
Section 1:
Program

https://github.com/COLEREIMER/csci-468-spring2023-private/blob/main/ca
pstone/portfolio/source.zip

Section 2:
Teamwork

For the teamwork portion of this project, I was the primary engineer
and my partner, Gage Hillyard, was the documentation and testing
engineer. Gage wrote three test cases for my compiler code along with a
comprehensive guide to the Catscript language. Gage’s tests were all
tailored towards the execution section of my compiler. They were designed
with the intent of testing the integrity and functionality of my code. The
Catscript documentation is all under the section four technical writing
portion of the portfolio. All of Gage’s supplied test cases can be seen in the
code chunks below.

@Test
void varInsideFunctionWorksProperly() {

assertEquals("60\n", executeProgram("function capstone() : int {\n" +
" var x = 30\n" +
" var copy = 30 * 2\n" +
" return copy\n" +
"}\n" +
"print(capstone())\n"));

}

@Test
void localVarStatementsWorkProperly() {

assertEquals("I like the number 1\nI like the number 2\n",
executeProgram("for(x in [1, 2]) {\n" +

" var y = x\n" +
" if(y == x){\n" +
" print(\"I like the number \" + y)\n" +
" }\n" +
"}\n"));

https://github.com/COLEREIMER/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip
https://github.com/COLEREIMER/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip

}

@Test
void forStatementWorksProperly() {

assertEquals("2\n3\n4\n3\n4\n5\n4\n5\n6\n5\n6\n7\n",
executeProgram("for(x in [1, 2, 3, 4]) {\n" +

"for(y in [1, 2, 3]) {\n" +
" print(x + y)\n" +
"}\n" +
"}"));

}

Section 3:
Design Pattern

The design pattern that I chose to implement in my compiler code
was “memoization”. The purpose of adding this design pattern was to save
myself the computation of having to constantly re-initialize the list type
variable. This design pattern was implemented in the getListType method
of the CatscriptType class in the parser section of the compiler code. The
code for the design pattern is all included and boxed in the code chunk
below. This design pattern efficiently verifies whether or not a list type
already exists. Only when it does not exist, the pattern creates a new list
type and adds it to the hashmap. This approach eliminates the need to
repeatedly reinitialize list types that are already stored in the hashmap.

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new
HashMap<>();

public static CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST_TYPES.get(type);
if(listType == null) {

listType = new ListType(type);
LIST_TYPES.put(type, listType);

}
return listType;

}

Section 4:
Technical Writing

Catscript Guide
This document is a comprehensive guide for the Catscript language.
Written by Gage Hilyard for Cole Reimer.

Introduction

Catscript is a simple scripting language. Here is an example:

var x = "foo"

var y = "bar"

print(x + y)

Features

Syntax

Catscript syntax is very simple. Unlike Java, semicolons are not needed to
end a line. Source code can be entirely written on a single line if all
statements are grammatically correct.

Inline comments are also familiar. Here is an example:

// This is a comment. Anything written past the double forward slashes

// will be ignored when compiled.

var x = 1

print(x + 1)

Variables and Lists

Initializing variables in Catscript is very simple. Variables of type integers,
strings and bools as well as lists can be initiated with or without an explicit
type. Variables of type “Object” can be assigned to any type.

Variable statements are constructed as followed:

var variable_name (: type) = value

var variable : int = 406

Lists are initialized very similarly to other variables:

var variable_name (: list<type>) = [comma, separated, values]

var list : list<int> = [4, 0, 6]

Here are some examples of how variables are initialized with or without an
explicit type:

var x : int = 1

var y = 1

var str : string = “hello”

var str2 = “world”

var bool : boolean = true

var bool2 = false

var obj : object = 1

var obj2 = “value”

var obj_list : list<object> = [“montana”, 406, true]

var int_list = [1, 2, 3]

var null_variable = null

Variables can be reassigned to another value as long as they are the same
type unless the variable is initialized as an object.

Here are some examples:

var x = 1

var y = 2

x = 3

x = y

var obj : object = “asdf”

obj = 10

obj = true

Math

Catscript can do simple arithmetic, it can add, subtract, multiply, and divide
integers. Catscript also supports negative integers and parentheses as
well.

Expressions are constructed as followed:

addition 1 + 1

subtraction 1 – 1

multiplication 1 * 1

division 1 / 1

var math = 1 – (-1) + ((8/2)*4)

Print Statements

Print statements are easy to use and can concatenate strings and solve
expressions. One thing to note is that the lines always end with a new line.

Here are some examples:

var x = “hello”

var y = " world"

var z = 406

print(“This is a Catscript Program: “ + x + y + z)

The above print statement would output “This is a Catscript Program: hello
world406”.

var x = 1

var y = 2

print(“1 + 2 = “ + (x + y))

The above print statement would output “1 + 2 = 3”.

