly, then goes to the for loop, in which

it only runs through one iteration and prints the value of our

integer b. The last part is we return our integer b with two

added to it. This test was implemented in

“CatscriptFunctionArgsAndReturnEvalTest”, and the code for the

test is as follows.

@Test

public void

customFunctionWithMultipleVariablesPassedInForAndIfInside() {

 String function = "function foo(b : int, c : bool) : int

{if(c==true){c=true}else{print(\"works\")}for(x in [b]){

print(x) } return b +2}\n";

 FunctionDefinitionStatement expr = parseStatement(function);

 assertEquals("works\n1\n3\n", executeProgram(function +

"print(foo(1,false))"));

 assertNotNull(expr);

 assertEquals("foo", expr.getName());

 assertEquals(2, expr.getParameterCount());

 assertEquals("b", expr.getParameterName(0));

 assertEquals("c", expr.getParameterName(1));

 assertEquals(CatscriptType.INT, expr.getParameterType(0));

 assertEquals(CatscriptType.BOOLEAN,

expr.getParameterType(1));

}

These previous two tests show us that we are able to

successfully tokenize, parse, and then execute a function, if-

else, for, and print statement; with our function statement

being assigned the name foo. This also determines that a if-else

statement can properly handle conditions, that are implemented

as a list of statements, and a body of set expressions. The last

piece shows a successful parse return statement that can return

an additive expression, and then finally print out the value

returned from the function.

For our third test, I tested to see if a for statement could

handle a list expression of integers, that would iterate through

the number of elements in the list, and then use an if-else

statement to determine if it was iterating through it in the

proper order as well as proper amount of iterations. We send in

a list literal expression with three integers in it and are able

to successfully print three times based on the conditions of the

if-else statement.

@Test

public void customForWithIfElse() {

 assertEquals("false\ntrue\nfalse\n", executeProgram("for(x

in [1,4,7]){ if(x ==4){print(\"true\")}else{print(\"false\")}

}"));

}

My partner provided three tests for me to run. I was able to

pass all three of his tests. Down below are the tests. I will

also describe how they ensure parts of my compiler are working

successfully as I did with the tests I created.

The first test my partner created was a test that would create a

variable and assign it a value of three. Then we take the

variable, x, and run it through a series of if statements, with

the last one being an if-else statement. When the variable is

created and assigns it the value of 3, it successfully

determines that 3 is an integer. Next, we go through the if

statements and if x is equal to the specified variable to test

against, it will print out that variable. Since we have multiple

if statements, it successfully checks on the third one that x ==

3 and then prints 3. This tells us that our tokenizer was

successful in scanning, then we were able to create a variable

statement as well as a series of if statements, and it followed

it in successive order. Since we have multiple if statements,

where if a condition isn’t met it doesn’t go into that if

statement to perform its designated functions, it continues on

and keeps running. We know that it does this successfully since

our last if statement is an if-else statement that successfully

determines that since our variable x is not == 4, it has the

else condition where it prints out the value 5.

 @Test

 void longLongIfStatementWorks() {

 Assertions.assertEquals("3\n5\n",

this.executeProgram("var x = 3 \nif(x == 1) { print(1) }\nif (x

== 2) { print(2) }\nif (x == 3) { print(3) }\nif (x == 4) {

print(4) }\nelse { print(5)}"));

 }

The second test to look at takes a for loop and runs through the

loop the proper number of times and then using if-else

statements determines if the number being tested, in this case

x, which is in a list, is equal to a value, it prints “true”, if

the condition is not met, it prints “false”. This test

determines that we can successfully tokenize the syntax, then

create a for statement, take a list, and iterate through the

list, assigning the value of x to each variable in the list as

we iterate through the list. Since in the for statement, we are

testing to see whether the value of x is equal to 3, it iterates

through 3 times due to there being three digits in the list, and

then determines that the first two values are not equal to 3 in

our if-else statement, and prints “false” twice, then on the

last iteration, since the value of x is assigned to the integer

3, the if statement properly determines that the condition for

the if statement has been met and prints “true”. This shows us

that we can successfully create list expressions, for

statements, and if-else statements.

