Montana State University — CSCI 465 (Compilers)

Compilers Capstone

Carson Gross

Mark Braun — Team Member 2, Grant Dunbar — Team Member 1
Spring 2023

Dunbar 1
Section 1: Program

Link to project source code - https://github.com/grantdunbar8/csci-468-spring2023-

private/blob/main/capstone/portfolio/source.zip

Section 2: Teamwork

For our capstone project we split the work into one team member writing the compiler
and the other team member writing 3 tests and documentation for the other team member’s
compiler. [spent about 85% of the time writing my compiler and my team member spent about
15% of the time writing 3 tests and documentation for my compiler. I then spent about 15% of
the time my team member spent on their compiler writing 3 tests and documentation to outline
the main features of their compiler. Overall, my team member and I worked well together, and I
think having the team member helped me to get the most out of the project because we were able
to talk through the compiler together. I also think that writing the tests for my team member’s
compiler forced me to learn more about my compiler because I needed to check for things that

could break the compiler that were not already being checked.

The documentation that is below was written by team member two and the tests that they
wrote to test the compiler that team member 1 wrote are stored in the PartnerTests.java file that is

located here: src/test/java/edu/montana/csci/csci468/capstone tests/PartnerTests.java.

Dunbar 2

Section 3: Design pattern

private static final Map<CatscriptType, CatscriptType> LIST TYPES = new
HashMap<> () ;
public static CatscriptType getlListType (CatscriptType type) {
CatscriptType listType = LIST TYPES.get (type);
if (listType == null) {
listType = new ListType (type) ;
LIST TYPES.put (type, listType):;
}

return listType;

In the Catscript compiler I implemented memoization. Memoization allows for the
program to run more efficiently because list types can be cached to be used later, rather than
having to be redefined for every use. The way that memoization is implemented in Catscript is
that when a new list is created it references the LIST TYPES hash map to see if a list of this type
has already been created. If it has been created, it will then use the predefined list, otherwise it
will create a new one and add it to the LIST TYPES hash map. This code is in the

CatscriptType.java which is used during the validating and parsing process of the compiler.

There are pros and cons to using memoization rather than just directly coding the list
types. One of the pros is that efficiency is increased if there are sufficient calls of the
memoization algorithm. Memoization also helps to reduce redundancy. With efficiency up,
memoization does not affect the amount of storage that the program requires to run. Another con
to memoization is if the memoization algorithm is not called enough times. If the memoization is
only used one or two times, it is less efficient than directly coding the list because it must check
the hash map and create a new entry. As the number of lists increases, efficiency increases

because it can reuse what it has created. The memoization could probably be expanded to the

5/5/23, 4:03 PM Section 4: Technical Writing

Section 4: Technical Writing

CatScript Documentation

Introduction and Program Structure

CatScript is a simple functional programming language built with Java.

CatScript Variables

Variable Types

CatScript is a statically typed language that supports the following variable types:

e int: a 32 bit integer

e string: A Java style string

e bool: A boolean value (TRUE/FALSE)
e null: The null type

e object: A variable with no specified type

In addition, CatScript supports list variables composed of identically-typed elements with a type from the
list above.

Variable Statements

Variables are initialized with the following grammar:

variable_statement = 'var', IDENTIFIER, [':', type_expression,] '=', expression;
List variables in particular are initialized with the following grammar:

list literal = '[', expression, { ',', expression } ']';

Here are example variable statements with:
e Anint: var myInt : int = 10

https://md2pdf.netlify.app 1/6

5/5/23, 4:03 PM Section 4: Technical Writing
e Astring: var myString : string = "Hello World"
e A bool: var myBool : bool = true
e An object: var myObject : object = 10

e Anlist of ints: var myIntList : list<int> = [1, 2, 3, 4, 5]

Additionally, CatScript supports both explicit and implicit typing of variables. If an explicit variable type is
not supplied, the default variable type is an object . Both of the following variable statements are valid
in CatScript:

e var myVariable : int = 10 (an integer type)

e var myVariable = 18 (an object type)

CatScript Functions

CatScript supports function definitions and function calls in similar ways to analogous programming
languages.

