Section 2: Teamwork

For the teamwork section. I created three new tests for my
partner to verify that their Catscript compiler works as it
should. This is called quality assurance. I will first go
through the tests I created and ran and then the tests my
partner created for me to test my compiler as well. I try to go
through what is happening during each step and what it can tell
us is happening, such as a function statement or a list
expression being created and running successfully.

The first test I created was to test an if-else statement in a
function. This program takes a print statement, sends a function
call with the number nine, and then once in the function, if the
variable that was passed in is equal to 1, print 2, otherwise,
print 1. Once the if-else statement has been executed in the
function, it returns the value we passed into the function and
prints the result of that function we originally passed into the
print statement. This test was implemented in
“CatscriptFunctionArgsAndReturnEvalTest”, and the code for the
test is as follows.
@Test
vold customFunctionIfStatmentInFunctionWorks () {
assertEquals("1\nl10\n", executeProgram (
"function foo(y : int) : int {\n" +

"if(y == 1){ print(2) " +

"else{ print(l)}" +

"return y + 1" +

"I\n" +

"print (foo (9) )"

));

The second test that I created for my teammate was to test a
function with multiple input variables ran through an if-else
and a for statement. This takes a function as a string, and then
parses the function, as a function definition statement, and
then executes that statement. The variables we put in are an
integer, known as variable b, and a Boolean, known as variable
c. The return type of the function is an integer. Once the
variables are passed into the function it first goes through the
if-else statement, testing whether variable ¢ is true or false,
and then prints accordingly, then goes to the for loop, in which
it only runs through one iteration and prints the value of our
integer b. The last part is we return our integer b with two
added to it. This test was implemented in
“CatscriptFunctionArgsAndReturnEvalTest”, and the code for the
test is as follows.



@Test
public void
customFunctionWithMultipleVariablesPassedInForAndIfInside () {
String function = "function foo(b : int, ¢ : bool) : int
{if (c==true) {c=truel}else{print (\"works\") }for(x in [b]) {
print (x) } return b +2}\n";
FunctionDefinitionStatement expr = parseStatement (function);
assertEquals ("works\nl\n3\n", executeProgram(function +
"print (foo (1, false))™));
assertNotNull (expr) ;
assertEquals("foo", expr.getName());
assertEquals (2, expr.getParameterCount()):;
assertEquals("b", expr.getParameterName (0))
assertEquals("c", expr.getParameterName(l));
assertEquals(CatscriptType.INT, expr.getParameterType (0));
assertEquals (CatscriptType.BOOLEAN,
expr.getParameterType (1)) ;
}

These previous two tests show us that we are able to
successfully tokenize, parse, and then execute a function, if-
else, for, and print statement; with our function statement
being assigned the name foo. This also determines that a if-else
statement can properly handle conditions, that are implemented
as a list of statements, and a body of set expressions. The last
piece shows a successful parse return statement that can return
an additive expression, and then finally print out the value
returned from the function.

For our third test, I tested to see if a for statement could
handle a list expression of integers, that would iterate through
the number of elements in the 1list, and then use an if-else
statement to determine if it was iterating through it in the
proper order as well as proper amount of iterations. We send in
a list literal expression with three integers in it and are able
to successfully print three times based on the conditions of the
if-else statement.
@Test
public void customForWithIfElse () {
assertEquals("false\ntrue\nfalse\n", executeProgram("for (x
in [1,4,7]1){ if(x ==4){print (\"true\") }else{print (\"false\")}
Y)Y
}



My partner provided three tests for me to run. I was able to
pass all three of his tests. Down below are the tests. I will
also describe how they ensure parts of my compiler are working
successfully as I did with the tests I created.

