

Montana State University
CSCI 468 – Compilers, Spring 2023

CAPSTONE PORTFOLIO
Jaden Schultz, Megan Weide

1

Section 1: Program

https://github.com/JadenSchultz/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip

Section 2: Teamwork

For this project, team member 1 and team member 2 provided both Section 4 of each

other’s portfolios, and small test suites for each other to run and see if our compilers work as

intended. Team member 1 and team member 2’s contributions to this project were equal, or 50%

each. Below are screenshots of the previously mentioned test suite passing when run in IntelliJ:

The test suite provided by the other team member contains three tests; ifInAFor(),

ifElseIf(), and quotes(). ifInAFor()tests an if statement inside of a for loop,

ifInAFor()tests an if and else if statement that prints “x equals 1” if x is equal to 1. Last but

not least, quotes() checks if a given string value has quotation marks when it’s run by the

compiler.

2

Apart from the test suites and the respective Section 4s of team member 1 and team member 2’s

documents, the Catscript compiler program and the accompanying capstone portfolio and

documentation were written independently.

3

Section 3: Design Pattern

For this project, our team utilized the memoization design pattern. Memoization is a very

useful optimization technique that involves storing values in a cache, which can be accessed by

the program when needed. This can be accomplished through the use of data structures such as

symbol tables and hash maps, which store pairs of values and keys. This helps decrease the

running time of a program; when memoization is implemented, the computer won’t have to make

the same calculations repeatedly and can just call the stored valued from the cache when it is

needed for another calculation. This is essential if a program has enough complex calculations to

significantly hinder its performance if those calculations are unoptimized. In particular, it helps

improve the runtime of recursive functions, which are designed to run themselves repeatedly

until the specified conditions in the program are met.

Symbol tables are very prominent in our compiler. In the validate() function of our

IfStatement class, symbol tables are used to store pieces of an if statement and check if they

constitute a valid if statement or not. If not, an INCOMPATIBLE_TYPES error is thrown.

4

Section 4: Technical Writing

Introduction
Catscript is a simple scripting language. It is a statically-typed functional programming language.

This document will cover the type system and various features included in the Catscript

programming language.

Types
int - a 32-bit integer

string - a java-style string

bool - a boolean value

list<x> - a list of values with type x

null - the null type

value – any type of value

Reserved words
The reserved words in Catscript are as follows:

These words are not allowed to be used as variable or function names. They have specific uses in

the programming language itself and trying to use them in other ways will result in errors.

5

Comments
In the same fashion as java, you can create a single-line comment using a // .

Declaring variables
To declare a variable, simply write the word var followed by your variables name, and set it

equal to the desired value. Because Catscript is statically typed, a value must be declared with

the variable upon creation. You can also declare your variables type upon creation of your

variable. Please note that each variable/function name can only exist once in your program. For

example, you may not name two variables x , nor can you name a variable

if-statements
The Catscript if-statement works much like if-statements in other languages:

evaluated. If that expression evaluates to true, then the code in the brackets following will be

executed. Otherwise, the code in the brackets will not be executed.

x x

6

for-statements
The for-statement in Catscript requires a list to iterate through:

The list can be stated in the for-statement (as opposed to the way demonstrated above, where a

separate variable was used to reference the list).

 with

7

print statement
The print statement works as follows:

Please note, it is required that you use double-quotes around strings. Using single quotes will

result in an error. You can only assign values of the same type as the variable to the variable.

Declaring functions
Functions are declared with the function keyword, followed by function name, a list of

parameters, an optional return type, and the function body:

Calling functions
You can call a function by simply typing out the functions identifier and putting the appropriate

arguments in place for the parameters, as demonstrated above.

Parameters

When listing parameters, you have the option of just listing variable names, or listing variable

names with their associated types:

8

Grammar

This is the Catscript grammar:

9

10

Section 5: UML Diagram

Attached below is an UML diagram generated in IntelliJ that provides a visual of how the

Catscript compiler is put together, and of how all the classes used in the program are related to

each other. All the expression subclasses in the program are inherited by the Expression

superclass, and all the statement subclasses are used by the Statement superclass. Both

Expression and Statement are subclasses of the ParseElement class, which helps

handle much of the parsing process in the compiler. All of these classes are like gears in a

machine; if even one of them is missing, the compiler itself won’t be able to function and errors

will be thrown.

11

Section 6: Design Trade-offs

The main design trade-off for the Catscript compiler was the decision to write a parser

using the recursive descent system, as opposed to a parser generator. A parser generator is a tool

that takes in a grammar for a programming language and uses it to generate a parser for a

compiler, which reduces the amount of code that needs to be written entirely by hand. There are

also fewer systems to break during the programming process, which is a clear upside. However,

writing a parser generator to do some of the work for you as opposed to writing a compiler from

the ground up doesn’t do the programmer any favors when it comes to learning about why

recursion is so important in programming language grammars. The crux of the recursive descent

system is using recursive calls throughout the parser to parse the input value until the program

has run through the parse tree, all without any backtracking.

Additionally, parser generators are very rare in the industry compared to recursive

descent parsers, which means that for students looking to graduate and look for a job in the CS

field, writing a parser generator as opposed to a recursive descent parser wouldn’t give them as

much experience that would be relevant in the job market. Since recursive descent parsers are far

clearer about how language grammars work, our team gained a better understanding of how the

compilation process works, and in turn, a better understanding of programming as a whole.

12

Section 7: Software Development Life Cycle Model

For the purposes of this project, we used Test Driven Development (TDD) as our

software development model. Test Driven Development is a model where a project is developed

around one or more test suites that test for specific outputs to determine whether the program is

working as intended.

Test Driven Development was an incredibly useful development model for our team. It

made writing the Catscript compiler far less of a nightmare than it otherwise would have been.

For this project, we were provided with multiple test suites for each assignment/checkpoint of

the project, and the main objective of each checkpoint was to get all the test suites for a specific

implementation of the compiler passing. In the provided source.zip folder, there are test suites for

tokenizing, statement and expression parsing, and bytecode. Transpiling test suites are also

present, but for the purposes of this project, we were not required to get those working. During

development, the test suites were instrumental for helping us keep track of our progress with

writing the inner workings of the complier. The test suites also helped us debug issues with our

code that we encountered during the development process, and provided our team a starting point

whenever we were trying to figure out the origin of a failing test in the code. Throughout the four

checkpoints we were assigned throughout the semester, we had to get a total of 148 tests passing.

29 additional tests across the transpiling test suites exist that bring the total up to 177. However,

since transpiling involves taking code written in one programming language and translating it

into another language, it did not need to be implemented for the purposes of this project.

