Capstone - Jace Zavarelli 4/30/2023

Program Instructions

Please include a zip file of the final repository in this directory.

Section 1: Teamwork

Collaboration

During the development of the Catscript compiler, the team focused on working together through certain
portions of the project. The project had proper guidance and learning points to allow practice of tokenization,
parsing, execution, and bytecode generation, which stopped some collaboration on the compiler. The
collaboration done between Jace (myself) and Ben H. (my partner) focused on testing the compiler,
working on documentation, and several other factors discussed below. The teamwork showcased below was
equally distributed and allowed for multiple opportunities to troubleshoot and work through problems in a
collaborative effort. Approximately twenty hours was used by both members, individually, to create the
following test, documentation, and other items used in Catscript.

Group Test Development

Each member of the group contributed test to challenge the Catscript compiler. The test were meant to focus
on higher level elements of the language with internal for loops, complex if statements, and other advanced
data structures for the simple systems built into the Catscript compiler and language. The team split up
specific test and used responsive feedback to help both members work through the problems so no errors
were thrown when using test driven development processes.

Test Provided by Jace Z.

1. The following test showcases long if statements how many will statements will work in quick succession
in the language. This test allows the user to see how many statement calls will challenge the Catscript
compiler. The compiler has to execute many boolean checks and load individual scopes for each
successful statement. The statement can be modified to showcase multiple outputs, singular outputs, or
complete rejection of all if statements.

@Test

void longLongIfStatementWorks()

{

assertEquals("3\n5\n", executeProgram(
"var x = 3 \n" +

"if(x == 1) { print(1) }\n" +
"if (x == 2) { print(2) }\n" +
"if (x == 3) { print(3) }\n" +
"if (x == 4) { print(4) }\n" +
"else { print(5)}"));

1/16



Capstone - Jace Zavarelli 4/30/2023

While testing the following test, my partner needed to ask no questions. However, the group
collaborated to make sure that each if statement passed when operating the code. This means no
feedback was necessary and the code worked to its fullest.

2. The following test showcases if statements within the for statement data structure, which will cause the
compiler to yield multiple results over the lifetime and scope of the for loop. This test is a challenge to
the compiler to make sure that variables are holding proper scope and are executing multiple,
individual, instances of the same if statement structure. When passing the user will have verified the
Catscript compiler can execute if statements within other statement and expression data structures from
the Catscript language.

@Test
public void personalForIflLoop()
{
assertEquals("false\nfalse\ntrue\n", executeProgram("for(x in [1,2,3])
{\n" +
"if(x == 3){ print("true") }\n" +
"else { print("false") } }"));
}

While testing, my partner needed some direction to make sure their scope was functioning properly
during our collaboration. The test led us to his for statement systems that needed to have some scope
modifications to the class itself. The scope was not terminating within the scoping validation section of
the for statement class, which would prevent the code from allowing the variable to be accessible in
other if statements and data structures.

3. The following test showcases if statements encapsulating if statements and a for statement, which helps
to show more complex structures being nested within other Catscript data structures. We can use this
test to make sure that an individual will run their compiler with proper scope and thread independency,
but a user can easily mistake this test by not implementing proper formatting of the Catscript grammar.
The test is built to run a if statement that will run other statements, which branches into further nested
statements. If an individual can go all the way into executing this program then that will confirm the
Catscript compiler is running the proper code structures needed to implement large and complex
systems.

@Test
void personalIfForIfOutput()
{
assertEquals("true\ntrue\ntrue\n4\ntrue\ntrue\ntrue\ntrue\ntrue\n",
executeProgram(
"var hold = true \n" +
"if(hold == true) { for(x in [1,2,3,4,5,6,7,8]) {\n" +
"if(x == 4) { print(4) } if (hold == true) {
print(“"true”) } else { print(“"other™) } } }\n" +
"else { print("failedHold") }"));

2/16



Capstone - Jace Zavarelli 4/30/2023

Test Provided by Ben H.

1. The following test, designed by my co-developer, showcases how if statement data structures work
within the function statement data structure. When troubleshooting the code with our compiler and
language | had to ask for assistance with the return structure. My program caused errors that would
halt the program for lack of a return output. The issue was resolved by tracing through the function
statement to the return statement data class. The class need proper typing and scoping to help yield a
proper output, which fixed the program by working through the proper test driven development style.