The first test my partner created was a test that would create a
variable and assign it a value of three. Then we take the
variable, x, and run it through a series of if statements, with
the last one being an if-else statement. When the variable is
created and assigns it the value of 3, it successfully
determines that 3 is an integer. Next, we go through the if
statements and if x is equal to the specified variable to test
against, it will print out that variable. Since we have multiple
if statements, it successfully checks on the third one that x ==
3 and then prints 3. This tells us that our tokenizer was
successful in scanning, then we were able to create a variable
statement as well as a series of if statements, and it followed
it in successive order. Since we have multiple if statements,
where if a condition isn’t met it doesn’t go into that if
statement to perform its designated functions, it continues on
and keeps running. We know that it does this successfully since
our last if statement is an if-else statement that successfully
determines that since our variable x is not == 4, it has the
else condition where it prints out the value 5.

@Test
void longLonglfStatementWorks () {

Assertions.assertEquals ("3\n5\n",
this.executeProgram("var x = 3 \nif(x == 1) { print(l) }\nif (x
== 2) { print(2) }\nif (x == 3) { print(3) }\nif (x == 4) {
print (4) }\nelse { print(5)}™));

}
The second test to look at takes a for loop and runs through the
loop the proper number of times and then using if-else
statements determines if the number being tested, in this case
x, which is in a list, is equal to a value, it prints “true”, if
the condition is not met, it prints “false”. This test
determines that we can successfully tokenize the syntax, then
create a for statement, take a list, and iterate through the
list, assigning the value of x to each variable in the list as
we iterate through the list. Since in the for statement, we are
testing to see whether the value of x is equal to 3, it iterates
through 3 times due to there being three digits in the list, and
then determines that the first two values are not equal to 3 in
our if-else statement, and prints “false” twice, then on the
last iteration, since the value of x is assigned to the integer
3, the if statement properly determines that the condition for



the if statement has been met and prints “true”. This shows us
that we can successfully create list expressions, for
statements, and if-else statements.

@Test

public void personalForIfLoop() {

Assertions.assertEquals ("false\nfalse\ntrue\n",

this.executeProgram("for(x in [1,2,3]) {\nif(x == 3){
print (\"true\") }\nelse { print (\"false\") } }"));

}

The final test created by my partner assigns the Boolean value
true to “hold”, and then checks with a if statement if the
variable “hold” is equal to true, then go into the if statement
and iterate through a for loop. This test shows us that a
variables type can be successfully determined without having to
define its type, meaning that it is a dynamically typed
programming language when we check to see, using an if
statement, if the value “hold” is equal to true. Once inside the
if statement, it has a for loop to iterate through, since there
are 8 values in the for loop, it iterates through 8 times, in
the for loop, it has an if statement where it tests if the wvalue
“x” is equal to 4, if not then it goes onto the next part which
is an if-else statement, where if the value of “hold” is equal
to true, then print true. In the for loop, we are iterating
through a list expression and assigning it to x based on its
position in the for statement. This successfully shows us that,
again, a list expression 1s being created properly and we assign
the variable, in this case “x” to the number that it is at in
its iteration of the for loop. Since we are iterating through
the loop 8 times, when x is equal to 4, it prints 4 and then
goes onto the next if-else statement, and since the conditions
of the if-else statement are always true since it is checking
the value of our variable “hold”, it will always print true.
Like the previous tests, it tells us that we have properly
implemented an if and if-else statement, a for statement, list
expressions, and variable statements as to the specifications of
the Catscript language.

4

44

@Test
void personallfForIfOutput () {

Assertions.assertEquals ("true\ntrue\ntrue\n4\ntrue\ntrue\ntrue\n
true\ntrue\n", this.executeProgram("var hold = true \nif (hold ==
true) { for(x in [1,2,3,4,5,6,7,8]) {\nif(x == 4) { print(4) }
if (hold == true) { print(\"true\") } else { print(\"other\") }
} }\nelse { print (\"failedHold\") }"));

}



Our team worked on the capstone project by mainly creating three
tests for each other to try and also working on proper
documentation.

Describe how your team worked on this capstone project. List
each team member’s primary contributions and estimate the
percentage of time that was spent by each team member on the
project. Identify team members generically as team member 1,
team member 2, etc.

