CSCl 468 Compilers Portfolio
Montana State University Spring 2023
Jack Brown

Section 1. Program

https://github.com/JackBrownn/csci-468-spring2023-private/tree/main/capstone/portfolio

Section 2: Teamwork

| was the primary engineer for this project. | spent my time programming and writing functions to
pass tests. Team member 2 was the documentation and testing engineer.They wrote the tests
and documented the programs functionality and progress along the way. | worked on the project
roughly 90% of the total project time (~5 hrs/week) and team member 2 spent roughly 10% of
the project time on their work.

Section 3: Design Pattern

The Memoization Pattern is a design pattern which is used to increase efficiency in a program
by creating a cache for computations/executables that is later called upon instead or
re-computing. An example of this in the Catscript program can be seen in the ‘getListType’
method of the‘CatscriptType.java’ file. Rather than creating a new list each time the method is
called, a hashmap search is executed to find an already created list of that type and return it.
This pattern was used, rather than coding directly, because its caching method saves both time
and memory for the program.

Section 4: Technical Writing

Introduction
Castscript is a simple scripting language
Features
Statements:

Assignment Statement:

Assignment Statements allows catscript to assign a new value to a variable with an existing value.

Variables can only be reassigned the same type that they were originally defined as.

https://github.com/JackBrownn/csci-468-spring2023-private/tree/main/capstone/portfolio

Example:

”

var x = “ Value

x = “New Value”

For Statement:

For Statements in Catscript are used to iterate through lists using the "in" keyword, values are
stored until there are no more elements. Unlike other languages, this loop cannot iterate based on
boolean conditions meaning it can’t count up to a value, but it can perform operations like

print-statements and if-statements.
Example:

var myList = [1,2,3]
for (i in myList) {

print (i)

Function Definition Statement:

Function definition statements in Catscript begin with the keyword "function" followed by the
function name, argument identifiers, and types, and a block of statements inside the body. Once a
return statement is executed, the value is stored, and the function definition completes. Functions
can have explicit return types but default to void, and parameters can have explicit typing or
default to an object. Return statements can be included and should have a return type defined after

the function name and parameter. Functions can be called elsewhere in the program.

Example:

function add(x:int, y:int) :int({
var answer = X + y

return answer

Alternatively, this add function could Jjust return x + y

Function Call Statement:

Function Call is used to execute a function that has been defined. The call will execute if it
matches the number and type of arguments given in the function definition, and the symbol table

is checked to ensure the function has been registered.
Example:

var answer = add(1l,2)
print answer

output:

If Statement:

If Statements are used to decide whether to execute the statements inside the block. They work
similarly to If statements in other languages and can include conditional statements that limit

access to code unless the condition is satisfied.
Example:
var x = 3
if (x > 2){
print (“x is greater than 2)

}

else{

print(“x is less than 27”)
}

Print Statement:

In Catscript, the print statement is written as "print(‘expression')" and the expression inside the
parentheses is evaluated by the parser and printed to the output stream. This statement can print

various contents such as string or integer literals.

Examples:

print (“hello world”) print (1+2)
output: output:

hello world 3

Return Statement:

In Catscript, the return statement is used to exit a function and return a value to the caller. When
the parser encounters the 'return' keyword, it evaluates the expression, assigns the resulting value
to the function definition, and pops all local variables off the stack. Return statements can only be

used within a function, and are required if the function has an explicit return type.
Example:

See Function Definition Statement example

Variable Statement:

Variable statements are used to declare and assign variables with the var keyword. When defining
variables, you can optionally include a type by placing a colon (:) after the variable name and
specifying the type. Any primary expressions can be assigned to variables, and variable types can

be either explicitly or implicitly defined

Examples:

var myString = “Hello”

var x : int = 2

Tvpes:

CatScript is statically typed, with a small type system as follows

int - a 32 bit integer

string - a java-style string

bool - a boolean value

list - a list of value with the type 'x'
null - the null type

object - any type of value

Primary Expressions:
Identifier Literal:
Integer Literal:
List Literal:
Null Literal:
Parenthesized Expressions:

String Literal:

Type Literal:

Boolean Literal:

Additive Expression:

Catscript's additive expression uses the (+) and (-) operators for addition and subtraction. It is

used to combine two expressions. String Literals can only be added together and not subtracted.

