
.

Montana State University

Compilers: CSCI 468

Spring 2023

Miller, Benjamin

Senecal, Audrey

Section 1: Program

Attach the source listing of the program that you wrote for your capstone course
(CSCI 468 or CSCI 483). Include the specifications for the program.

https://github.com/benfmiller/csci-468-spring2023-private/blob/main/capstone/portfolio/s
ource.zip

Catscript grammar:

catscript_program = { program_statement };

program_statement = statement |

function_declaration;

statement = for_statement |

if_statement |

print_statement |

variable_statement |

assignment_statement |

function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',

'{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',

{ statement },

'}' ['else', (if_statement | '{', { statement }, '}'

)];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,

[':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

https://github.com/benfmiller/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip
https://github.com/benfmiller/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip

function_declaration = 'function', IDENTIFIER, '(', parameter_list,

')' +

[':' + type_expression], '{', {

function_body_statement }, '}';

function_body_statement = statement |

return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==")

comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" |

"<=") additive_expression };

additive_expression = factor_expression { ("+" | "-")

factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression

};

unary_expression = ("not" | "-") unary_expression |

primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false"

| "null"|

list_literal | function_call | "(", expression,

")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [,

'<' , type_expression, '>']

CatScript is statically typed, with a small type system as follows:

● int - a 32 bit integer
● string - a java-style string
● bool - a boolean value
● list<x> - a list of value with the type 'x'
● null - the null type
● object - any type of value

Section 2: Teamwork

Describe how your team worked on this capstone project. List each team
member’s primary contributions and estimate the percentage of time that was
spent by each team member on the project. Identify team members generically
as team member 1, team member 2, etc.

For the purposes of this document, I will identify myself as team member 1 and my
partner, Audrey Senecal, is designated as team member 2. We worked together to
design, implement, test, and document the Catscript compiler. Team member 1's role
mostly focused on implementation while team member 2 acted as a test engineer and
worked on the documentation for the specifications. The tests were a large driver for the
project, so team member 1's estimated time contribution is 65% while team member 2's
time contribution is estimated to be 35%.

Section 3: Design pattern

Identify one design pattern that was used in your capstone project and describe
exactly where in the code it is located. Highlight the design pattern in yellow.
Explain why you used the pattern and didn’t just code directly.

A concrete design pattern that was used is the memoization pattern. This is located at
src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java:37. This was used to
greatly speed up the Catscript type system as type objects did not need to be created
every time a type is referred to in a Catscript program. The Catscript type system is
relatively small and simple, and each specific type object is treated immutably and

interchangeably, so it did not make sense to create separate, small objects for each
type interaction. Catscript's type system is also static, so these objects can be created
easily at compile time. This should also help with CPU caching as all available types
should fit easily in the CPU cache. This feature was not tested for performance
comparisons, so no concrete numbers are available, but the benefits are apparent.

I would argue that most design patterns are just ways to use interfaces to swap
functionality more easily or decouple the program. The Catscript compiler makes
judicious use of interfaces or abstract classes to easily swap objects and deal with them
in a consistent manner. This is done at all layers of the compiler. All Tokens can be
handled similarly by the tokenizer, and the same is true with the parser, the executor,
and the JVM compiler.

Section 4: Technical writing

Include the technical document that accompanied your capstone project.

Included started on the next page.

Catscript Guide

Introduction

CatScript is a simple scripting language that features a small assortment of control flow tools
and other characteristics, such as static typing, implicit assignment, and error reporting.

Features

Print Statements

Print accepts an expression as a parameter, the value of which is then printed to an output
stream.

Syntax

print(expression)

Parameters expression : CatScript expression
An arithmetic, relational or primary expression

Example

print(10 + 12)

> 22

print(10 > 12)

> false

Types

CatScript is statically typed, and features a small type system described below.

int Represents numeric values as 32-bit integers

string Represents a sequence of characters

bool Represents the boolean values True or False

list<type> Represents a read-only collection of values with
some type, in an ordered structure

object Represents a value of any type

null Represents the Null type

Syntax

var a : int = 5

var b : string = "Hello World"

var c : bool = false

var d : list <int> = [1, 2, 3]

var e : object = "Object"

Creating Variables

The var statement is used to assign a value to a user-defined identifier.

Syntax

var var_name : var_type = expression

Parameters var_name : CatScript identifier
A user-defined identifier representing the name of the
variable

*var_type : CatScript type
The explicit type of the variable. If this is not supplied,
the type is implicitly assigned

expression : CatScript expression
An arithmetic, relational or primary expression, the
value of which is assigned to the variable

Example

var x : int = 1 + 2

print(x)

> 3

Supported Operators

CatScript supports several different relational, arithmetic and logical expressions, whose
operators/syntaxes are described below.

