Catscript Compilers Project

Cameron Wilcox, Makayla Broyles
Gianforte School of Computing, Montana State University
CSCI 468: Compilers
Carson Gross

Spring 2023

CATSCRIPT COMPILER DOCUMENTATION 2

I. Program

A zip file with the source code has been included with this document. See the directory

/capstone/portfolio. The language spec is included here:

catscript_program { program_statement };

program_statement statement |
function_declaration;

statement = for_statement |
if_statement |
print_statement |
variable_statement |
assignment_statement |
function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
{ statement },
"}' ['else', (if_statement | '{', { statement }, '}') I;

print_statement = ‘print', '(', expression, ')’

variable_statement = 'var', IDENTIFIER,

[':", type_expression,] '=', expression;
function_call statement = function_call;
assignment_statement IDENTIFIER, '=', expression;

function_declaration 'function', IDENTIFIER, '(', parameter_list, ')' +
[":' + type_expression], '{', { function_body_ statement }, '}';

function_body statement = statement |
return_statement;

parameter_list = [parameter, {',' parameter }];
parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality expression;

CATSCRIPT COMPILER DOCUMENTATION 3

equality expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive _expression { (">" | ">=" | "<" | "<=") additive_expression

ts

additive_expression = factor_expression { ("+" |) factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };
unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list literal | function_call | "(", expression, ")"

list literal = '[', expression, { ',', expression } ']';
function_call = IDENTIFIER, '(', argument_list , ')’

argument_list [expression , { '," , expression }]

type_expression int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type_expression,

5

II. Teamwork

For this project we were full time developers on the project, so we each wrote our own
compiler, however, for the documentation and parts of testing, we assisted each other. We wrote
three tests for each other, and wrote the technical documentation for Catscript for each other.

This can be seen later in the document. The tests that I wrote can be seen here:

@Test
void forLoopPrint() {
assertEquals("1\n2\n3\n", executeProgram("for(x in [1, 2, 3]) { if(true){ print(x)} }"));
}
@Test
void ifStatementTest() {

assertEquals("1\n", executeProgram("var x = 1\n if(x == 1){ print(x)}"));

@Test
void funcReturnTest() {
assertEquals("10\n", executeProgram("var x = 10\n" + "function foo(y : int) : int {\n" +
" return y\n" +

CATSCRIPT COMPILER DOCUMENTATION 4

"I\n" +
"print(foo(x))\n"));

The tests that my partner wrote can be seen here:

@Test
void testl() {
assertEquals("12\n", executeProgram(" var x = 11 if(x<10){ print(x) } else {
print(x+1) }"));
}

@Test
void test2() {
assertEquals("2\n3\n", executeProgram("for(x in [1, 2, 3]) {\n if(x>=2){
print(x)}}\n "));
}
@Test
void test3() {
assertEquals("@\n", executeProgram("function foo() : int { " +
"var x = 9" +
"if(x>10) {return x} " +
"else { return 0}" +
RN
"print(foo())"));

CATSCRIPT COMPILER DOCUMENTATION 5

III. Design Pattern

The design pattern that we used for this project was the memoization pattern. You can see

the implementation below:

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

CatscriptType listType = LIST_TYPES.get(type);

if (listType == null) {

listType = new ListType(type);
LIST_TYPES.put(type, listType);

}
return listType;

We did this so that in the case that it becomes very expensive to new up a type, then
every time there is a type that comes in that has already been seen, you can just look it up instead

of creating a new one.