 @Test

 public void personalForIfLoop() {

 Assertions.assertEquals("false\nfalse\ntrue\n",

this.executeProgram("for(x in [1,2,3]) {\nif(x == 3){

print(\"true\") }\nelse { print(\"false\") } }"));

 }

The final test created by my partner assigns the Boolean value

true to “hold”, and then checks with a if statement if the

variable “hold” is equal to true, then go into the if statement

and iterate through a for loop. This test shows us that a

variables type can be successfully determined without having to

define its type, meaning that it is a dynamically typed

programming language when we check to see, using an if

statement, if the value “hold” is equal to true. Once inside the

if statement, it has a for loop to iterate through, since there

are 8 values in the for loop, it iterates through 8 times, in

the for loop, it has an if statement where it tests if the value

“x” is equal to 4, if not then it goes onto the next part which

is an if-else statement, where if the value of “hold” is equal

to true, then print true. In the for loop, we are iterating

through a list expression and assigning it to x based on its

position in the for statement. This successfully shows us that,

again, a list expression is being created properly and we assign

the variable, in this case “x” to the number that it is at in

its iteration of the for loop. Since we are iterating through

the loop 8 times, when x is equal to 4, it prints 4 and then

goes onto the next if-else statement, and since the conditions

of the if-else statement are always true since it is checking

the value of our variable “hold”, it will always print true.

Like the previous tests, it tells us that we have properly

implemented an if and if-else statement, a for statement, list

expressions, and variable statements as to the specifications of

the Catscript language.

 @Test

 void personalIfForIfOutput() {

Assertions.assertEquals("true\ntrue\ntrue\n4\ntrue\ntrue\ntrue\n

true\ntrue\n", this.executeProgram("var hold = true \nif(hold ==

true) { for(x in [1,2,3,4,5,6,7,8]) {\nif(x == 4) { print(4) }

if (hold == true) { print(\"true\") } else { print(\"other\") }

} }\nelse { print(\"failedHold\") }"));

 }

Our team worked on the capstone project by mainly creating three

tests for each other to try and also working on proper

documentation.

Describe how your team worked on this capstone project. List

each team member’s primary contributions and estimate the

percentage of time that was spent by each team member on the

project. Identify team members generically as team member 1,

team member 2, etc.

Section 4: Technical writing. Include the technical document

that accompanied your capstone project.

Catscript Guide

Introduction

Catscript is a fairly simple language, as it is only meant to

teach the writer of the language how a compiler takes our input

as a programming language and turns it into machine code that

allows the computer to perform what we are requesting of it.

Understanding compilers by creating one helps us better

understand how programming works in general and the importance

of choosing the proper programming language for the task you

need to do.

Catscript is a strong, dynamically typed, functional programming

language that was written in Java. While we have objects, they

are limited on what they can do and are only used as types based

on the Object class from Java, there is no inheritance,

polymorphism, etc… Objects are only used to handle certain data

types such as when we create a variable, we do not need to

explicitly tell it what type of primitive data structure we are

assigning it, although we can. In this documentation I will go

over all the expressions and statements we can use in this

language.

When using Catscript, there is no need to ensure we indent lines

such as python or use a semi-colon after every command we want

to run. Catscript automatically handles this and when we parse,

it uses Extended Backus-Naur Form along with the tokenized

keywords to evaluate your code and run it in order. This means

that before you use a variable or function, it must be declared

before you call it. This is because when it is run, it is put on

the stack and runs from top to bottom in order.

Example: var x = (1+1-0) print(x)

Will evaluate successfully, but

print(x)

var x = (1+1)

Will not evaluate. This is important to remember when coding in

a functional programming language such as Catscript.

In Catscript, we created a compiler that works by recursive

descent. After we use lexical analysis to generate our tokens,

we can start parsing our program. What this does, to put it

simply, is go down a big program, a class called

CatScriptParser, and when a match is found for an expression or

statement, it will either enter another iteration of the same

program or return the evaluated expression or statement.

We can also handle errors related to parsing, determine the

type, and then return that during runtime. Errors here are

handled as expressions called Syntax Error Expressions. This can

help us debug and find where the error is in our code. One of

the ways we determine errors is by handling where statements and

expressions start and end, that way, if there is an error in a

particular place, it can tell us in what place the error is

attached.

Features

Comments: To comment out a line, use a double forward slash, or

//. Everything on that line will not be evaluated when the

program is executed.

Catscript Types:

Catscript has seven different types. String, Integer, Boolean,

List Literal, Object, Null, and Void.

String type, or String Literal Expression:

A string type must be typed out with quotations around it.

Example: “string”

To print out a new line, use \n in a string.

