Kelby Abel
CSCI 468 - Capstone
Portfolio

Section 1 — Program

See the source.zip in this directory.

Section 2 — Teamwork

My primary work on the project was to write out code for a compiler with tokenizing, expression
parsing, statement parsing, evaluation and validation, execution, and compilation. Also wrote out
documentation for the CatScript programming language for my team member and wrote three
unit tests for their compiler.

The tokenizer included taking in input code and separating the code into tokens that were added
to a token list. A Token is an object that keeps track of start point, end point, line number, line
offset, string value, type, etc.. Characters such as +, -, (, “, etc. are added as tokens to a token list.
Doing so creates a way to parse the input code in the parsing section.

In this example, tokens are being checked for left brace and right brace, and adds the correct
token type to the token list.

else if(matchAndConsume('{")) {
tokenList.addToken(LEFT BRACE, "{", start, postion, line, lineOffset);
} else if(matchAndConsume('}")) {
tokenList.addToken(RIGHT BRACE, "}", start, postion, line, lineOffset);

Expression parsing uses the token list to parse multiple expression types. Tokens are checked for
matching characters or words which determine the correct expression type to parse.

In this example, the token list is being checked for MINUS or NOT tokens to parse unary
expressions.

private Expression parseUnaryExpression() {
if (tokens.match(MINUS, NOT)) {
Token token = tokens.consumeToken();

Expression rhs = parseUnaryExpression();
UnaryExpression unaryExpression = new UnaryExpression(token, rhs);
unaryExpression.setStart(token);
unaryExpression.setEnd(rhs.getEnd());
return unaryExpression;
} else {
return parsePrimaryExpression();

h
b

Statement parsing is very similar to expression parsing and uses the token list to parse multiple
statements. Tokens are checked for matching keywords to match to the correct statement type.

private Statement parsePrintStatement() {

if (tokens.match(PRINT)) {
PrintStatement printStatement = new PrintStatement();
printStatement.setStart(tokens.consumeToken());
require(LEFT PAREN, printStatement);
printStatement.setExpression(parseExpression());
printStatement.setEnd(require(RIGHT PAREN, printStatement));
return printStatement;

} else {
return null;

i

In this example, the keyword PRINT is matched from the token list to parse print statements.
Other required characters are also checked to prevent syntax errors.

Evaluation properly returns the expected result of an expression.

public Object evaluate(CatscriptRuntime runtime) {
Integer lhsValue = (Integer) leftHandSide.evaluate(runtime);
Integer rhsValue = (Integer) rightHandSide.evaluate(runtime);

if (this.isGreater()) {
return lhsValue > rhsValue;

} else if (this.isGreaterThanOrEqual()) {
return lhsValue >= rhsValue;

} else if(this.isLessThanOrEqual()) {

return lhsValue <= rhsValue;
} else if(this.isLessThan()) {
return lhsValue < rhsValue;

}

return null;

}

In this example, the left hand side and right hand side of a comparison expression is evaluated.

Checks are made for the correct type of comparison. The correct value is returned for further
implementation.

Validation properly sets up statements to have the correct relations.

public void validate(SymbolTable symbolTable) {
expression.validate(symbolTable);
CatscriptType symbolType = symbolTable.getSymbol Type(getVariableName());
if (symbolType == null) {
addError(ErrorType. UNKNOWN NAME);
} else {
if(!symbolType.isAssignableFrom(expression.getType())) {
addError(ErrorType. INCOMPATIBLE TYPES);
§
H
}

In this example, the assignment statement is validated to have the correct expression type to
match the variable type, if any.

Execution uses the validated statement to generate the correct output for the statement.

public void execute(CatscriptRuntime runtime) {
Object conditionalResult = expression.evaluate(runtime);
if(Boolean. TRUE.equals(conditionalResult)) {
for (Statement trueStatement : trueStatements) {
trueStatement.execute(runtime);
}
} else {
for (Statement elseStatement : elseStatements) {
elseStatement.execute(runtime);
H
H
H

In this example, the true and else statements of an if statement are executed to generate the
correct output.

Compilation converts the tokenized, parsed, evaluated, validated, and executed code into Java
bytecode.

public void compile(ByteCodeGenerator code) {
code.addVarlnstruction(Opcodes.ALOAD, 0);
expression.compile(code);
box(code, expression.getType());
code.addMethodInstruction(Opcodes.INVOKEVIRTUAL,
code.getProgramInternalName(),
"print", "(Ljava/lang/Object;)V");
b

In this example, print statements are compiled into the correct bytecode.

My sole team member, Jacob Clostio, wrote three unit tests for my compiler as well as the
documentation included in Section 4. The nature of the project means the percentage of work
done by each team member was about 90% to 10%. Team member 1, myself, completed 90% of
the project, and 10% was completed by team member 2.