CATSCRIPT COMPILER DOCUMENTATION 6

IV. Technical Documentation/Catscript Guide

Introduction
Catscript is a simple scripting language. Here is an example:

var x = "foo"
print(x)

Features

For Loop Statement

The for loop statement is a feature to iterate over a range of values. Here is an example of a For
Loop Statement:

for(x in [1, 2, 31){
print(x) }

If (Else) Statement

The if (else) statement is a feature used to execute only a certain chunk of code ‘if” the
conditional statement is true. Here is an example of an If (Else) Statement:

if(x > 10){ print(x) }

Else Statement

The else statement is a feature that is used with the ‘if statement’. It is used as the alternative—the
if statement is false—to the ‘if” conditional statement. Here is an example of an If Else Statement:

if(x > 10)

{ print(x) }
else { print(10) }

Print Statement

The print statement is a feature used to print any parameters given to it. Here is an example of
the Print Statement:

print(1)

CATSCRIPT COMPILER DOCUMENTATION 7

Variable Assignment

The variable assignment feature is used to declare a variable in Catscript. You can declare a
variable with or without any explicit type. Here is an example of a non-explicit type Variable
Assignment:

var x = true

Here is an example of an explicit type Variable Assignment:

var x : bool = true

Function Declaration
The function declaration feature is used to define a function to be used within CatScript.

Here is an example of a Function Declaration with parameters:

function foo(a, b, c) {}

Here is an example of a Function Declaration without parameters:

function foo() {}

Function Call

The function call feature is used to call a declared function. Here is an example of a Function

Q
S

foo(1, 2, 2)

Return Statement

The return statement feature is used to return values from a function. Here is an example of a
Return Statement:

function foo() : object { return true }

Variable Types
Catscript is statically typed and uses the following types.

List Literal

A list literal is a list of values with the type ‘x’. Here is an example of a List Literal:

var x : list<int> = [1, 2, 3]

CATSCRIPT COMPILER DOCUMENTATION 8

String

A string variable is a java-style string. Here is an example of a String Variable:

var x: string = "String"

Integer

An integer variable is a 32 bit integer. Here is an example of an Integer Variable:

var x: int =

Boolean

A boolean variable is a boolean value (true or false). Here is an example of a Boolean Variable:

var x : bool = true

Object
An object variable is a value of any type.
Operators

Arithmetic Operators

+ Additive Operator

- Subtraction Operator

* Multiplication Operator

/ Division Operator

Unary Operators

+ Unary Plus Operator

- Unary Minus Operator

++ | Increment Operator

-- Decrement Operator

! Complement Operator

CATSCRIPT COMPILER DOCUMENTATION

Comparison Operators

> Greater Than

< Less Than

>= | Greater Than or Equal To

<= | Less Than or Equal To

CATSCRIPT COMPILER DOCUMENTATION

V. UML Diagram

Catscript Function Call Sequence Diagram

User

CatScript

evaluate ("“foo(1, 2, 3)")

-

Evaluation of "foo(1, 2, 3)"

P

Lexer Parser

1
parse(tokens)

parseTree |

ParseTree

parseExpression()

i

parseEqualityExpression()

L L

parseAdditiveExpression()

i

parseFactorExpression()

i

parseUnaryExpression()

L

parsePrimaryExpression()

L

parseFunctionCall()

i

execute()

parseComparisonExpression()

Evaluation of "foo(1, 2, 3)"

10

CATSCRIPT COMPILER DOCUMENTATION 11

For the UML Diagram, I did the parsing of a function call. It goes down the recursive
descent tree before hitting parseFunctionCall() at which point it returns back up with the

evaluation of the function.

CATSCRIPT COMPILER DOCUMENTATION 12

VI. Design Trade-Offs

In this project, the main trade off that we made was that we wrote the parser by hand
instead of using a tool like Lex or Yacc. We did this so that we could write a recursive descent
parser that would both teach us much more about parsing, and so that the parser is optimized
more for Catscript as a language.

A secondary trade off that we made in this project was the exclusion of the visitor pattern.
We made this as we felt that the visitor pattern over complicated things greatly. However it is
worth noting that with that trade off that we made, it does make things a bit more tightly coupled.
We felt that this was a compromise we could make in order to make the compiler much more

simple.

CATSCRIPT COMPILER DOCUMENTATION 13

VII. Development Life Cycle

For this project we used Test Driven Development (TDD). This model was most helpful
because we could write the different parts of the compiler as we went along and test each part
individually and ensured that it was working every step of the way. We felt that this approach
was far more helpful than detrimental and helped us to learn how to properly write a compiler

the whole way through.