Syntax

Relational Operators

x == y : supported types: int, bool, object, list, string, null

x != y : supported types: int, bool, object, list, string, null

x > y : supported types: int

x < y : supported types: int

x >= y : supported types: int

x <= y : supported types: int

Arithmetic Operators

x + y : supported types: int, string

x - y : supported types: int

x * y : supported types: int

x / y : supported types: int

Logical/Unary Operators

not x : supported types: bool

-x : supported types: int

Control Flow Tools

For Statements

For iterates over the members of a given list in order, using the user-defined identifier as an
iterator variable and executing the statements within the body each time.

Syntax

for (identifier in list) {

body

}

Parameters identifier : CatScript identifier
An identifier representing the name of the iterator
variable

list : CatScript list
A list containing one or more values to be iterated over

body : CatScript statement(s)
0 or more statements to be executed over each iteration
of the loop

Example

for(x in [1, 2, 3])

{

print(x)

}

> 1

> 2

> 3

If Statements

The If statement allows the conditional execution of statements, executing a given block of
code only if a supplied expression resolves to true.

Syntax

if (condition) {

if_body

}

else {

else_body

}

Parameters condition : CatScript bool
An expression which resolves to a boolean value, or a
bool literal

if_body : CatScript statement(s)
0 or more statements to be executed only if the
expression supplied to the if statement resolves to true

*else_body : CatScript statement(s)
0 or more statements to be executed only if the
expression supplied to the if statement resolves to false
and an associated else block exists

Example

if (false) {

print(1)

}

else {

print(2)

}

> 2

Defining Functions

The function statement is used to create a new subroutine that may be called via its
user-defined identifier.

Syntax

function func_name(arg : arg_type, ...) : return_type {

body

return return_value

}

Parameters func_name : CatScript identifier
An identifier representing the function name

*arg : CatScript identifier
0 or more identifiers representing the names of the
function arguments

*arg_type : CatScript type
The explicit type assigned to a given argument

*return_type : CatScript type
The type of the value that the function will return. If this
is not supplied, the function’s return type is set to void

body : CatScript statement(s)
0 or more statements to be executed when the function
is called

return_value : CatScript expression
An arithmetic, relational or primary expression whose
value is returned to the function call only when an
associated return statement is present within the
function body, which is required when a return type is
defined in the function header

Example

function foo(a, b) { print(a + b) }

function bar(a : int, b : int) : int { return a + b }

Calling Functions

In CatScript, a function may be called via its user-defined identifier. If the called function
requires arguments, they must be supplied. If the called function returns a value, it may be
assigned to a new variable or used within other statements.

Syntax

func_name(args)

Parameters func_name : CatScript identifier
An identifier representing the name of the function to be
called

*args : CatScript expression(s)
0 or more values to be supplied to the function as
arguments

Example

function foo(a : int, b : int) { print(a + b) }

foo(2, 5)

> 7

Section 5: UML

Attach the UML design diagrams for your capstone project that were created
before you began coding your project.

Section 6: Design trade-offs

Describe a design trade-off decision (e.g. execution time vs. space requirements
or compile time) in your capstone project and justify the design decisions that you
made.

We decided to implement the parser by hand via recursive descent rather than through
the use of a parser generator. Parser generators are very powerful, but complex, tools.
While using a parser generator would have been instructive, we felt that we would gain
a better understanding and intuition about Catscript and compilers in general if we
implemented it with recursive descent.

Another design trade-off was how to handle separate elements within the parser,
tokenizer, compiler, and evaluator. We could have used the visitor pattern to separate
the functional aspects of each object. We decided against this and to instead use
interfaces along with per-class implementations to allow us to handle elements similarly
and keep the functionality of each class with the class itself. This made it much easier to
debug the compiler and implement it while still maintaining a great deal of flexibility.

We also considered implementing the compiler in different languages, but we decided
that Java fit all of our desired characteristics. Compiling to JVM bytecode would
probably also be more difficult in non-JVM languages. The class was using Java as
well, so it was not practical to use a different language.

Section 7: Software development life cycle model

Describe the model that you used to develop your capstone project. How did this
model help and/or hinder your team?

We used test-driven development to implement the Catscript compiler. This made
implementation much easier because the specifications of the compiler were laid out
before we began implementing it, so we knew a given feature worked as long as the
tests passed. The test suite was also very thorough and built upon the program in
stages, so we were able to similarly build the compiler in stages. We were able to
design and implement edge cases easily as well because we just had to confirm the
edge cases passed with a quick test.

One downside to the test-driven development is that we had to have a clearer
specification for each step of the compiler than if we didn't have tests to pass. The
design phase could have been much more difficult and long, but our professor helped
us greatly to speed up this process.