Function Definition

The CatScript syntax for a function definition is as follows:

function_definition = 'function', IDENTIFIER, '(', parameter_list, ')', [':' + type_expression,]
>

Where IDENTIFIER is the name of the function, parameter_list is the list of input parameters to the
function, [':' + type_expression,] is the return signature of the function, and is optional, and the
function_body_statement is a sequence of program statements that collectively define the behavior of
the function.

Here are several examples of function definitions:

function foo() { print("Hello World") }
function add(x : int, y : int) : int { return (x +vy) }
function print(myString : string) { print(myString) }

Function Calls

Function calls can be created with the syntax:

https://md2pdf.netlify.app 2/6

5/5/23, 4:03 PM Section 4: Technical Writing
function_call = IDENTIFIER, '(', argument_ list , ')’
Where IDENTIFIER is the name of the desired function to be called, and argument_list is the list of

arguments supplied to the function, the necessity of which are determined by the respective function
definition. Here are some example function calls of the example function definitions provided above:

foo()
add(5, 10)
print("Hello World")

Return Statements

If a function specifies a return type in it's function definition, CatScript requires a return statement after
completion of the function body of the appropriate type. If a function has no specified return type in it's
function definition, it is assumed that this function has a void return type and no return statement is
required. Return statements can be created with the following syntax:

return_statement = 'return' [, expression];

CatScript Expressions

CatScript supports common unary, arithmetic, and comparative expressions.

Primary Expressions

Primary expressions in CatScript are supported with the following grammar:

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list_literal | function_call | "(", expression, ")"

Unary Expressions

CatScript supports the not (logical negation) and - (numeric negation) unary operations. Unary
expressions are supported with the grammar:

unary_expression = ("not" | "-") unary_expression | primary_expression;

Here are examples of valid CatScript unary expressions:

https://md2pdf.netlify.app 3/6

5/5/23, 4:03 PM Section 4: Technical Writing
® not True
e - 100
® not 50
e -(10 + 20)

Additive Expressions

CatScript supports addition and subtraction operations on some expressions, depending on the type of
the expression. The formal grammar for an additive expression is:

additive_expression = factor_expression { ("+" | "-") factor_expression };

Addition is defined on int -typed expressions (convential addition), string -typed expressions (string
concatenation), and combinations of string and int expressions (string concatenation with the string
value of the integer).

Some examples of valid CatScript additive expressions are:

e 2 + 2 (evaluatesto 4)
e "Hello " + "World" (evaluates to "Hello World")

® "There are " + "50" + " states in the US" (evaluates to "There are 50 states in the US")

Subtraction is only defined on int -typed expressions.

Factor Expressions

CatScript also supports multiplication and division operations on int -typed expressions. The formal
grammar for an additive expression is:

factor_expression = unary_expression { ("/" | "*") unary_expression };

Some examples of valid CatScript factor expressions are: - 5 * 7 (evaluates to 35) - 160 / 18 (evaluates
to 10)

It is worth noting that in CatScript, the order of operations follows traditional PEMDAS convention,
where multiplication and division are evaluated first, from left to right as appearing in the expression,
followed by addition and subtraction in a similar matter, and finally unary operation.

Comparison and Equality Expressions

https://md2pdf.netlify.app 4/6

5/5/23, 4:03 PM Section 4: Technical Writing

CatScript supports the evaluation of equality expressions and comparitive expressions among most
variable types. These expressions evaluate to true or false, depending on the relationship between the
expressions being compared. The formal grammar for an equality expression is:

equality expression = comparison_expression { ("!=" | "==") comparison_expression };

Some examples of valid CatScript equality expressions are:

e 2 I=5 (evaluates to true)
e true == true (evaluates to true)

e "Hello World" == "Hello Earth" (evaluates to false)

The formal grammar for a CatScript comparison expression is:

comparison_expression = additive_expression { (">" | ">=" | "<" "<=") additive_expression };

Some examples of valid CatScript comparison expressions are:

e 10 <= 17 (evaluates to true)
e 5 >= 5 (evaluates to true)

® (10 + 4) > (7 + 20) (evaluates to true)

CatScript Flow Control

CatScript supports several flow control structures to manage the execution of code.

If Statements

CatScript supports standard if statements, as well as single else statements accompanying. The formal
grammar for an if statement is:

if_statement = 'if', '(', expression, ')', '{', { statement }, '}' [‘'else', (if_statement | '{'

4

If the initial condition supplied to the if statement evaluates to true, the statements contained in the "if"
portion of the statement will be executed. Otherwise, the statements contained in the "else" portion of
the statement will be executed.