@Test
void customFunctionIfStatmentInFunctionWorks()

{
assertEquals("1\n10\n", executeProgram(
"function foo(y : int) : int {\n" +

"if(y == 1){ print(2) }" +
"else{ print(1)}" +
"return y + 1" +
"I\n" +
"print(foo(9))"

))s

2. The following test, designed by my co-developer, showcases how multiple parameter variables work
within the function statement data structure. The test worked the first time on compiling and needed no
collaboration to fix any present issues, the return statement fix helped to prevent any issues with the
following test.

@Test
public void customFunctionWithMultipleVariablesPassedInForAndIfInside()
{
String function = "function foo(b : int, c¢ : bool) : int {if(c==true)

{c=true}else{print(\"works\")}for(x in [b]){ print(x) } return b +2}\n";
FunctionDefinitionStatement expr = parseStatement(function);
assertEquals("works\n1\n3\n", executeProgram(function +

"print(foo(1,false))"));
assertNotNull(expr);
assertEquals("foo", expr.getName());
assertEquals(2, expr.getParameterCount());
assertEquals("b", expr.getParameterName(0));
assertEquals("c", expr.getParameterName(1l));
assertEquals(CatscriptType.INT, expr.getParameterType(0));
assertEquals(CatscriptType.BOOLEAN, expr.getParameterType(1));

3. The following test, designed by my co-developer, showcases a nested if statement within the for
statement data structure. When running the test an error showed how the loop would only print once in
our following test. With collaboration our group traced back through the for statement data class to

3/16



Capstone - Jace Zavarelli 4/30/2023

find that the scoping of the statement was not operational. This meant that the x value was initialized
but did not key in our structure to print any besides the output false. We simply rearranged the scoping
of our for statement variables so our output would yield everything needed, which caused the test to
pass by implementing our test driven development techniques.

@Test
public void customForWithIfElse()

{

assertEquals("false\ntrue\nfalse\n", executeProgram("for(x in [1,4,7]){
if(x ==4){ print(\"true\") } else { print(\"false\") } }"));
}

Assignment of Task

During the development process, | took the position of a lead developer that guided the design of key test in
our development process. My co-developer took the position as a test developer in our collaboration, and our
group total work time was forty hours of collaboration during the compilers project. The time was spent in the
following manner: 20% Documentation, 60% Test Driven Development, and 20% Brainstorming Collaboration
Periods. The development of individual test was shared and the documentation was spent separately through
the duration of the class. The development of the compiler and language was unique and allowed thorough
collaboration with our development model, but lacked in some error correction, troubleshooting, and design
collaboration steps.

Section 2: Design pattern

Memoization Model

Memoization is a model that focuses on the design of efficient and less costly coding in a language. Some
languages may experience burdensome typing, data manipulation, variable management, and other data
structures that would cause the program to use much more memory and space. Memoizing a type, set of
objects, variables, and more can be a form of caching in the language, which will help materials to be
retrieved faster and without as much issue. The following code is not necessary for all languages but is used in
Catscript to provide a more efficient typing system that can be used by the entire language.

Castcript Type Memoization

In our Catscript compiler we implement the below Memoization for our Types in the language. The types
would normally be individually set up and initialized before any types entered into the language. This means
that we would write out specific slots of memory for initial type values, which is alright but could be cached as
we approach types instead. This means that we will first create a static map that will hold the Catscript values
defined by the type as its key and value.

private static final Map<CatscriptType, CatscriptType> LIST TYPES
= new HashMap<>();

4/16



Capstone - Jace Zavarelli 4/30/2023

After we define this variable of maps, we will use that to be allocated throughout the running of our compiler.
This means that Catscript will build its type list while running the compiler and will have only the needed
memory to use in its type system. Below we can see that our types will take a list and will build new types
when we see a null type entered, which will happen for the first instance of every type. This means that as we
run the code and execute the possible test to launch the software, our system will build each new type and fill

our Memoization map.

if (listType == null)

{
listType = new ListType(type);
LIST_TYPES.put(type, listType);

return listType;

This system is like the concept of caching data in a Redis or other form of cached area. The system is used in
much bigger, data heavy, languages and provides proper memory usage throughout a programming
compiler. We use this in Catscript to demonstrate a properly used design model, and to help make our type
system more efficient for cumbersome functional programs that are created.