Section 4: Technical writing. Include the technical document
that accompanied your capstone project.

# Catscript Guide

## Introduction

Catscript is a fairly simple language, as it is only meant to
teach the writer of the language how a compiler takes our input
as a programming language and turns it into machine code that
allows the computer to perform what we are requesting of it.
Understanding compilers by creating one helps us better
understand how programming works in general and the importance
of choosing the proper programming language for the task you
need to do.

Catscript is a strong, dynamically typed, functional programming
language that was written in Java. While we have objects, they
are limited on what they can do and are only used as types based
on the Object class from Java, there is no inheritance,
polymorphism, etc.. Objects are only used to handle certain data
types such as when we create a variable, we do not need to
explicitly tell it what type of primitive data structure we are
assigning it, although we can. In this documentation I will go
over all the expressions and statements we can use in this
language.

When using Catscript, there is no need to ensure we indent lines
such as python or use a semi-colon after every command we want
to run. Catscript automatically handles this and when we parse,
it uses Extended Backus-Naur Form along with the tokenized
keywords to evaluate your code and run it in order. This means
that before you use a variable or function, it must be declared



before you call it. This is because when it is run, it is put on
the stack and runs from top to bottom in order.

Example: var x = (1+1-0) print (x)

Will evaluate successfully, but

print (x)
var x = (1+1)

Will not evaluate. This is important to remember when coding in
a functional programming language such as Catscript.

In Catscript, we created a compiler that works by recursive
descent. After we use lexical analysis to generate our tokens,
we can start parsing our program. What this does, to put it
simply, is go down a big program, a class called
CatScriptParser, and when a match is found for an expression or
statement, it will either enter another iteration of the same
program or return the evaluated expression or statement.

We can also handle errors related to parsing, determine the
type, and then return that during runtime. Errors here are
handled as expressions called Syntax Error Expressions. This can
help us debug and find where the error is in our code. One of
the ways we determine errors is by handling where statements and
expressions start and end, that way, if there is an error in a
particular place, it can tell us in what place the error is
attached.

## Features

Comments: To comment out a line, use a double forward slash, or
//. Everything on that line will not be evaluated when the
program is executed.

Catscript Types:

Catscript has seven different types. String, Integer, Boolean,
List Literal, Object, Null, and Void.

String type, or String Literal Expression:

A string type must be typed out with quotations around it.
Example: “string”

To print out a new line, use \n in a string.

Example: var x = “line 1 \n line 2” print (x)



Will evaluate to line 1

line 2
If you need to put quotations inside of a quotation, then you
must use \” around the text you are putting quotations around to
define your quotations inside of the string.

Example: Y \”string\” ™

Say I wanted to create a new string variable with the use of
quotations inside the string, then print x.

Example: var x = “\”string\”“ print (x)
Will print “string”.

A String type is based on the String.class in Java.

Integer type, or Integer Literal Expression:

As long as the syntax is correct, any number typed in will be
tokenized as an integer and is designated as “int”. Integers can
only use whole numbers and have a max value of 231-1, and a
minimum value of -231

An Integer type is based on the Integer.class in Java.

Boolean type, or Boolean Literal Expression:
A Boolean type can either be true or false. When using a boolean
it is specified as either “true” or “false”.
For example: var x = true
if (x == true) {print “true”}
else {print “false”}

When ran, the output would be “true”.
A Boolean type is based on the Boolean.class in Java.

List type, or List Literal Expression:

List is an type that can hold more than one integer, strings,
booleans, and objects at a time. When creating a list we only
have to specify what the list will hold when creating a list of
objects. A list of objects can also hold null and void types.
Lastly, lists in Catscript are created as a linked list, this is
important to note since it could cause issues 1f it runs out of
memory on the stack.

For example, to create a list of integers implicitly: var x =
[1,2,3]



For example, to create a list of integers explicitly: var x
list<int> = [1,2, 3]

For example, to create a list of objects: var x = [1l, “b”, true,
null]

Object type:
An object type is based on the Object.class in Java.

