Gage Hilyard 1

Section 1: Program

The zip file is included in this repository.

Section 2: Teamwork

| was the Primary Engineer, and my partner was the Documentation and testing
Engineer. As the Primary Engineer did the primary work on the parser and functionality
of Catscript and my partner wrote three tests in my CatscriptPartnerTests.java file, as
well as my technical writing.

My partner gave me three tests in the same format as the TDD tests as stated below. My
partner’s tests were very helpful as he had found several holes in my code that | had to
make some changes to the execution of my Catscript code in order to satisfy the
functionality of Catscript’'s grammar.

My partner also wrote my technical guide on Catscript. | believe it to explain the
grammar of Catscript very thoroughly.

Section 3: Design pattern

Memoization was used from line 37 — 45 in CatscriptType.java. | used the pattern to
cache the list type and save a little on computation.

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new
HashMap<>() ;
public static CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST_TYPES.get(type);
if(listType == null) {
listType = new ListType(type);
LIST_TYPES.put(type, listType);
b
return listType;

Gage Hilyard 2

Section 4: Technical writing.

Catscript Guide

Introduction

This guide provides an overview of the Catscript language, written by Cole Reimer for Gage
Hilyard. We have completed the code for writing a compiler for the programming language
“CatScript”. Catscript is a simple, statically typed programming language used to demonstrate
the basics.

The Five Stages of Catscript are:

Tokenizing

Parsing

Evaluating

Transpiling to Javascript

Compiling to JVM Bytecode

Program Structure:

A CatScript program is made up of a set of statements. Statements can be either program
statements or function declarations. A program statement can be one of the following:

e statement
® function_declaration

A function declaration looks like this:

function function_name(parameter_list)[: return_typel{

function_body_statement_1

}

Function parameters can be of a specific type, specified in the parameter list, and the function
can return a specific type, specified in the return type.

Gage Hilyard 3

Statements:

A statement is a command that performs an action. The different types of statements in
CatScript include:

for_statement

if statement
print_statement
variable_statement
assignment_statement
function_call_statement
return_statement

For Statement:

A for statement is used to loop through a collection of items. The for statement takes an
identifier that represents the current item in the collection, an expression that represents the

collection itself, and a set of statements to execute for each item in the collection. The syntax for
the for statement is:

for (identifier in expression) {
statement_1

statement_2

Gage Hilyard 4

If Statement:

An if statement is used to execute a set of statements if a condition is true. The if statement
takes an expression that represents the condition and a set of statements to execute if the
condition is true. The syntax for the if statement is:

if (expression) {
statement_1
statement_2

}
[else if (expression_2) {
statement_3

statement_4
1
[else {
statement_5
statement_6

Print Statement:

A print statement is used to output a value to the console. The print statement takes an
expression that represents the value to output. The syntax for the print statement is:

print(expression)

Variable Statement:

A variable statement is used to declare a variable and optionally initialize it with a value. The
variable statement takes an identifier that represents the variable name, an optional type
expression that specifies the variable type, and an optional expression that initializes the
variable with a value. The syntax for the variable statement is:

var identifier[: type_expression] = expression;

Gage Hilyard 5

Assignment Statement:

An assignment statement is used to assign a value to a variable. The assignment statement
takes an identifier that represents the variable name and an expression that represents the
value to assign. The syntax for the assignment statement is:

identifier = expression;

Function Call Statement:

A function call statement is used to call a function. The function call statement takes an identifier
that represents the function name and an argument list that contains the arguments to pass to
the function. The syntax for the function call statement is:

function_name(argument_list);

Return Statement:

A return statement is used to end the execution of a function. The return statement returns
control and the value to the calling function. The syntax for the return statement is:

return [expression]

Expressions:

An expression is a combination of values, variables, and operators that can be evaluated to a
single value. There are different types of expressions in CatScript, including:

equality_expression
comparison_expression
additive_expression
factor_expression
unary_expression

primary_expression

Equality Expression:

An equality expression is used to compare two values for equality. The equality expression takes
two comparison expressions and an operator that represents the equality operation. The syntax
for the equality expression is:

Gage Hilyard 6

comparison_expression_1 = comparison_expression_2

comparison_expression_1 == comparison_expression_2

Comparison Expression:

This expression allows us to compare two expressions using comparison operators such as >, <,
>=, <=, |t consists of additive_expression optionally followed by one or more comparison
operators followed by another additive_expression. The syntax for the comparison expression is:

additive_expression_1 >= additive_expression_2
additive_expression_1 <= addtive_expression_2
additive_expression_1 > additive_expression_2
additive_expression_1 < additive_expression_2

Additive Expression:

This expression allows us to add or subtract two expressions. It consists of factor_expression
optionally followed by one or more addition or subtraction operators followed by another
factor_expression. The syntax for the additive expression is:

factor_expression_1 + factor_expression_2

factor_expression_1 - factor_expression_2

Factor Expression:

This expression allows us to multiply or divide two expressions. It consists of unary_expression
optionally followed by one or more multiplication or division operators followed by another
unary_expression. The syntax for the factor expression is:

unary_expression_1 / unary_expression_2

unary_expression_1 * unary_expression_2

Gage Hilyard 7

Unary Expression:

This expression allows us to apply unary operators such as negation or logical negation to an
expression. It consists of a unary operator followed by another unary_expression, or a
primary_expression. The syntax for the unary expression is:

not unary_expression_1

- primary_expression

Primary Expression:

This expression represents the smallest unit of an expression. It can be a variable identifier, a
literal value such as a string, integer, boolean or null, a list literal, a function call, or an
expression wrapped in parentheses. The syntax for the primary expression is:

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|

list_literal | function_call | "(", expression, ")"

Catscript Typesystem

The types of all variables and functions/parameters are known at compile time. Catscript can
make certain guarantees about the runtime types.

CatScript is statically typed, with a small type system as follows

CatScript Types:

int - a 32 bit integer
string - a java-style string
bool - a boolean value

list - a list of value with the type 'x
null - the null type

object - any type of value

Catscript does have one complex type: list
You can declare a list with “list<T>”

Gage Hilyard 8

Examples:

list<int> - list of integers

list<object> - list of objects

What does assignability look like in Catscript?

e Nothing is assignable from void
e Fverything is assignable from null
e Otherwise we check the assignability of the backing java classes

Gage Hilyard

Section 5: UML.

Catscript For Loop Statement Diagram

User

CatScript

Lexer

—

evaluate ("for(x in [1, 2, 3]) { print(x) }")

R et e e

Parser

lex("for(x in [1, 2, 3]) { print(x) })

tokens

parse (tokens)

parseTree l

execute ()

——

parseStatement ()

i

parseForLoop ()

i

parseExpression ()

i

parsePrimaryExpression ()

i

parseListLiteral ()

i

ParseTree

T

"1\n2\n3\n"

Gage Hilyard 10

Section 6: Design trade-offs

We decided to create our own Recursive-Descent Parser instead of using a parser
generator like ANTLR.

The pros of creating our own parser were that we could easily debug the parser and add
or remove what we wanted from it. A con for creating our own parser was that time
would be spent creating the parser.

It was clear that the pros outweighed the cons in this scenario as the parser was easy to
make and understand. The final code is very easy to read, can be modified easily to add
any new keywords and operations. Which compared to the parser generators which are
nearly impossible to read and understand at a glance.

Section 7: Software development life
cycle model

We used Test Driven Development (TDD) for this project. TDD was very helpful as it
made it quite clear what to implement next and if any changes we made had
fundamentally broke any functionality of our code since we could easily run the tests
again.

| do not think it hindered the development of Catscript in any sort of way since the tests
were nontrivial and tested the code in ways that it would realistically be used in.

| personally find TDD to be very helpful because of how reassuring it is just to run the
tests after any change to confirm whether any large modifications to the code changed
its functionality.