Section 3: Technical Writing

Catscript Guide
Introduction

Catscript is a fairly simple language, as it is only meant to teach the writer of the language how a compiler
takes our input as a programming language and turns it into machine code that allows the computer to
perform what we are requesting of it. Understanding compilers by creating one helps us better understand
how programming works in general and the importance of choosing the proper programming language for
the task you need to do.

Catscript is a strong, dynamically typed, functional programming language that was written in Java. While we
have objects, they are limited on what they can do and are only used as types based on the Object class from
Java, there is no inheritance, polymorphism, etc. Objects are only used to handle certain data types such as
when we create a variable, we do not need to explicitly tell it what type of primitive data structure we are
assigning it, although we can. In this documentation | will go over all the expressions and statements we can
use in this language.

When using Catscript, there is no need to ensure we indent lines such as python or use a semi-colon after
every command we want to run. Catscript automatically handles this and when we parse, it uses Extended
Backus-Naur Form along with the tokenized keywords to evaluate your code and run it in order. This means
that before you use a variable or function, it must be declared before you call it. This is because when it is run,
it is put on the stack and runs from top to bottom in order. Example: var x = (1+1-0) print(x) Will evaluate
successfully, but

5/16



Capstone - Jace Zavarelli 4/30/2023

print(x)
var x = (1+1)

Will not evaluate. This is important to remember when coding in a functional programming language such as
Catscript. In Catscript, we created a compiler that works by recursive descent. After we use lexical analysis to
generate our tokens, we can start parsing our program. What this does, to put it simply, is go down a big
program, a class called CatScriptParser, and when a match is found for an expression or statement, it will
either enter another iteration of the same program or return the evaluated expression or statement.

We can also handle errors related to parsing, determine the type, and then return that during runtime. Errors
here are handled as expressions called Syntax Error Expressions. This can help us debug and find where the
error is in our code. One of the ways we determine errors is by handling where statements and expressions
start and end, that way, if there is an error in a particular place, it can tell us in what place the error is attached.

Features

Comments: To comment out a line, use a double forward slash, or //. Everything on that line will not be
evaluated when the program is executed.

Catscript Types:
Catscript has seven different types. String, Integer, Boolean, List Literal, Object, Null, and Void.

¢ String type, or String Literal Expression: A string type must be typed out with quotations around it.

To print out a new line, use \n in a string.

Will evaluate to line 1 line 2 If you need to put quotations inside of a quotation, then you must use \"
around the text you are putting quotations around to define your quotations inside of the string.

Say | wanted to create a new string variable with the use of quotations inside the string, then print x.
Will print “string”.
A String type is based on the String.class in Java.

* Integer type, or Integer Literal Expression: If the syntax is correct, any number typed in will be
tokenized as an integer and is designated as “int". Integers can only use whole numbers and have a
max value of 231-1, and a minimum value of -231. An Integer type is based on the Integer.class in Java.

* Boolean type, or Boolean Literal Expression: A Boolean type can either be true or false. When using a
boolean it is specified as either “true” or “false”.

For example: var x = true
if (x == true) {print “true”}

6/16



Capstone - Jace Zavarelli 4/30/2023

else {print “false”}

When ran, the output would be “true”. A Boolean type is based on the Boolean.class in Java.

¢ List type, or List Literal Expression: List is an type that can hold more than one integer, strings, Booleans,
and objects at a time. When creating a list we only have to specify what the list will hold when creating
a list of objects. A list of objects can also hold null and void types. Lastly, lists in Catscript are created as
a linked list, this is important to note since it could cause issues if it runs out of memory on the stack.

* Object type: An object type is based on the Object.class in Java.

* Null type: A null type is based on the Object.class in Java. Variables and objects in lists can be set to
null.

* Void type: A void type is based on the Object.class in Java.

Catscript Expressions:

Programming languages enable us to leverage the immense processing power of computers to accomplish
tasks that would be impossible for humans to perform manually. This is the true potential of computers,
allowing us to carry out millions of calculations in just seconds. This power has led to numerous technological
advancements that have shaped the course of human history. At the heart of all computers lies their ability to
perform mathematical calculations, and this is where expressions come into play. Once we have tokenized our
code, we parse it out to understand the intended purpose of each word. All expressions in Catscript are
extensions of the main expression class.

