
Isaac Schmidt

Capstone Portfolio

CSCI 468

Partner: Michael Clearwater



Section 1: Program

A zip file of the Catscript compiler code can be found at:

https://github.com/ischmidt707/csci-468-spring2023-private/tree/main/capstone/p

ortfolio/source.zip

Section 2: Teamwork

This project was done with a team of two engineers. Team member 1 (Isaac

Schmidt) acted as the primary engineer in charge of writing the code. Team member 2

(Michael C) was in charge of testing and documentation. Section 4 of this document was

produced by team member 2 to document Catscript.

https://github.com/ischmidt707/csci-468-spring2023-private/tree/main/capstone/portfolio/source.zip
https://github.com/ischmidt707/csci-468-spring2023-private/tree/main/capstone/portfolio/source.zip


Section 3: Design Pattern

One key design pattern used in Catscript is memoization. It can be found in the

getListType method of the CatscriptType.java file in the parser directory. The purpose of

utilizing memoization here is to make this method more efficient in computation and

memory space. For early calls to the method, memoization is slightly less efficient due

the fact that it is recording new ListTypes as they are created, but gains efficiency the

more the method is called. Therefore we decided that for a small upfront cost, using the

memoization design pattern instead of directly coding the method would be overall a

beneficial decision. Large Catscript files have the potential to gain significantly from

this, while small Catscript files suffer a negligible overhead cost.

Section 4: Technical Writing

Team member 2 wrote a comprehensive technical documentation of Catscript.

This can be found attached at the end of this document as Appendix A.



Section 5: UML



Section 6: Design Trade-Offs

In this project, we chose to write the parser using recursive descent, instead of

using a parser generator. Parser generators such as lex, yacc, and ANTLR, generate

parsers based on a provided language specification in their own specified format. By

using recursive descent we were able to gain a much more intuitive sense of how

compilers work from the bottom up. Additionally, by writing all code by hand, the

designer naturally has much more direct control over the exact execution of the project.

On the other hand, parser generators can be quite helpful to quickly cover more features

of a language without tediously rewriting similar sections of code.

Recursive descent made the most sense overall because not only are we

gaining a deeper understanding of the content, but are also preparing ourselves for better

implementations and improvements of this codebase in the future. Where using a parser

generator might make more sense is if our only aim was to quickly implement a new

language compiler for some specific purpose. In that scenario, maintenance and

understanding would be reduced considerations.



Section 7: Software Development Life Cycle Model

We used the Test Driven Development (TDD) model for our software

development life cycle. This means that prior to writing code for the compiler, we were

provided with a suite of unit tests that defined how the program should run. This

methodology comes with many advantages as well as disadvantages.

One key advantage of TDD is that it fits the framework of Agile software

development, which is rapidly gaining popularity and adoption in industry, which could

be a litmus test for the industry’s belief in the overall positivity of TDD. Excess code is

also reduced in TDD because the tests define exactly what needs to function. By defining

functionality into very tiny slices of unit tests, engineers are also forced to use a better

modular design and write code that is very maintainable. Lastly, TDD naturally

documents the code through tests while simultaneously providing high test coverage,

which is sometimes quoted as an important metric of codebase quality.

Despite all of these advantages, Test Driven Development does come with

disadvantages as well. A false sense of security can be created if bugs themselves are

incorrect or incomplete, and it is up to the engineer to realize these cases during the

course of development. Another possible downside is that tests must be adapted every

time requirements change. Luckily for us, this project had stable requirements, thus

making TDD an even better choice for this situation by negating this potential

disadvantage.



Appendix A - Catscript Guide
This document should be used to create a guide for Catscript, to satisfy capstone
requirement 4

Introduction
Catscript is a statically typed functional programming language. Here is an
example:

var x = "foo"
print(x)

Features
Data Types

Catscript supports the use all primitive types, along with lists and objects. The
type system is as follows:

• int - a 32 bit integer
• string - a java-style string
• bool - a boolean value (true or false)
• null - the null type
• list - a list of value with the type ’x’
• object - any type of value

Equality Expressions

An equality expression is able to test two different things. One, it can test if two
values/objects are equal to each other, or two, it can test if two values/objects
are not equal to each other. The syntax for the eqality expression is the same as
most programming languages,== tests for equality, and != tests for inequality.
The equality expression will return true or false, depending on the outcome of
the expression’s evaluation. The equality expression is most often paired with
an if statement.

Equality Expression Examples:

1 == 1

This expression will evaluate to true, since the integer 1 does equal the integer
1.

1 == 2

This expression will evaluate to false, since the integer 1 does not equal the
integer 2.

1 != 1

1



This expression will evaluate to false, since the integer 1 does equal the integer
1.

1 != 2

This expression will evaluate to true, since the integer 1 does not equal the
integer 2.

Comparison Expressions

A comparison expression is similar to an equality expression, but instead it takes
two values/objects and tests to see if one is greater than, greater than or equal,
less than, or less than or equal to the other. The syntax for these four expression
is as follows:

• greater than - >
• greater than or equal - >=
• less than - <
• less than or equal - <=

The expression will evaluate to true or false depending on the outcome of
the comparison. The comparison expression is most often paired with an if
statement.

Comparison Expression Example:

1 > 0

This expression will evaluate to true, since the integer 1 is greater than the
integer 0.

1 >= 1

This expression will evaluate to true, since the integer 1 is greater than or equal
to the integer 1.

