

Capstone:

Catscript Compiler

Zachary Jewett

Montana State University

CSCI 468 – Carson Gross

Spring 2023

Jewett - Catscript Compiler 1

Table of Contents

Section 1: Program …………………………………………………….. 2

Section 2: Teamwork …………………………………………………... 2

Section 3: Design Pattern ………………………………………………. 3

Section 4: Technical Writing …………………………………………… 4

Section 5: UML ………………………………………………………….. 6

Section 6: Design Trade-Offs …………………………………………… 7

Section 7: Software Development Life Cycle …………………………... 8

Jewett - Catscript Compiler 2

Section 1: Program

The source code, source.zip, for the Catscript compiler is located in the directory. The compiler

was developed in Java, utilizing recursive descent with the Memoization design pattern, and

followed a Test-Driven Development software life cycle. Maven was used for dependency

management structure. The foundational development environment is Mr. Carson Gross and

Montana State University.

src > capstone > portfolio > source.zip

Section 2: Teamwork

This capstone project was completed individually, as I failed to pair with a partner. Recorded

lectures, instructor published slides, instructor help sessions, and peer Discord communications

proved instrumental in progress of the Catscript compiler. Testing and quality assurance was

intended to be based on partner feedback and documentation, however that is, as of currently, an

unmet requirement on my end.

Jewett - Catscript Compiler 3

Section 3: Design pattern

Memoization Pattern

In its most succinct definition, memoization is a technique to improve program

performance. It does so by caching previous calculated results to be used again in recursive

algorithms. By sacrificing some memory, we can avoid redundant calculations and reduce time

complexity. While not itself a specific design pattern, Memoization is a common technique in

dynamic programming for optimization. It is easy to implement into specified design patterns

such as the Decorator or Singleton patterns.

In the CatScript compiler, we utilize 1D-Top-Down memoization. We break down the

large problem of compiling a language into smaller, deterministic function calls relying on

recursive descent, which will be further discussed in section 6. Utilizing the code below, found

on line 37 in CatscriptType. java, the memoization technique calculates a function once and then

stores the resulting CatscriptType. Anytime a memoization function is called, the “cache” is

searched, and if found, returns the stored result without expensive recalculation. Otherwise, the

function is copied and stored for future use. Specifically, this memoization code uses a HashMap

with a CatscriptType serving as both the key and the value. The purpose is to return a ListType

object that matches the input.

src > main > java > edu.montana.csci.csci468 > parser > statements > CatscriptType.java

Jewett - Catscript Compiler 4

Section 4: Technical Writing

*Disclaimer: “Include the documentation generated by your partner for the Catscript programming

language” I never paired with someone. In light of this missed requirement, this section was completed

solely by yours truly.

Tokenization

Expression Parsing

Statement Parsing

Jewett - Catscript Compiler 5

Section 5: UML

Section 6: Design trade-offs. Describe a design trade-off decision (e.g. execution time vs. space

requirements or compile time) in your capstone project and justify the design decisions that you

made.

Jewett - Catscript Compiler 6

Section 6: Design Trade-Offs

Recursive Descent vs. Parser Generator

A very adamant decision on the part of the instructor was to utilize recursive descent over

a parser generator. A decision founded on simplicity and practicality. It proved to be the correct

choice. Recursive descent is a top-down parsing technique that goes hand in hand with the

memoization design pattern mentioned in section 3. Parsing begins with taking a sequence of

tokens from a lexical analyzer as an input and building a parse tree from the derivations.

Recursive descent breaks down the complex problem, like compiling an EBNF language

grammar, into a series of smaller subroutines resulting in this tree-like syntax structure. Each

simplified subroutine handles production for non-terminal symbols. In turn, each non-terminal

symbol is composed of terminal symbols that make up the smallest units of input that can be

recognized. Recursively iterating through the terminal symbols to construct a non-terminal, and

then repeating that process until an input consists of only non-terminals leads to a successful

parse. While a little jargon heavy, implementation is intuitive and explicit.

It is in this simplicity that recursive descent overcomes a parser generator. Parser

generators automatically produce code to implement a parsing algorithm for the target language.

Only requiring two inputs via regular expression (REGEX) and a Backus-Naur Form

(BNF/EBNF) language grammar, parser generators are convenient and less susceptible to human

error. However, each parser generator typically requires following their own specialized

language syntax, making quick adoption difficult. More significantly, they are extremely tedious

to debug and maintain as internal states may limit visibility and readability is hindered. In

contrast, recursive descent code is much more readable and works with built-in IDE debuggers.

Furthermore, the looping control flow for descent parsing is easy to follow, maintain, and extend.

We do hit a snag if the grammar contains any left-recursion.

+ Recursive Descent - + Parser Generator -

Simplicity Limited Grammar

Complexity

Efficiency Steep Learning Curve

Debugging Code Duplication Automation Limited Flexibility

Performance Error Handling Consistency Debugging

Jewett - Catscript Compiler 7

Section 7: Software Development Life Cycle Model

Test-Driven Development

The Catscript capstone project was built following Test-Driven Development (TDD)

software development life cycle design. TDD uses automated tests to provide targets and

validation for developers. These test cases are written before actual code production begins and

bestow a sense of direction to programmers. Further, multiple tests groups provide solid

checkpoints for developers and allow them to evaluate their progress. Successful completion of

all the tests should mark completion of the program. Ultimately, TDD limits bugs, improves code

quality, and allows faster development. The Catscript compiler tests were developed by Mr.

Carson Gross.

From a personal perspective, Test Driven Development is phenomenal. Having all the

development goals laid bare is incredibly helpful for someone like me who will often go off on a

programming tangent of some small idea. It is the most satisfying feeling to see all those green

checkmarks, but also the most depressing when something fails, over and over. Indeed, as I

failed to reach certain milestones, and then skipped ahead to meet the next one, I would leave

“broken windows” in my wake. This caused cascading failures as my subpar foundations would

not properly fit with the next steps. This would be accompanied by a waterfall of refactoring and

frustration. So, Test-Driven Development is perfect for the punctual.