The types listed previously are created as expressions in Catscript except for object and void type. We have
Boolean, Integer, List, Null, and String expressions. These are treated as expressions so we can validate them,
store, and get their type, get values, evaluate, transpile, and compile. Each expression listed here doesn't all
have the same functions.

Additive and other arithmetic expressions are used to evaluate simple calculations in Catscript. When testing,
parentheses are not required to evaluate the expression, but when writing a program, it is required to use
parenthesis, (), around them. Without them, parsing errors will occur. Lastly, they are read from right to left, so
for example, when we divide, the dividend is on the left-hand side, and the divisor is on the right-hand side.
Lastly, these expressions are primarily used to evaluate integers, but can be used on other types.

Additive Expression:

An additive expression is used to take an integer and either add or subtract the values. We can perform as
many calculations as you want when doing so.

Will evaluate to 1. Will set the variable “x" to 2. With the
parenthesis, it tells the parser where the additive expression starts and ends.

7/16



Capstone - Jace Zavarelli 4/30/2023

The next use of the Additive Expression is to concatenate string values to one another or to an integer value.

It does not matter in what order you perform this operation, but you must use the plus, “+", symbol when
concatenating.

For example: "Whatis 1 + 1?7 " + 2
Will evaluate to, Whatis 1 + 17 2

Comparison Expression:

A comparison expression is used to equate two different values and is mainly used in if-else statements. We
can compare any two similar types. There are four different ways we can compare. When comparing, the
right-hand side of the expression is considered the main value and the left-hand expression is what we are
comparing it to.

Less than: <

Greater than: >

Less than or Equal to: <=
Greater than or Equal to: >=
Example: 5 > 4

This asks if 5 is greater than 4 and will evaluate to true.

Say for our next example we have: 5 <=4
This will evaluate to false, since we are asking if 5 is less than or equal to 4, which is not true.

Like the Additive and other arithmetic expressions, we can evaluate simple calculations in Catscript without
using parenthesis, but when writing a program, it is required to use parenthesis, (), around them. Without
them, parsing errors will occur. This will
print out “true”.

Equality Expression:

An equality expression is used to check two values, with the same type, of equivalence. The options we have
are either equal to or not equal to. This is similar to comparison expression as it is mainly used in if-else
statements, return statements, and in lists with integers.

Equal to: ==
Not Equal to: !=

Will evaluate to true.

Will evaluate to false, since 1 is equal to 1.

8/16



Capstone - Jace Zavarelli 4/30/2023

Factor Expression:

A factor expression is used to multiply or divide integers.
To multiply, use an asterisk: *
To divide, use a forward slash: /

This will print out 25.

Will print out 3, as 6 is the dividend, or the number to be divided, and 2 is our divisor.
Integer Literal Expression:

An Integer Literal Expression is an expression that simply holds an integer value. With this, when we create a
list, we can have a list of integer literal expressions. It is equivalent to a integer type in Catscript.

List Literal Expressions:

Otherwise known as lists, lists are a type of expression that holds a linked list of other expressions. This
includes integers, strings, Booleans, and objects. An object can include any of the other mentioned expression
types. To create a list, we need to use square brackets to enclose our list. If we are using a basic data type,
such as integer or string, we do not need to designate the list as such when creating it.

To create a list of integers we can also designate the type, this only works with integers values, and it is not
required.

Example: var list: list<int> = [1,2, 3]
for (x in list) {
print(x)}

The output of the previous example will be, 12 3

To create a list of objects.

Example: var list = [(1+1), null, 3, true]
for (x in list) {
print(x)}

This will create a variable, x, and create a linked list of objects that holds any type of expression. In slot 0, we
have an additive expression, note the requirement for parenthesis around the additive expression, then a null
expression, an integer expression and finally a boolean expression. The output of this previous example is 2
null 3 true. It is equivalent to a List type in Catscript.

9/16



Capstone - Jace Zavarelli 4/30/2023

Unary Expression:

This is used to either flip positive and negative integers, or to state the opposite condition of a boolean value.
Again, since this is an expression, it can be used in a list of objects.

So, if we take the above example in a factor expression, then print the results.
The above example will evaluate to -2

To work with boolean values, we can use not true, to designate false. This is useful in if-else, return, and
functions.

The above example will return false.