Example: var x = “line 1 \n line 2” print(x)

Will evaluate to line 1

 line 2

If you need to put quotations inside of a quotation, then you

must use \” around the text you are putting quotations around to

define your quotations inside of the string.

Example: “ \”string\” “

Say I wanted to create a new string variable with the use of

quotations inside the string, then print x.

Example: var x = “\”string\”“ print(x)

Will print “string”.

A String type is based on the String.class in Java.

Integer type, or Integer Literal Expression:

As long as the syntax is correct, any number typed in will be

tokenized as an integer and is designated as “int”. Integers can

only use whole numbers and have a max value of 231-1, and a

minimum value of -231

An Integer type is based on the Integer.class in Java.

Boolean type, or Boolean Literal Expression:

A Boolean type can either be true or false. When using a boolean

it is specified as either “true” or “false”.

For example: var x = true

 if (x == true) {print “true”}

 else {print “false”}

When ran, the output would be “true”.

A Boolean type is based on the Boolean.class in Java.

List type, or List Literal Expression:

List is an type that can hold more than one integer, strings,

booleans, and objects at a time. When creating a list we only

have to specify what the list will hold when creating a list of

objects. A list of objects can also hold null and void types.

Lastly, lists in Catscript are created as a linked list, this is

important to note since it could cause issues if it runs out of

memory on the stack.

For example, to create a list of integers implicitly: var x =

[1,2,3]

For example, to create a list of integers explicitly: var x

list<int> = [1,2,3]

For example, to create a list of objects: var x = [1, “b”, true,

null]

Object type:

An object type is based on the Object.class in Java.

Null type:

A null type is based on the Object.class in Java. Variables and

objects in lists can be set to null.

Void type:

A void type is based on the Object.class in Java.

Catscript Expressions:

Programming languages enable us to leverage the immense

processing power of computers to accomplish tasks that would be

impossible for humans to perform manually. This is the true

potential of computers, allowing us to carry out millions of

calculations in just seconds. This power has led to numerous

technological advancements that have shaped the course of human

history. At the heart of all computers lies their ability to

perform mathematical calculations, and this is where expressions

come into play. Once we have tokenized our code, we parse it out

to understand the intended purpose of each word.All expressions

in Catscript are extensions of the main expression class.

The types listed previously are created as expressions in

Catscript except for object and void type.

We have Boolean, Integer, List, Null, and String expressions.

These are treated as expressions so we can validate them, store

and get their type, get values, evaluate, transpile, and

compile. Each expression listed here doesn’t all have the same

functions.

Additive and other arithmetic expressions are used to evaluate

simple calculations in Catscript. When testing, parentheses are

not required to evaluate the expression, but when writing a

program, it is required to use parenthesis, (), around them.

Without them, parsing errors will occur. Lastly, they are read

from right to left, so for example, when we divide, the dividend

is on the left-hand side, and the divisor is on the right-hand

side. Lastly, these expressions are primarily used to evaluate

integers, but can be used on other types.

Additive Expression:

An additive expression is used to take an integer and either add

or subtract the values. We can perform as many calculations as

you want when doing so.

Example: 1 + 1 - 1

Will evaluate to 1.

Example: var x = (1+1-0)

Will set the variable “x” to 2.

With the parenthesis, it tells the parser where the additive

expression starts and ends.

The next use of the Additive Expression is to concatenate string

values to one another or to an integer value. It does not matter

in what order you perform this operation, but you must use the

plus, “+”, symbol when concatenating.

For example: “What is 1 + 1? ” + 2

Will evaluate to, What is 1 + 1? 2

Comparison Expression:

A comparison expression is used to equate two different values

and is mainly used in if-else statements. We can compare any two

similar types. There are four different ways we can compare.

When comparing, the right-hand side of the expression is

considered the main value and the left-hand expression is what

we are comparing it to.

Less than: <

Greater than: >

Less than or Equal to: <=

Greater than or Equal to: >=

Example: 5 > 4

This asks if 5 is greater than 4 and will evaluate to true.

Say for our next example we have: 5 <= 4

This will evaluate to false, since we are asking if 5 is less

than or equal to 4, which is not true.

Similar to the Additive and other arithmetic expressions, we can

evaluate simple calculations in Catscript without using

parenthesis, but when writing a program, it is required to use

parenthesis, (), around them. Without them, parsing errors will

occur.

For example: var x = 5 if (x >= 4) {print (“true”)}

This will print out “true”.