Null type:
A null type is based on the Object.class in Java. Variables and
objects in lists can be set to null.

Void type:
A void type is based on the Object.class in Java.

Catscript Expressions:

Programming languages enable us to leverage the immense
processing power of computers to accomplish tasks that would be
impossible for humans to perform manually. This is the true
potential of computers, allowing us to carry out millions of
calculations in just seconds. This power has led to numerous
technological advancements that have shaped the course of human
history. At the heart of all computers lies their ability to
perform mathematical calculations, and this is where expressions
come into play. Once we have tokenized our code, we parse it out
to understand the intended purpose of each word.All expressions
in Catscript are extensions of the main expression class.

The types listed previously are created as expressions in
Catscript except for object and void type.

We have Boolean, Integer, List, Null, and String expressions.
These are treated as expressions so we can validate them, store
and get their type, get values, evaluate, transpile, and
compile. Each expression listed here doesn’t all have the same
functions.

Additive and other arithmetic expressions are used to evaluate
simple calculations in Catscript. When testing, parentheses are
not required to evaluate the expression, but when writing a
program, it is required to use parenthesis, (), around them.
Without them, parsing errors will occur. Lastly, they are read
from right to left, so for example, when we divide, the dividend
is on the left-hand side, and the divisor is on the right-hand
side. Lastly, these expressions are primarily used to evaluate
integers, but can be used on other types.



Additive Expression:

An additive expression is used to take an integer and either add
or subtract the values. We can perform as many calculations as
you want when doing so.

Example: 1 + 1 -1

Will evaluate to 1.

Example: var x = (1+1-0)

Will set the variable “x” to 2.

With the parenthesis, it tells the parser where the additive
expression starts and ends.

The next use of the Additive Expression is to concatenate string
values to one another or to an integer value. It does not matter
in what order you perform this operation, but you must use the
plus, “+”, symbol when concatenating.

For example: “What is 1 + 1? "7 + 2
Will evaluate to, What is 1 + 17? 2

Comparison Expression:

A comparison expression is used to equate two different values
and is mainly used in if-else statements. We can compare any two
similar types. There are four different ways we can compare.
When comparing, the right-hand side of the expression is
considered the main value and the left-hand expression is what
we are comparing it to.

Less than: <

Greater than: >

Less than or Equal to: <=

Greater than or Equal to: >=

Example: 5 > 4

This asks if 5 is greater than 4 and will evaluate to true.

Say for our next example we have: 5 <= 4
This will evaluate to false, since we are asking if 5 is less
than or equal to 4, which is not true.

Similar to the Additive and other arithmetic expressions, we can
evaluate simple calculations in Catscript without using
parenthesis, but when writing a program, it is required to use
parenthesis, ( ), around them. Without them, parsing errors will
occur.

For example: var x = 5 if ( x >= 4) {print (“true”)}



This will print out “true”.

Equality Expression:

An equality expression is used to check two values, with the
same type, of equivalence. The options we have are either equal
to or not equal to. This is similar to comparison expression as
it is mainly used in if-else statements, return statements, and
in lists with integers.

Equal to: ==
Not Equal to: !=

Example: 1 == 1
Will evaluate to true.

Example: 1 !=1
Will evaluate to false, since 1 is equal to 1.

Factor Expression:

A factor expression is used to multiply or divide integers.
To multiply, use an asterisk: *

To divide, use a forward slash: /

Example: print ( 5 * 5 )
This will print out 25.

Example: print (6 / 2)
Will print out 3, as 6 is the dividend, or the number to be
divided, and 2 is our divisor.

Integer Literal Expression:

An Integer Literal Expression is an expression that simply holds
an integer wvalue. With this, when we create a list, we can have
a list of integer literal expressions. It is equivalent to a
integer type in Catscript.