Team member 2 created the documentation in Section 4 which does a great job at describing the
general grammar definitions of CatScript as well as an overview of what CatScript is. Team
member 2 also created three unit tests to test the functionality of the CatScript compiler. The

three tests are:

ConditionalStatementInsideFunction() {

These tests are high level and help ensure that the compiler is compiling properly though various
applications. The first test confirms that if statements work inside for loops, this code is used
frequently in almost all user scripts. The second test confirms that code execution stops after a
return statement, without this working, return statements would be useless. The last test confirms
that the correct output is used with if statements and for loops inside functions. The output needs
to be correct or functions and if statements are broken.

Section 3 - Design Pattern

Memoization is the primary design pattern in CatScript. The general idea is if something has
already been created, it is stored, then if a method calls for it, the reference is found in storage
rather than creating a new one. Memoization in CatScript is defined with this code:

When the getListType function is called with a CatscriptType INT for the first time, it is stored
inside of a HashMap. The second time the getListType function is called with the same INT, the
HashMap is checked for it, and the type is returned. This prevents reinitialization of existing
CatscriptType types.

Section 4 - Technical Writing

Catscript Documentation

Tacob Clostio

Introduction

Catscript is a statically typed simple programming language that allows for a small number of
types that include:

int - a 32 bit integer

string - a java-style string

bool - a boolean value

list - a list of value with the type 'x'
null - the null type

object - any type of value.

Catscript was created by defining a relatively simple set of grammar rules. With this grammar. a
compiler could then be built from the ground up to tokenize. parse. and eventually return
bytecode that follows the grammatical rules of the language. Although simple. the language
allows for reduced complexity, and improved readability, making it a good choice for beginners
to learn simple programming features.

Features

catscript program = { program statement };

Catscript’s gramumar begins with the catseript program. This grammar rule defines a Catscript
program as zero or more program statements. This is a common way to define the syntax of a
programming language and 1s used to parse the input code and generate an abstract syntax tree
that represents the structure of the program.

program statement = statement |

function declaration;

The second grammar rule 1s defined above, This rule defines a program statement in Catscript as
either a general statement or a function declaration. Again. this rule 1s used by the parser to build
an abstract syntax tree that represents the program structure. and is the higher level syntax of the
language.

statement = for statement |
if statement |
print_statement |

variable statement |
assignment statement |
function_call statement;

The statements are where we see the main features of the programming language. and can take
the form of any of the alterations listed above.

Statements

for_statement = 'for’, '(', IDENTIFIER, 'in', expression ")°,
“{", { statement }, '}’;

if statement = 'if", (', expression, ‘)", '{’,
{ statement },
"} ['else', (if _statement | *{', { statement }, "}’
) 15

print statement = ‘print’, "(°, expression, ')’

varlable statement = ‘var', IDENTIFIER,

[":", type expression,] '=", expression;

assignment statement = IDENTIFIER, '=', expression;

function call statement = function call;
function call = IDENTIFIER, '(', argument list , ')’

argument list = [expression , { ",' , expression }]
type expression = "int"' | ‘'string" | 'bool’ | ‘object' | 'list' [,

<' , type expression, '>']

These are the grammar rules for the statements in Catseript. Beginning with the for statement.
which would look like:

for (x in |1, 2, 2]) { print(x) }

This 1s a standard for loop that requires an identifier, an expression. and a statement to run
correctly. Continuing on with the if statement:

if (x == 1) { print(1) }
else if (x == 2) { print(2) }

else { print(3) }

print(x)

Where an expression 1s needed after the ‘print” keyword. The variable statement could look
either like:

var x : int =

Or

var y =

Where the needed components are an identifier. an optional type expression (defined above), and
tinally an expression. Furthermore. Catscript allows for a variable to be of any of the built-in
data types without needing to specify the type in the statement when using the ‘var’ keyword
although a type can be specified if wanted). The assisnment statement would take the form:

Given an identifier. and an expression, one could change the assignment of a variable with this
simple syntax. Finally the function call statement requires a function call.

which consists of an identifier and an optional argument list (which is simply expressions
separated by commas).

Functions

function _declaration = 'function’, IDENTIFIER, '(', parameter list,
I)I +

[":" + type expression], '{',
function_body statement }, '}°;

function body statement = statement |
return_statement;

parameter_list = [parameter, {',’' parameter }];

parameter = IDENTIFIER [, ':', type expression];

return_statement = ‘return’' [, expression];

These grammar rules define how to declare and define functions in Catscript.
function_declaration begins with the keyword function followed by the function name, a list of
parameters enclosed in parentheses. an optional return type, and the function body enclosed in
braces. The parameter list defines the function parameters. which may include a type expression
The function body statement can be any statement or a return_statement that indicates the value
to return from the function. Return_statement specifies the keyword ‘return’ followed by an
optional expression that represents the value to be returned from the function. Here's an example

of a simple function in Catscript that takes two parameters and returns their sum:

function add(x : int, y : int): int {

return x + y

}

The function declaration rule is used to declare a new function named add. which takes two
integer parameters X and y. and returns an integer value. The function body_statement consists
of a single return_statement that adds the two parameters and returns the result.