Equality Expression:

An equality expression is used to check two values, with the

same type, of equivalence. The options we have are either equal

to or not equal to. This is similar to comparison expression as

it is mainly used in if-else statements, return statements, and

in lists with integers.

Equal to: ==

Not Equal to: !=

Example: 1 == 1

Will evaluate to true.

Example: 1 != 1

Will evaluate to false, since 1 is equal to 1.

Factor Expression:

A factor expression is used to multiply or divide integers.

To multiply, use an asterisk: *

To divide, use a forward slash: /

Example: print (5 * 5)

This will print out 25.

Example: print (6 / 2)

Will print out 3, as 6 is the dividend, or the number to be

divided, and 2 is our divisor.

Integer Literal Expression:

An Integer Literal Expression is an expression that simply holds

an integer value. With this, when we create a list, we can have

a list of integer literal expressions. It is equivalent to a

integer type in Catscript.

List Literal Expressions:

Otherwise known as lists, lists are a type of expression that

holds a linked list of other expressions. This includes

integers, strings, Booleans, and objects. An object can include

any of the other mentioned expression types.

To create a list, we need to use square brackets to enclose our

list. If we are using a basic data type, such as integer or

string, we do not need to designate the list as such when

creating it.

Example of an integer list: [1,2,3]

To create a list of integers we can also designate the type,

this only works with integers values, and it is not required.

Example: var list: list<int> = [1,2, 3]

for (x in list) {

print(x)}

The output of the previous example will be, 1 2 3

To create a list of objects.

Example: var list = [(1+1), null, 3, true]

for (x in list) {

print(x)}

This will create a variable, x, and create a linked list of

objects that holds any type of expression. In slot 0, we have an

additive expression, note the requirement for parenthesis around

the additive expression, then a null expression, an integer

expression and finally a boolean expression. The output of this

previous example is 2 null 3 true

It is equivalent to a List type in Catscript.

Unary Expression:

This is used to either flip positive and negative integers, or

to state the opposite condition of a boolean value. Again, since

this is an expression, it can be used in an list of objects.

Example: -1

So if we take the above example in a factor expression, then

print the results.

Example: print(-1*2)

The above example will evaluate to -2

To work with boolean values, we can use not true, to designate

false. This is useful in if-else, return, and functions.

Example: print(not true)

The above example will return false

Catscript Statements:

Catscript statements are the heart of most programming languages

that allow us to start developing functioning programs and

create our own custom data structures and algorithms with the

use of these statements. Since Catscript is a simple functional

programming language, we only have basic statements that get as

complex as functions with multiple return statements and

recursion.

Assignment Statements:

Assignment statements are only used to change the value of a

variable after it has already been created as a variable

statement.

Example: var x = “hi”

x = “changed”

print (x)

The output of this will be “changed”. Since x was already

created and designated on the scope, we can then assign a

different value with the same type to x and change it.

For Statements:

For statements are used to iterate through a loop and through

each iteration of that loop perform an action. For loops only

iterate through lists, so if we use [1,1,1] as our list to

iterate through, it will iterate through the for loop 3 times.

The basic form of a for loop is for (i in []) {inside for loop}

Example: for (x in [1,1,1]) { print(x) }

The output of this for loop will be 1 1 1

Example: var x = [1,2,3] for (i in x) {print (i)}

The output of this previous example is 1 2 3. As we loaded in a

list to iterate through that was previously created as variable

x.

If Statement:

The if statement is a conditional statement that simply says,

“if something is true, do this”, we can also have if-else

statements, where if the if statement is not true, go to the

else statement and execute. If statements have the basic

structure of the keyword if, followed by parenthesis, (), where

within the parenthesis our condition we are checking, and then

if the condition is met, continue to what’s inside of {}. Think

of the conditions we are checking as an additive or similar

expression, where we are comparing the values of two variables,

integers, Booleans, etc…

Example: if (5 > 4) { print (true) }

The above example will print true, since 5 is greater than 4.

Example: if (false == true){ print(1)} else {print (2)}

The above example will print 2, since false is not equivalent to

true.

Example: var x = 9 if (x < 8) { print(true) } else{

print(false)}

The output to the above example will print false, since x, which

equals 9, is not less than 8, and the else statement will be

executed.

Print Statements:

The print statement is key in viewing what the output of or

program was. It prints the value specified to the console

window. The basic structure of a print statement is print(),

where we can put any expression, or even a function call, inside

of the parenthesis.