If/Else Statements and Equality Expressions

If/Else statements are similar to Java if/else statements and just require a
true or false case.

Here is an example:

var case = true

if(case) {

print(“This is true”)

} else {

print(“This is false”)

}

If/Else statements can be combined with equality expressions as well. Here
are some examples of equality expressions:

a > b //greater than

a >= b //greater than or equal to

a == b //equal to

a != b //not equal to

a <= b //less than or equal to

a < b //less than

A realistic if/else statement may look like this:

if (variable_a >= variable_b) {

print(“true”)

} else {

print(“false”)

}

Booleans can also be negated with the ‘not’ keyword:

var bool = false

if(not bool) {

print(“This will print”)

} else {

print(“This will not print”)

}

For loops

For loop statements require a list to iterate over. A common case would be
to iterate over an integer list from 1 to an upper range. Here is an example:

//initializing a list in the for loop

for (x in [1, 2, 3]) {

print(x)

}

//initializing a list outside of the for loop

iterList = [4, 5, 6]

for (x in iterList) {

print(x)

}

This would print the numbers 1 through 6 on their own lines.

Functions

Defining functions in Catscript is simple. Functions return types can be any
of the variable types or void. Functions arguments may also have an
explicit type or none at all.

A function declaration is constructed as follows:

//function with return type and argument types

function function_name(arg1 : type, arg2 : type) : return_type {

var variable_of_return_type = value

return variable_of_return_type

}

//function with no return type or argument types

function function_name(arg1, arg2, arg3) {

print(arg1 + arg2 + arg3)

}

Here is an example of a function that doubles and prints numbers from a
given integer list:

function double (list : list<int>) {

for(x in list) {

print(x*2)

}

}

To call a function, you use the function’s name and any arguments it may
have. For the previous function, it would be called as follows:

int_list = [2, 0, 3]

double(int_list)

Functions in Catscript can also be called recursively.

function recursive(x) {

print(x)

if(x > 0) {

recursive(x – 1)

}

}

recursive(10)

Section 5:
UML

This sequence diagram is used to demonstrate the evaluation of a
simple factor expression. The user sends an expression that starts in
evaluation and then Catscript uses “lex”, a way of scanning the expression,
to break the evaluation into subsequent tokens and returns it to the
Catscript program. From there, we use the parser to parse through them
starting with the parse expression function. The parse expression function
uses recursive descent to ultimately parse the left and right sides of both of
the equations and then returns it to the Catscript program to execute. The
parse tree class uses the execute function to return the value to the
Catscript class which outputs the value back to the user.

Section 6:
Design Trade-Offs

The main design tradeoff that I’ve decided to focus on comes from
the fact that we chose to write our parser by hand instead of simply using a
parser generator. The various benefits of writing the parser by hand all
stem from the fact that we are able to control the ultimate look and
implementation of the code. Specifically, in our Catscript parser we chose
to implement a recursive-descent styled algorithm. A recursive-descent
algorithm is a simple yet elegant way to write a parser in such a way that
makes it obvious how the grammar works. This approach is a much more
intuitive way to implement code because the retention of the materials is
the most important aspect of the project. Although there exist many
benefits to writing a parser by hand, hand-written parsers can often be very
time consuming and error-prone.

Parser generators are a tool that can generate the code for parsers
based on the specific grammar of the language. Parser generators help to
increase both the speed and accuracy of the generator while also making it
easy to maintain the code as programming languages oftentimes like to
evolve. The drawbacks of parser generators all come from the fact that
they have limitations when it comes to the customization of the code. For

example, they could have trouble trying to integrate the parser code into a
previously existing code base. When trying to decide between the
implementation of generated or handwritten parsers, it’s best to take into
account the ultimate goal of the project. In this class, it was apparent that
writing the parser by hand would be most beneficial.

Section 7:
Software Development Life Cycle Model

The test-driven development model proved to be highly beneficial to
the development of my code. By looking at the tests before even starting to
code each portion, I was able to get a solid understanding of what the code
would be producing along with a general grasp of how and where to begin.
Furthermore, the test-driven model helped to catch errors earlyon in the
code so that they wouldn’t be a problem as the project continued to build
upon itself. This was especially helpful for this project because every
checkpoint would rely on the proper implementation of the section
preceding it. Lastly, when the code wasn’t outputting the correct value or
response, I was able to compare my output with the output that the test
was expecting. This made it a lot easier to debug and fix any issues in the
code. Overall, the test-driven model greatly benefited my personal
development and retention of the code by emphasizing testing and
enabling me to better understand/debug the code.