Expressions

expression = equality expression;

equality expression = comparison_expression { ("I1=" | "==
comparison_expression };

comparison expression = additive expression { (">" | ">
"¢=") additive expression };

additive expression = factor expression { ("+" | "-")
factor expression };

factor expression = unary expression { ("/" | "*") unary expression

}s

unary_expression = ("not”™ | "-") unary expression |
primary expression;

primary expression = IDENTIFIER | STRING | INTEGER | "true" | "false”
| “null™|
list literal | function call | "(", expression,

"y

list literal = '[', expression, { ',", expression } ']°;

This set of grammar rules defines the basic structure of expressions in Catseript. An expression 1s
built up from smaller expressions using a hierarchy of operations. starting with
primary_expression at the lowest level and working up to equality expression at the highest
level. Primary expression represents the simplest expressions. such as literal values (ints, strings,
true, false, and null). identifiers (variable names) and list_literals. function call represents a
tunction call expression. which 1s used to mnvoke a function and pass arguments to 1t.
Unary_expression represents unary operators, such as negation and logical negation.
factor_expression represents multiplicative operators (* and /). while additive_expression

represents additive operators. Finally, comparison expression represents relational operators (=,
<, >=, and <=), and equality_expression represents equality operators (== and !=). Overall, this
grammar defines the basic building blocks of expressions in Catseript, allowing for the creation
of more complex and sophisticated expressions as needed.

In summary. Catseript 1s a programming language that allows developers to write code using a
clear and concise syntax. Its grammar includes support for common programming features such

as variables. functions, and expressions. With its intuitive design and flexibility, Catseript
provides a solid foundation for beginners to learn basic programming principles.

Section 5 - UML

CatScript Multiplication Sequence Diagram

User CatScript Lexer Parser ParseTree
| o | | |
I I I I
| evaluate("66 * 7567") | | |
| > | |
: lex("66 * T567") : :
I I I
| tokens I |
| -] !

|
: parse(tokens) > :
I I I
| I parseExpression() |
I I I
I | I
I I I
| | parsefFactorExpression() |
I I | I
I I I
: : parselntegerlLiteral() :
I I I
I I I
I ! I
parseTree
| ¢ -----=----- r———--- T
I I |
| | execute()
I I I
I I ;
499422
| q---------- L
I I
["499422" |
e T |
I
!

-
|
|
|
|
|

In this UML diagram, the code “66 * 7567 is evaluated through the parser. The User inputs the
code “66 * 7567 which is evaluated by the CatScript program. CatScript tells the lexer to
tokenize the input code and returns a list of tokens. This token list is parsed via the Parser. The
Parser calls the parseExpression() function, which will call the parseFactorExpression() function
because multiplication is parsed in the parseFactorExpression() function. Since the input was
multiplication of two integers, the parselntegerLiteral() function is called. This parseTree is
returned to the CatScript program, which then calls the execute() function with the parseTree.
This returns the value 499422, which is the correct result of 66 * 7567 to the CatScript program,
which returns the value to the User.

Section 6 - Design Trade-Offs

Since the parser was generated by hand rather than using a parser generator, the design quality is
different. The parser created for CatScript utilized recursive descent parsing. Recursive descent
allows for understanding of grammars and the recursive nature of grammars, but this form of
parsing is less efficient than using a parser generator. Recursive descent parsing uses top down
recursion to formulate a parse tree. Whereas a parser generator like ANTLR uses external files to
generate a lexer and parser in a chosen language. The code length from generated code can also
be significantly longer than recursive descent parsing. These generated lexers and parsers can be
difficult to understand and debug and implementing new ideas even harder. Obscure syntax can
also be generated for obvious ideas if done by hand. In CatScript the visitor design pattern
cannot be used based on how it is coded. With a parser generator, the visitor pattern can be used
and allows for control over the parse tree that cannot be achieved through the generated code.

Section 7 - Software Development Life Cycle Model

Test Driven Development (TDD) was the primary method used when developing the CatScript
compiler. Given a test suite with specification for the language, overtime tests were fixed by
coding the tokenizer, parser, and Java bytecode converter.

Starting with the tokenizer, 16 tests were used to formulate a working tokenizer. These tests
included correct data type, basic syntax, basic keywords, etc. These tests were beneficial in
creating a successful tokenizer used in future tests.

The parser included approximately 116 tests for expressions and statement validation. These tests
included type checking, expression evaluation, and statement evaluation. Using these tests, code
was written to which bytecode could be generated for.

The Java bytecode converter was the last formulated code, with 15 tests that checked for correct
conversion to bytecode from CatScript. Tests included, expression compilation, statement
execution, and function compilation. These tests were very beneficial in understanding how
CatScript is converted to Java bytecode.

Test Driven Development was a great way to manage the progress of the CatScript compiler.
Another life cycle model could have been more beneficial, but TDD is great for understanding
what needs to be done, and how it can effectively be accomplished.