0 < 1

This expression will evaluate to true, since the integer 0 is less than the integer
1.

1 <= 0

This expression will evaluate to false, since the integer 1 is not less than the
integer 0.

Additive Expressions

An additive expression is capable of doing three things. One, it can add two
integers together and return the sum, two, it can subtract two integers and
return the difference, or three, it can concatenate a string to another string or
an integer to a string. The syntax for addition and concatenation is +, and the
syntax for subtraction is -.

2



Additive Expression Examples:

1 + 1

This expression will return the sum of 1 and 1, which is 2.

1 - 1

This expression will return the difference of 1 and 1, which is 0.

"foo" + "bar"

This expression will return the two strings concatenated together, "foobar".

Factor Expressions

A factor expression is just basic multiplication or division. It takes two integers
and returns the product or the quotient based on the provided operand. The
syntax for a factor expression is * for multiplication, and / for division. For
division, the first integer provided will be the dividend and the second integer
will be the divisor.

Factor Expression Examples:

1 * 2

This expression will return 2, the product of 1 and 2.

4 / 2

This expression will return 2, the quotient of 4 and 2.

Unary Expressions

A unary expression is capable of negating integers and booleans. The syntax
to negate an integer is simply putting a - in front of the integer to turn it to
a negative integer. The syntax to negate a boolean is to insert not in front of
the boolean wanting to be negated, which will cause that boolean to act like it’s
opposite.

Unary Expression Examples:

-1

This expression just acts like the integer -1. By providing the unary operator
-, it negates the integer 1 to be a negative integer.

not true

This expression will evaluate to false, since true is being negated by the not
operator.

3



For Loops

Catscript, like many languages, has an implementation of a for loop. The for
loop allows you to iterate over every element within a data structure or will
repeat for a given amount of times.

For Loop Example:

for (x in [1, 2, 3]) {
print(x)

}

This for loop will print out all the elements of the given list:

1
2
3

If/Else Statements

Catscript has support for if/else statements. These statements allow for the
execution of different code based on the boolean output to a passed in expression.

If/Else Statement Example:

if (x == y) {
print(1)

} else {
print(2)

}

This statement will print 1 if the variables x and y are equal, and will print 2
otherwise.

Variable Statements

Catscript has an implementation of variable statements, similar to those of
JavaScript. Catscript supports creating variaibles with an explicit type, or vari-
ables with an implicit type determined by the parser. An explicit type is defined
by inserting a colon after the variable name, followed by the type.

Explicit Type Variable Statement Example:

var x : int = 1

For this statement, the types will be checked by the parser to make sure the
value being set to the variable is compatible with the explcit type of the variable.

Implicit Type Variable Statement Example:

var x = 1

4



For this variable statement, the parser will determine the implicit type auto-
matically.

Print Statements

The Catscript print statement is similar to the one in Python. The print state-
ment allows the user to print some output during execution of their code.

Print Statement Example:

print(1)

This statement will print 1 when the code is executed.

Assignment Statements

In Catscript, you can reassign variables to a different value like in many lan-
guages. You can reassign a variable to another variable or to an object of any
kind.

Assignment Statement Example:

var x = 1
x = 2

This block of code creates a variable x equal to the integer 1. It then reassigns
x to the integer 2.

Function Definition Statement

Catscript allows the creation of functions. A function needs to have a valid name
(no repeats), and may have a declared return type and arguments. A function
without a specified return type will return void. The function’s arguments may
have a defined type, or they can be implicitly defined by the parser. A function
with a return type other than void must have complete return coverage, meaning
that every possible branch has a return statement at the end.

Function Definition Statement Example:

function foo(x : int, s : string) : string {
var y : string = x + s
return y

}

This function definition has a specified return type of string, with arguments x
and s with explicit types int and string respectively. The body of the function
creates a new variable, y, with an explicitly defined type of string, and assigns
it to the concatenation of x and s. Since the function has an explicit return
type of string, it returns y.

5



Function Call Statement

Since Catscript allows for the creation of functions, it also allows for those func-
tions to be called upon. A function call statement will call upon the function
definition statement and execute it. The syntax of the function call is just
functionName(arguments) like in most programming languages. A function
call’s arguments must match the number and type of arguments defined within
the function definition statement. If the function definition has a return type
other than void, then the function call can be assigned to a variable match-
ing the type of the function definition return type or a variable whose type is
implicitly defined.

Function Call Statement Example:

function foo(x : int, s : string) {
print(x + s)

}

foo(1, "bar")

This function call statement calls upon the function foo, defined above the
call itself. The function call passes in the int 1, and the string "bar", as
foo’s definition defines it needs an int and a string as parameters. Once the
code is executed, the function call will execute the function definition using the
parameters it passes in, resulting in 1bar being printed.

Another Function Call Statement Example:

function foo(x : int, s : string) : string {
var y : string = x + s
return y

}

var newString : string = foo(1, "bar")

This example is almost the same as the one above, with a few minor differences.
First, foo’s function definition specifies it must return a string. Within the
body of foo, a new string variable, y is created and is assigned to the concate-
nation of x and s. The variable y is then returned from the function. Second,
the string variable, newString, is being assigned to the function call for foo,
with the given arguments. Since foo’s definition is returning the concatenation
of its parametrs, the variable newString will be assigned to the concatenation
of the function call arguments, resulting in newString being assigned to 1bar.

6