Catscript Statements:

Catscript statements are the heart of most programming languages that allow us to start developing
functioning programs and create our own custom data structures and algorithms with the use of these
statements. Since Catscript is a simple functional programming language, we only have basic statements that

get as complex as functions with multiple return statements and recursion.
Assignment Statements:
Assignment statements are only used to change the value of a variable after it has already been created as a

variable statement.

Example: var x = “hi”
x = “changed”
print (x)

The output of this will be “changed”. Since x was already created and designated on the scope, we can then
assign a different value with the same type to x and change it.
For Statements:

For statements are used to iterate through a loop and through each iteration of that loop perform an action.
For loops only iterate through lists, so if we use [1,1,1] as our list to iterate through, it will iterate through the
for loop 3 times. The basic form of a for loop is for (i in []) {inside for loop}

The output of this for loop will be 111

The output of this previous example is 1 2 3. As we loaded in a list to iterate through that was previously
created as variable x.

10/16



Capstone - Jace Zavarelli 4/30/2023

If Statement:

The if statement is a conditional statement that simply says, “if something is true, do this”, we can also have if-
else statements, where if the if statement is not true, go to the else statement and execute. If statements have
the basic structure of the keyword if, followed by parenthesis, (), where within the parenthesis our condition
we are checking, and then if the condition is met, continue to what's inside of {}. Think of the conditions we
are checking as an additive or similar expression, where we are comparing the values of two variables,

integers, Booleans, etc.

The above example will print true, since 5 is greater than 4.

The above example will print 2, since false is not equivalent to true.

The output to the above example will print false, since x, which equals 9, is not less than 8, and the else
statement will be executed.

Print Statements:

The print statement is key in viewing what the output of our program was. It prints the value specified to the
console window. The basic structure of a print statement is print(), where we can put any expression, or even a
function call, inside of the parenthesis.

The output of the above example will print 8 to the console window.

The output of the above example will print 2, since 1+1 is an additive expression and evaluates to 2 when ran.

¢ Example: function foo(): int { return 1} print(foo()) The output of the above example will print 1. We first
have to create a function named foo, since this is a functional programming language and functions
have to be created before we call them, and then when we call the print statement, it recognizes the
function call based on the function name foo, plus empty parenthesis since we aren't passing any
parameters into it, we just have to call it as foo(), and finally wrap it with the print statement,
print(foo()).

Return Statements:
Return statements are only used within functions. We can have multiple return statements in a function. These

are usually separated with the use of if statements. We can return any type of expression.

Example: var x =1

function foo(y:int): int {
return y}

print(foo(x))

The output to the above example will print 1.



Capstone - Jace Zavarelli 4/30/2023

Example: var x =1

function foo(y:int): int {
return y + 5}

print(foo(x))

The output to the above example will print 6.
Variable Statements:

In Catscript, we have six different types that can be cast to a variable. These types are integer, string, boolean,
list, null, and object. An object type can be of any of the basic variable types as well as null and void. An object
is cast as part of the object class in java.

Using a variable statement, we have the option of explicitly or implicitly declaring the variable, except for an
object variable, which much be explicitly defined.

¢ Example of a string variable: var x = "foo" The example above will create a string variable, without the
need to specify x as a string. When the compiler tokenizes, it will determine that “foo” is a string, since
it has quotations around it.

Below are a few examples of variables that can be cast without specifying their type.
¢ Example of an integer variable: var x = 1
¢ Example of a boolean variable: var x = true
¢ Example of a list variable: var x = [1,2,3]

¢ Example of a null variable: var x = null We can also specify what type we want the variable to be. This is
required when we want to specify objects. After the naming of a variable, in this case x, we include a
colon and then the type we want the type to be set as.

* Example of an object variable: var x : object = “test” This assigns the value "test” to x as an object and
will determine that the expression is an instance of a string literal. When we assign a variable to an
object its explicit type will be automatically determined.

¢ Example of an object variable with explicit type integer: var x : object = 10 This creates a Catscript type
object named “x" and then assigns its value as a java object that's explicit value is “10".

¢ Example of an object variable with null as its explicit type: var x : object = null This creates a Catscript

type object named “x” and then assigns its value as a java object that's explicit value is null.
¢ Example of an integer variable with type being defined: var x : int = 1
¢ Example of a string variable with type being defined: var x : string = “value”
¢ Example of a boolean variable with type being defined: var x : bool = 1
* Example of a list variable with list type also being defined: var x : list = [1,2,3] When assigning a variable

to a list, refer to list literal expression under Catscript Types for more information.