Example: print(8)

The output of the above example will print 8 to the console

window.

Example: print(1+1)

The output of the above example will print 2, since 1+1 is a

additive expression and evaluates to 2 when ran.

Example: function foo(): int { return 1} print(foo())

The output of the above example will print 1. We first have to

create a function named foo, since this is a functional

programming language and functions have to be created before we

call them, and then when we call the print statement, it

recognizes the function call based on the function name foo,

plus empty parenthesis since we aren’t passing any parameters

into it, we just have to call it as foo(), and finally wrap it

with the print statement, print(foo()).

Return Statements:

Return statements are only used within functions. We can have

multiple return statements in a function. These are usually

separated with the use of if statements. We can return any type

of expression

Example: var x = 1

function foo(y:int): int {

 return y}

print(foo(x))

The output to the above example will print 1.

Example: var x = 1

function foo(y:int): int {

 return y + 5}

print(foo(x))

The output to the above example will print 6.

Variable Statements:

In Catscript, we have six different types that can be cast to a

variable. These types are integer, string, boolean, list, null,

and object. An object type can be of any of the basic variable

types as well as null and void. An object is cast as part of the

object class in java.

Using a variable statement, we have the option of explicitly or

implicitly declaring the variable, except for an object

variable, which much be explicitly defined.

Example of a string variable: var x = "foo"

The example above will create a string variable, without the

need to specify x as a string. When the compiler tokenizes, it

will determine that “foo” is a string, since it has quotations

around it.

Below are a few examples of variables that can be cast without

specifying their type.

Example of an integer variable: var x = 1

Example of a boolean variable: var x = true

Example of a list variable: var x = [1,2,3]

Example of a null variable: var x = null

We can also specify what type we want the variable to be. This

is required when we want to specify objects. After the naming of

a variable, in this case x, we include a colon and then the type

we want the type to be set as.

Example of an object variable: var x : object = “test”

This assigns the value “test” to x as an object and will

determine that the expression is an instance of a string

literal. When we assign a variable to an object its explicit

type will be automatically determined.

Example of an object variable with explicit type integer: var x

: object = 10

This creates a Catscript type object named “x” and then assigns

its value as a java object thats explicit value is “10”.

Example of an object variable with null as its explicit type:

var x : object = null

This creates a Catscript type object named “x” and then assigns

its value as a java object thats explicit value is null.

Example of an integer variable with type being defined: var x :

int = 1

Example of an string variable with type being defined: var x :

string = “value”

Example of an boolean variable with type being defined: var x :

bool = 1

Example of an list variable with list type also being defined:

var x : list<int> = [1,2,3]

When assigning a variable to a list, refer to list literal

expression under Catscript Types for more information.

For example: var x : list<int> = [1,2,3]

Functions in Catscript:

Arguably the most important part of any programming language,

functions allow us to create separate programs that can execute

in countless ways and really bring our code to life. Catscript

functions work basically the same as in most other popular

programming languages, we just have to format it properly. We

can have an unlimited number of inputs and specify what kind of

return value type it will be. The basic structure of a function

is the keyword for a function, which is function, followed by

the function name, parenthesis with the inputs we are sending

into the function, and then the return type. All followed by the

actual body of the function, wrapped in {}. To call a function,

we need to call the function name, followed by parenthesis, (),

and what inputs need to be sent into the function inside the

parentheses.

Example: function foo() {return} foo()

In this example, we created a function called foo, passed no

inputs, did not specify the return type, and in the body just

returned nothing. To call the function, we just ran foo().

Example: function foo(y : int) : int { return y + 1}

print(foo(9))

In the above example, we created a function named foo, sent in a

variable as an integer, specified what the function will refer

to the variable sent in as, in this case y, and that it is an

integer, the return value set to an integer. Then we have the

body of the function, and a return statement. In this example

the output will be 10.

Example: function foo(b : int, c : bool) : int{

if(c==true){c=true}

else{print("works")}

for(x in [b]){ print(x) }

return b +2 }

print(foo(1,false))

In the above example, the output will return works 1 3

Notice how when we called the function, we sent in two

variables, then specified in the function foo what we will call

the variables inside the function, and that the return value is

an int.

We can have a function return any of the basic types, and we can

send in any expression into the function as a local variable.

The local variable will stay inside of the function and will be

destroyed once the function is done running.