A couple examples of valid CatScript if statements are:

https://md2pdf.netlify.app 5/6

5/5/23, 4:03 PM Section 4: Technical Writing

e if(true) { print("True") }
e if(a > b) { print("a is greater than b") } else { print("b is greater than a")

For Loops

CatScript supports for loops that loop based on a provided indexing variable and a list object of possible
values of this indexing variable. The formal grammar for a for loop is:

for_statement = 'for', '(', IDENTIFIER, 'in', expression ")',
{', { statement }, '}';

A couple examples of valid CatScript for loops are:

for(x in [1, 2, 3]) {
print(x)

for(x in ["a", "b", "c"]) {
for(y in [1, 2, 3, 4, 5]) {
print(x + vy)

Print Statements

CatScript supports basic print statements for expressions of any type. Suppling an expression to the
print() will result in the printing of the string value of that expression to the console. The formal

grammar for a print statement is as follows:

print_statement = 'print', '(', expression, ')’

https://md2pdf.netlify.app 6/6

Dunbar 3

Section 5: UML

On the next page is the sequence diagram for factor expressions. As you can see it starts
with the user writing a factor expression by passing the expression into Catscript. Then, each part
of the expression is tokenized using the lexer. After tokenization, the tokens are then parsed by
the parser. Three parses happen in the parser. First the expression is parsed, then the factor
expression is parsed, and then the integer literal is parsed. The parser will then return a parse tree
that can be used later. After the parse tree is created, the expression can be evaluated, and the
result of the expression can be computed. The result is then returned from the parse tree to

Catscript and then Catscript returns the value to the user.

A similar sequence diagram can be created for the other expressions, but we thought that
the factor expression would be a good example to show how the compiler should work. This
sequence diagram helped us to be able to visualize what Catscript would be doing when a user

gave it an expression and it helped us to better understand the parts of the compiler.

User

Catscript Factor Sequence Diagram

CatScript

Lexer

Parser

evaluate ("15/3")

e Gt e s bt

1

" »

lex("15 / 3")

ParseTree

—

tokens

_____ |

|
parse(tokens) >
I
: parseExpression()
I —
I
I parseFactorExpression()
| |
I
I
| parselntegerLiteral()
| < |
I
1
I I
I execute()
I
I neEn
€ ------ I

I_________________________

Dunbar 4

Dunbar 5
Section 6: Design trade-offs

One of the design trade-offs that we encountered in this project was to decide between
using recursive descent or using a parser generator. In the end we decided to use recursive
descent in the tokenizer because it would be faster and better at handling errors. We thought that
this would be helpful in the design of this language to be able to have built-in error checking
throughout the program. One of the cons of using recursive descent rather than a parser generator
is that it required a lot more code to write because we had to develop it from scratch rather than

using a prebuilt library.

Another reason for using recursive descent to create our parser is that we were able to
learn how the parsing process worked as well as how to create a parse tree. When using a
prebuilt library, it is easy to rely heavily on code that you do not understand how it works. By
using recursive descent, we were forced to know exactly how my parser is working and it also
allowed us to have flexibility with the elements that we wanted to include in Catscript. Overall,
we thought that using recursive would be the best option for our compiler because it would allow
us to learn the most about the parsing process as well as would allow us to have more flexibility

in the features of our language.

Dunbar 6
Section 7: Software development life cycle model

For our development of the compiler, we used test driven development. We really
enjoyed doing test driven development because it allowed us to ensure that each of the parts of
the compiler worked and that each feature was working. Each part of the compiler, the tokenizer,
evaluator, parser, and compiler required many parts to get them working and it would have been
hard to ensure that we had every component if we did not use the tests to steadily get through
each of the checkpoints. We also enjoyed using test driven development because it was able to
quickly show the progress that we were making. It is a good feeling when you start a project with
160+ failing tests and then in the end have every test passing. We felt like that was a good
motivator and allowed us to continue making progress as we made the red x’s turn to green

checkmarks.

Another perk of using test driven development was that we were able to create new tests
to fill any gaps that we found in the compiler. We had never written tests for test driven
development so it was interesting to learn how to write tests that would run properly. We thought
that this would be a useful skill in the future and thought that it was a nice perk to using test

driven development for the software development lifecycle of our compiler.