12/16



Capstone - Jace Zavarelli 4/30/2023

For example: var x : list<int> = [1,2,3]

Functions in Catscript:

Arguably the most important part of any programming language, functions allow us to create separate
programs that can execute in countless ways and really bring our code to life. Catscript functions work
basically the same as in most other popular programming languages, we just must format it properly. We can
have an unlimited number of inputs and specify what kind of return value type it will be. The basic structure
of a function is the keyword for a function, which is function, followed by the function name, parenthesis with
the inputs we are sending into the function, and then the return type. All followed by the actual body of the
function, wrapped in {}. To call a function, we need to call the function name, followed by parenthesis, (), and
what inputs need to be sent into the function inside the parentheses.

Example: function foo() {return} foo()

In this example, we created a function called foo, passed no inputs, did not
specify the return type, and in the body just returned nothing. To call the
function, we just ran foo().

Example: function foo(y : int) : int { return y + 1}
print(foo(9))

In the above example, we created a function named foo, sent in a variable as an integer, specified what the
function will refer to the variable sent in as, in this case y, and that it is an integer, the return value set to an
integer. Then we have the body of the function, and a return statement. In this example the output will be 10.

Example: function foo(b : int, c : bool) : int{ if(c==true){c=true}
else{print("works")}

for(x in [b]){ print(x) }

return b +2 }

print(foo(1,false))

In the above example, the output will return works 1 3 Notice how when we called the function, we sent in
two variables, then specified in the function foo what we will call the variables inside the function, and that the

return value is an int.

We can have a function return any of the basic types, and we can send in any expression into the function as a
local variable. The local variable will stay inside of the function and will be destroyed once the function is done

running.

13/16



Capstone - Jace Zavarelli

Section 4: UML.

4/30/2023

The following sequence diagram is the UML showcasing how functions work within the Catscript compiler and

language. A function is a large component to a functional language and allows many elements to be shown

within the Catscript coding language. The UML was used to develop most of the language and focus on

building functionality from normal processes completed within language, which is why no other UML will be

used to demonstrate the Catscript language. The use of inheritance UML is too complex to demonstrate

actual functionality and usability within the language, and the sequence diagram showcases much of the

systems processes, statements, and basic input that would happen in Catscript.

Catscript Function Sequence Diagram

User

CatScript

Lexer

evaluate(
function foo()

varx =10
return x

-

"Callable foo() Function”
> 0

h 4

Parser ParseTree

I
|
|
|
|
|
|
|
|
|
—

lex(
" function foo()

varx =10
return x
"

}

parse(tokens)

[
|
[
[
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
[
A

parseTree

A 4

parseStatement()

i

parseFunctionDefinitionStatement()

i

parseVariableStatement()

i

parselntegerLiteral()

i

parseReturnStatement()

i

parseldentifierExpression()

i

T

I
execute()

"foo(), With Internal Scope of Var 10"

14/16



Capstone - Jace Zavarelli 4/30/2023

Section 5: Design Trade-Offs

We created a parser by hand rather than using a parser generator. The parse generation tool would create a
system quickly and would lack the models that are used in our system development. We learned direct
tokenization, parsing mechanisms, and the execution of bytecode compilation, which all follows the systems
of recursive descent.

Recursive Descent is the process of working from top to bottom when developing a language, which focuses
on going from scanning input characters to running the bytecode of a new language itself. In the course, we
learned how to build a proper context-free grammar that would frame out how our language would function,
and the language started with scanning and tokenization. To tokenize our language, we followed the
grammar to properly identify portions and label them accordingly as we tokenized each character, string, and
value within our language. We then created a parsing system that would take the tokens and align their
labels into individual scopes. The scoped labels and tokens would be aligned to a parse tree that would
implement data structures like: for statements, if statements, functions, variables, and much more that exist in
our language.

The final step of development took tokenized and parsed data, which is written in our languages format and
syntax, and sent it to the JVM Bytecode systems to be properly executed. The code would compile with
bytecode that we wrote and implemented into the language itself, and the overall design of recursive descent
showed us how a language scans characters and implements them to a bytecode level compiling state. This
design system shows much more than a parse generator would demonstrate, and after learning recursive
descent | can look at any language and visualize how it scans through characters and strings to execute and
compile at the lowest level of code.