The order of evaluation is from left to right, with the operator separating the left-hand side and

right-hand side expressions.

Examples:
var x = 1 + "hi" print (1+2)
print (x)

output: output:
1hi 3

Comparison and Equality Expressions:

Equality and comparison expressions are both used in Catscript to evaluate two expressions and

return a boolean value. While comparison expressions have a higher precedence, both expressions

have a left side and a right side. Equality expressions use the (==) and (!=) operators to assess

whether both sides are equal or not equal, respectively. On the other hand, comparison

expressions use the (<), (>), (<=), and (>=) operators to compare two Integer Literals.

Examples:
2 == true 2 '= 2
2 >3 false 2 <=3

Factor Expression:

Catscript's factor expression uses the (*) and (/) operators to perform multiplication and division.
Along with additive expressions, it has a left and right hand side. The left hand side is evaluated
first.

Examples:

2 * 10 is 20 10/2 is 5

Unary Expression:

Catscript has two unary operators, the negative symbol and the not symbol, that can be applied to
Integer Literals and Boolean Literals, respectively. These operators allow negation of the value of
an expression. The (-) operator is used for integers, while the (not) keyword is used for Boolean

values.
Examples:
-2

not true

Section 5;: UML

Catscript For Statement Sequence Diagram

User CatScript Lexer Parser ParseTree
| - 1 I I
| | | |
| evaluate (“for (s in ['soda’, 'candy', ‘pizza"}print(s}") _ | | | |
[| |
: lex("for (s in ['soda’, 'candy’, ‘pizza™{print(s}") | : :

Ll
| | |
| tokens | |
| @ cmmm oo m I
| | |
| parse(tokens) | o |
Ll
	parseForStatement()
	:l
	parselListLiteralExpression()
: : parseStringLiteralExpression() :	
	;
: : parsePrintStatement() :	
] I
parseTree	
€T T-"" " T	
1	
: execute() I o	
"soda, 'candy', 'pizza”	
4 - - - - - mm e mmm e m o [--=-=-f-=-=--====-=-==-=--~	
lg - - - — - _soda,‘candy’, pizza” | ||

Section 6: Design Trade-Offs

The main design trade-off for this program is that the parser was created by hand rather than
using a parser generator. Our hand written parser uses recursive descent. This method creates
a function for each procedure of the grammar, which calls another function recursively in order
to accomplish a task. The benefit of this method is that it allows us to get an in-depth
understanding of how the grammar works. It also creates readable code that mirrors the
structure of the grammar.

The alternative option is to use a parser generator. A generator takes lexical grammar and an
EBNF language grammar as input and returns a parser class. The downside of this method is
that it creates complex code that is difficult to read and debug. The inputted grammar must also
be rather specific which can cause problems in the created parser. Another reason it was not
used is because it does not help further the developers understanding of the recursive nature of
grammar.

Section 7: Software Development Life Cycle Model

The life cycle model used for this project was test driven development. | was given a test suite
containing a list of tests which specified the language and functionality of the program. As the
parser, and other elements of the project, were completed, the tests began to pass. | enjoyed
this model for several reasons. It broke a large project into smaller goals which could easily be
seen and accomplished. The tests gave a great outline of what was needed before the coding
began. This model also allowed for only the necessary code needed, since its purpose was to
pass tests.

| prefer this method when compared to an agile behavior driven development model. | have
found that behavior driven development can cause developers to get stuck with creativity. There
is a lot of work around what the user would want or how something could be developed
differently. In the context of this project, | felt a test driven development was best as the
objective was to create a functioning compiler.