List Literal Expressions:

Otherwise known as lists, lists are a type of expression that
holds a linked list of other expressions. This includes
integers, strings, Booleans, and objects. An object can include
any of the other mentioned expression types.

To create a list, we need to use square brackets to enclose our
list. If we are using a basic data type, such as integer or
string, we do not need to designate the list as such when
creating it.



Example of an integer list: [1,2,3]

To create a list of integers we can also designate the type,
this only works with integers wvalues, and it is not required.

Example: var list: list<int> = [1,2, 3]
for (x in list) {
print (x) }

The output of the previous example will be, 1 2 3
To create a list of objects.

Example: var list = [(1+1), null, 3, true]
for (x in list) {
print (x)}

This will create a variable, x, and create a linked list of
objects that holds any type of expression. In slot 0, we have an
additive expression, note the requirement for parenthesis around
the additive expression, then a null expression, an integer
expression and finally a boolean expression. The output of this
previous example is 2 null 3 true

It is equivalent to a List type in Catscript.

Unary Expression:

This is used to either flip positive and negative integers, or
to state the opposite condition of a boolean value. Again, since
this is an expression, it can be used in an list of objects.

Example: -1

So if we take the above example in a factor expression, then
print the results.

Example: print (-1*2)

The above example will evaluate to -2

To work with boolean values, we can use not true, to designate
false. This is useful in if-else, return, and functions.

Example: print(not true)
The above example will return false

Catscript Statements:

Catscript statements are the heart of most programming languages
that allow us to start developing functioning programs and
create our own custom data structures and algorithms with the



use of these statements. Since Catscript is a simple functional
programming language, we only have basic statements that get as
complex as functions with multiple return statements and
recursion.

Assignment Statements:

Assignment statements are only used to change the value of a
variable after it has already been created as a variable
statement.

Example: var x = “hi”
x = “changed”
print (x)

The output of this will be “changed”. Since x was already
created and designated on the scope, we can then assign a
different value with the same type to x and change it.

For Statements:

For statements are used to iterate through a loop and through
each iteration of that loop perform an action. For loops only
iterate through lists, so if we use [1,1,1] as our list to
iterate through, it will iterate through the for loop 3 times.
The basic form of a for loop is for (i in []) {inside for loop}

Example: for (x in [1,1,1]) { print(x) }
The output of this for loop will be 1 1 1

Example: var x = [1,2,3] for (i in x) {print (i)}

The output of this previous example is 1 2 3. As we loaded in a
list to iterate through that was previously created as variable
X.

If Statement:

The if statement is a conditional statement that simply says,
“if something is true, do this”, we can also have if-else
statements, where if the if statement is not true, go to the
else statement and execute. If statements have the basic
structure of the keyword if, followed by parenthesis, (), where
within the parenthesis our condition we are checking, and then
if the condition is met, continue to what’s inside of {}. Think
of the conditions we are checking as an additive or similar
expression, where we are comparing the values of two variables,
integers, Booleans, etc..

Example: if (5 > 4) { print (true) }
The above example will print true, since 5 is greater than 4.



Example: if (false == true){ print(l)} else {print (2)}
The above example will print 2, since false is not equivalent to
true.

Example: var x = 9 if (x < 8) { print(true) } else{

print (false) }

The output to the above example will print false, since x, which
equals 9, is not less than 8, and the else statement will be
executed.

Print Statements:

The print statement is key in viewing what the output of or
program was. It prints the value specified to the console
window. The basic structure of a print statement is print (),
where we can put any expression, or even a function call, inside
of the parenthesis.

Example: print(8)
The output of the above example will print 8 to the console
window.

Example: print (1+1)
The output of the above example will print 2, since 1+1 is a
additive expression and evaluates to 2 when ran.

Example: function foo(): int { return 1} print(fool())

The output of the above example will print 1. We first have to
create a function named foo, since this is a functional
programming language and functions have to be created before we
call them, and then when we call the print statement, it
recognizes the function call based on the function name foo,
plus empty parenthesis since we aren’t passing any parameters
into it, we Jjust have to call it as foo(), and finally wrap it
with the print statement, print (foo()).