Parse Generators are a mechanism, taught by most institutions, that allow you to input context-free grammar
and output languages that compile down to another language's code or to a bytecode level. A Parse
Generator will take a grammar file, a overview of the language itself, and a token definition that is filled with
regular expressions, literals, and other elements to build the language. The generator will take the following
information, based on an EBNF context-free grammar, and will compile it into a lexing program system. The
lexer is a tool that will tokenize our inputs and prepare them to be sent to the parse generators created
parser. A parser file will take another grammar file that specifies the name and general definition of the
function of the language, which is going to be accompanied by several headers that define expressions,
variables, statements, and any other information you wish to accompany the language. The two generated
programs of a parser and lexer are then combined and connected to root of the hosting language, which is
usually implemented by the parse generator. The programs combine and work with the languages bytecode
to implement a language and use much of the visitor pattern design to link many classes together when
generating the language. This method of language creation allows you to implement elements of a language.

15/16



Capstone — Jace Zavarelli 4/30/2023

quickly with complex regular expressions and EBNF that does not every get down to the lowest level of a
languages implementation.

Both a Parse Generator and the Recursive Descent algorithm create a computer langauge that other
developers can use in the computer science industry. A Parse Generator will take far less time to output a
language and can be used to help bring isolation and uniqueness to the coding language that a company
needs or uses. Although parse generators have much faster creation time, a recrusvie descent based language
will benefit from the time taken to scan, scope, tokenize, and compile the language it creates. Recursive
Descent takes time because you will scan all wanted characters, tokenize them to preferred values, scope and
parse them into defined types by the grammars needs, and then use all of the gathered information to
compile, or transpiling, into a given executed state. A recursive descent language will be able to transpiling a
complex language for a company that wants to have more streamlined development in a fast language base,
like C. Recursive descent will also show a developer how the input provided is processed and brought to the
lowest level of execution, which can be useful for many avenues of coding development, unlike how a parse
generator just gives you the language. The design trade-off between parse generation and recursive descent
is very clear above, and a developer will more likely use the lements of recursive descent in their career than a
basic parse generation that uses overly complex regular expression to make an unknown language.

Section 6: Software Development Model

The development cycle of our programming language is Test Driven Development (TDD), which allows us to
step through our langauge and solve problems, and bugs, as we approach them. This model creates faster
development windows and allows us to quickly debug the system after an error is introduced. The error has
clear locations and possible solutions when developing the language under TDD, while this model is good for
problem solving, it makes the language a bit more complex to create intially. More rules are in place to make
sure that less errors appear and the model does help to build a specific computer language for our project.
The complexity is taught via recursive decent, and allows the learner to understand how a computer language
works from bytecode to coding. This means that our TDD system will show the full flow and creation of a
compiler, rather than creating languages via generators and automated systems. The rules are general
principles in a compiler, which are enforced by the class curriculum and teaching methods, but a learner will
be able to implement more complex architecture due to the environment that Test Driven Development
creates.

TDD also helps the single and group development process, but does limit the flexibility to create new
functions within the language without building new test for those systems. This model helped our team
development on the project, which is due to the need for members to build new test while adding new
functions, expressions, and methods to the language itself. Each member of a team would create a new
function, while other members would use test to verify the new functions are working before launching the
language to our compiler. This also works the same for new and wanted functions in the language, which are
created via the guidance of a test built by individuals in the team environment. The same method can be done
by one individual to create new expressions and statements in the Catscript language. TDD model allows the
development of Catscript to be streamlined and builds collaboration with developing new test for the
development process.

16/16



	Program Instructions
	Section 1: Teamwork
	Collaboration
	Group Test Development
	Test Provided by Jace Z.
	Test Provided by Ben H.

	Assignment of Task

	Section 2: Design pattern
	Memoization Model
	Castcript Type Memoization

	Section 3: Technical Writing
	Introduction
	Features
	Catscript Types:
	Catscript Expressions:
	Additive Expression:
	Comparison Expression:
	Equality Expression:
	Factor Expression:
	Integer Literal Expression:
	List Literal Expressions:
	Unary Expression:

	Catscript Statements:
	Assignment Statements:
	For Statements:
	If Statement:
	Print Statements:
	Return Statements:
	Variable Statements:
	Functions in Catscript:


	Section 4: UML.
	Section 5: Design Trade-Offs
	Section 6: Software Development Model

