
Class:
Compilers (CSCI 468)

Semester:
Spring 2023

Members:
Ezra Skoog and Baiden McElroy



Section 1: Program

Please see source.zip in /capstone/portfolio

Section 2: Teamwork

In order for our team to create the CatScript programming language we split
the workload into two pieces. With group member 1 being the primary
engineer and group member 2 being the testing and documentation engineer.
Group member 1 was in charge of writing the methods and algorithms that
handled the compilation of the Catscript language and spent approximately 40
hours on this task. This process started by creating a tokenizer that takes
some input and gives back a list of the individual tokens. Next, the methods
and control flow to parse the tokens were created for all the Catscript
expressions and statements. After this, evaluation methods were implemented
for each Catscript feature to evaluate the results of a Catscript expression or
statement. Finally, compile methods were added to each feature to turn
evaluation results into Java byte code. Group member 2’s main contributions
were building out additional tests in order to ensure the Catscript language
works as expected and to help find any potential bugs. In addition, group
member 2 created thorough documentation for all the features of Catscript.
Group member 2 spent approximately 6 hours working on these tasks.



Section 3: Design pattern

While CatScript may just be a simple scripting language, it remains essential
to optimize our code as best as possible. With that said I chose to use the
memoization design pattern in order to create a more optimized program. The
memoization pattern was used on the getListType method in the
CatscriptType class. Originally this method would always create a new list
type for every time it was called even if that same list type had already been
created in the past. With the memoization pattern being implemented on this
method it now creates each list type only once. It does this by storing
previously initialized list types into a hashmap and then reusing the list types
in the map if they exist rather than recreating them. This saves our program
time and resources by reusing list types rather them reinitializing them
repeatedly.

private static final Map<CatscriptType, CatscriptType>

LIST_TYPES = new HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

CatscriptType listType = LIST_TYPES.get(type);

if(listType == null) {

listType = new ListType(type);

LIST_TYPES.put(type, listType);

}

return listType;

}



Section 4: Technical writing

Statements

For loop

The for loop statement in catscript is one of the main control flow options. It is
used to loop through a list or repeat a set of instructions. Here is an example
of the for loop:

for(i in [1,2,3]){

print(i)

}

In this example the for loop is used to iterate through a list and print out its
contents.

To use the for loop, use the keyword “for” followed by the control statement
then brackets for the code body. In the control statement, put an identifier
followed by the keyword “in” then the object you want to iterate through. In the
example above, “i” is the identifier and the list “[1,2,3]” is what the loop is
iterating through. In this case “i” would evaluate to an integer “1” the first time
through the loop, and “2” and “3” respectively until there are no more objects
in the list.

The for loop also creates its own scope. “I” will not be accessible outside of
the loop. Changing of the scope also does not allow for shadowing. If “i” is
declared before the for loop, there will be a compile-time error where “i” is not
allowed to be redeclared.



If Statement

The if statement in catscript is another of the control flow options. It uses the
keyword “if” followed by a comparison statement, then a body, and an optional
“else” statement. Here is an example of the if statement:

var x = 3

if(x>4){

print("higher than 4")

}else{

print("lower than 4")

}

In this example the if statement is comparing x to 4, and splitting the control
flow to change the print statement. If x is greater than 4, then the first print
statement is executed, but if x is less than or equal to 4 then the second print
statement will execute.

The if statement also changes the scope. After the comparison statement is
executed, the body that is used creates its own scope. One thing to note is
that at compile time, there will still be an error if there are scoping issues,
even if the branch isn’t used.

Function Definition

The function definition is the last control flow statement. It uses the keyword
“function” followed by the identifier, then the arguments with optional types,
the return type, a body, then a “return” keyword if the function is non-void.

function foo(x :int) :int{

return x

}



In this example the function has the identifier “foo”, with one argument that
has to be an integer and a return type of integer. The body just returns “x”.,
but it can contain any number of statements.

The function changes scope, so “x” cannot be used outside of the function.

Function call

The function call statement is used to invoke a function. It takes a number of
arguments equal to the number defined in the function definition, and has an
identifier to identify the function it is referring to.

foo(1,2)

In this example, foo is the identifier, and “1” and “2” are the arguments passed
to the function definition.

Print statement

The print statement takes an expression and prints its value to the console. It
can only take 1 argument, it does not support multiple arguments like other
languages.

print(1)

In this example, it prints “1” to the console.

Variable Statement

The variable statement starts with the “var” keyword, then an identifier, and
takes the right-hand side of the equals and assigns it to the identifier.

var a = [1, 2, 3]



In this example, the list “[1,2,3]” is assigned to a. “Var” automatically boxes the
type for the identifier from the type that it is assigned from.

Expressions

Equality

The equality expression returns a boolean value based on whether two
expressions are equivalent.

1 == 1

In this example, the result would be true

Comparison

The comparison expression returns a boolean value based on whether one
expression is greater or less than another expression.

2 >= 1

In this example, 2 is greater than 1, so true is returned.

Additive

The additive expression takes two expressions and adds or subtracts them.

1 + 1

Factor



The factor expression takes two expressions and multiplies or divides them.

1*3

Unary

The unary expression negates the value, either with a “not” or “-”

-1

Literals

There are five literals in Catscript: int, string, list, bool, and object. Examples
of these types are:

1

"1"

[1,1]

true

object



Section 5: UML

For my UML diagram I choose to use a sequence diagram on the comparison statement. The
sequence diagram allows for a good visual representation of some of the main components in
the Catscript language such as the lexer and parser. On top of this the sequence diagram also
gives a good idea on how the control flow in our compiler works.

CatScript Comparison Sequence Diagram



Section 6: Design trade-offs
The main design trade-off in Catscript language is the use of a recursive decent parser rather
than using a parser generator. Although both of these methods have their own pros and cons, I
decided the recursive decent parser was the more intuitive way to handle our parser. One of the
biggest reasons that lead me to make this choice was the amount of control you have over a
recursive decent parser versus a generated parser. Although generated parsers are fast and
easy to create they give you nowhere near the same amount of control as a recursive descent
parser. With a recursive decent parser, you have complete control of all the functionality in the
parser and this allows us(the language creator) to implement anything we like such as custom
error messages or error handling. On top of the control that recursive decent parsing provides it
is also a great way to ensure you properly understand the grammar of your own language.
When creating the recursive decent parser, you are forced to build out the control flow for your
grammar which in turn will help ensure you understand how your grammar functions.

Section 7: Software development life cycle
model
In order to develop the Catscript programming language we used the method known as
test-driven development. In this software development life cycle model, we were given a test
suite filled with tests mimicking Catscript behavior and over time fixed these tests by
implementing features in Catscript such as the tokenizer, parser, and bytecode generator. I
found this method of software development to be extremely useful in helping me better
understand and build Catscript. The main benefit I noticed when using test-driven development
is that it gave me a much better idea of what I wanted to code before I even started. By having
tests written before coding you give yourself a base for what the programming language should
look like and act like. While on the other hand, I’ve noticed if the tests are written after the code
then you end up writing the tests to work with the code rather than writing them to mimic how
you want your language.