Return Statements:

Return statements are only used within functions. We can have
multiple return statements in a function. These are usually
separated with the use of if statements. We can return any type
of expression

Example: var x =1

function foo(y:int): int {
return vy}

print (foo (x))



The output to the above example will print 1.

Example: var x = 1

function foo(y:int): int {
return y + 5}

print (foo (x))

The output to the above example will print 6.
Variable Statements:

In Catscript, we have six different types that can be cast to a
variable. These types are integer, string, boolean, list, null,
and object. An object type can be of any of the basic variable
types as well as null and void. An object is cast as part of the
object class in java.

Using a variable statement, we have the option of explicitly or
implicitly declaring the variable, except for an object
variable, which much be explicitly defined.

Example of a string variable: var x = "foo"

The example above will create a string variable, without the
need to specify x as a string. When the compiler tokenizes, it
will determine that “foo” is a string, since it has quotations
around it.

Below are a few examples of variables that can be cast without
specifying their type.

Example of an integer variable: var x =1
Example of a boolean variable: var x = true
Example of a list variable: var x = [1,2,3]

Example of a null variable: var x = null

We can also specify what type we want the variable to be. This
is required when we want to specify objects. After the naming of
a variable, in this case x, we include a colon and then the type
we want the type to be set as.

Example of an object variable: var x : object = “test”

This assigns the value “test” to x as an object and will
determine that the expression is an instance of a string



literal. When we assign a variable to an object its explicit
type will be automatically determined.

Example of an object variable with explicit type integer: var x
object = 10

This creates a Catscript type object named “x” and then assigns
its value as a java object thats explicit value is “10”.

Example of an object variable with null as its explicit type:
var x : object = null

This creates a Catscript type object named “x” and then assigns
its value as a java object thats explicit value is null.

Example of an integer variable with type being defined: var x
int = 1

Example of an string variable with type being defined: var x
string = “value”

Example of an boolean variable with type being defined: var x
bool =1

Example of an list variable with 1list type also being defined:
var X : list<int> = [1,2,3]

When assigning a variable to a 1list, refer to list literal
expression under Catscript Types for more information.

For example: var x : list<int> = [1,2,3]

Functions in Catscript:

Arguably the most important part of any programming language,
functions allow us to create separate programs that can execute
in countless ways and really bring our code to life. Catscript
functions work basically the same as in most other popular
programming languages, we Jjust have to format it properly. We
can have an unlimited number of inputs and specify what kind of
return value type it will be. The basic structure of a function
is the keyword for a function, which is function, followed by
the function name, parenthesis with the inputs we are sending
into the function, and then the return type. All followed by the
actual body of the function, wrapped in {}. To call a function,
we need to call the function name, followed by parenthesis, (),
and what inputs need to be sent into the function inside the
parentheses.



Example: function foo () {return} fool()

In this example, we created a function called foo, passed no
inputs, did not specify the return type, and in the body just
returned nothing. To call the function, we just ran fool().

Example: function foo(y : int) : int { return y + 1}
print (foo (9))

In the above example, we created a function named foo, sent in a
variable as an integer, specified what the function will refer
to the variable sent in as, in this case y, and that it is an
integer, the return value set to an integer. Then we have the
body of the function, and a return statement. In this example
the output will be 10.

Example: function foo(b : int, c : bool) : int({
if (c==true) {c=true}

else{print ("works") }

for(x in [b]){ print(x) }

return b +2 }

print (foo(l,false))

In the above example, the output will return works 1 3

Notice how when we called the function, we sent in two
variables, then specified in the function foo what we will call
the variables inside the function, and that the return value is
an int.

We can have a function return any of the basic types, and we can
send in any expression into the function as a local variable.
The local variable will stay inside of the function and will be
destroyed once the function is done running.



