
CSCI-468: Compilers Capstone
Spring 2023

Hank Breckenridge
Partner: Patrick Tung

Section 1: Program

The zip file for the compiler I wrote for this project can be found in this direction. The file is
named “source.zip”.

Section 2: Teamwork

This project had a good balance between individual accountability and real-world teamwork. I
was responsible for implementing the functionality of the entire compiler. This work was split
into four sections: the tokenizer, the parser, the evaluation of Catscript, and the generation of
JVM bytecode. My partner acted as both the documentation and test engineer for my project. In
turn, I acted as his project's documentation and test engineer. This ensured that each of us was
responsible for implementing a compiler, but it also allowed us to simulate a real-world
environment where collaboration is necessary.

The documentation that each of us wrote outlined the complete functionality of the Catscript
programming language. It was modeled on Catscript’s grammar, which ensured total coverage of
the feature set. Since the project already had complete coverage at the unit test level, my partner
and I were responsible for writing higher-level tests that acted as integration or system tests
between the separate units.

The compiler implementation took the majority of the time, so I spent roughly 80% of the time
working on my implementation and roughly 20% of the time writing documentation and tests for
my partner. Since each of us had an individual submission the work was split 50/50.

Section 3: Design Pattern

The main design pattern used in the compiler was memoization. In this design pattern, we
implement a sort of caching that allows us to reuse data structures rather than instantiating a new
one each time the “getListType” method is called. This pattern is a useful optimization in our
program as it eliminates the unnecessary overhead inherent to object instantiation. While this
optimization was not needed for the small examples we used in the test cases, larger programs
will certainly benefit from this optimization. The code I used to implement the memoization
pattern is shown below.

public static final Map<CatscriptType, CatscriptType> LIST_TYPES = new HashMap();
public static CatscriptType getListType(CatscriptType type) {

CatscriptType listType = LIST_TYPES.get(type);
if (listType == null) {

listType = new ListType(type);
LIST_TYPES.put(type, listType);

}
return listType;

}

Sec�on 4: Technical Wri�ng

Introduc�on

Catscript is a simple scrip�ng language.

Here’s an example of Catscript in ac�on:

var x = "bar"

print(x)

Table of Contents

Statements

For Loop Statement

If Statement
Print Statement

Variable Statement

Assignment Statement
Func�on Call Statement

Func�on Declara�on

Func�on Body

Parameter List

Return Statement

Expressions

Equality Expression

Comparison Expression

Addi�ve Expression
Factor Expression

Unary Expression

Primary Expression

List Literal Expression
Func�on Call Expression

Argument List Expression

Type Expression

Features

Catscript includes all the fundamental features of a programming language.
These features can be categorized as statements or expressions.

Statements execute ac�ons or control the code flow, while expressions evaluate to a

single value.

Func�on declara�on statements are more complex and consist of several other
components, so they are listed separately from Statements.

Statements

For Loop Statement

To declare a for loop in Catscript, use the “for” keyword followed by a set of parentheses

containing an iden�fier, the “in” keyword, and an expression that produces a list of values.
This expression can be created using any code that generates a list of values, such as a list

literal or a func�on call that returns a list. Once the expression is evaluated and produces a

list, the for loop executes a sequence of statements enclosed within curly braces for each
item in the list.

Note that in Catscript, you don’t need to declare the iden�fier before using it in the for

loop.

Here’s an example of how to use a for loop in Catscript to print the numbers 1 to 5:

for (i in [2,3,4,5,6]) {

 print(i)}

If Statement

In Catscript, you can declare an if statement using the “if” keyword followed by a set of
parentheses that contain a boolean expression. If the expression evaluates to true, the

statements enclosed within the curly braces following the if statement will be executed.

Op�onally, you can include an “else” clause that contains statements to be executed if the
expression evaluates to false.

In the following example, the if statement checks if the value of the variable x is greater

than 5, and if it is, the string ‘x is greater than 5’ will be printed.

var x = 0
if (x < 4) {

 print("x is less than 4")}

Print Statement

In Catscript, you can use a print statement to write a value to the output. To declare a print

statement, use the “print” keyword followed by a set of parentheses containing an
expression to be printed. This expression can be a variable, a literal value, or the result of an

expression.

Keep in mind that the string representa�on of the expression will be

wri�en to output, which means that print statements in Catscript are

not limited to prin�ng strings.

In the following example, the print statement writes the string ‘Hello, world!’ to the output:

print("Carson Gross is a cool instructor.")

// Carson Gross is a cool instructor.

In the following example, the print statement displays the result of a calcula�on:

print(9 + 1)

// Output: 10

Variable Statement

To declare a variable and assign it an ini�al value in Catscript, you can use a variable

statement. The statement is declared using the “var” keyword, followed by an iden�fier, an

op�onal type annota�on, an equal sign, and an expression. This expression can be a literal

value, the result of an expression, or the return value of a func�on call.

Remember that the type annota�on in the variable statement is op�onal, but it can be

used to specify the type of the variable.

In the following example, a variable named “y” is declared with an ini�al value of the result

of a calcula�on:

var y = 7 + 2

In the following example, a variable named “name” is declared with an ini�al value of “Hank”

and a type annota�on of “string”:

var name: string = "Hank"

Assignment Statement

In Catscript, you can use an assignment statement to modify the value of a previously
declared variable. To declare an assignment statement, use an iden�fier followed by an

equal sign and an expression that evaluates to the new value of the variable.

Keep in mind that for an assignment statement to work in Catscript, the

variable must have been previously declared, and the type of the
expression on the right-hand side of the equals sign must be compa�ble

with the type declared for the variable.

In the following example, the variable x is declared with an ini�al value of 10, and then its

value is changed to 5 using an assignment statement:

var x = 8

x = 3
print(x)

// Output: 3

Func�on Call Statement

In Catscript, you can use a func�on call statement to invoke a func�on and execute its

code. The statement consists of the func�on name followed by parentheses containing any
arguments passed to the func�on. Remember that the arguments passed to the func�on

must match the parameters defined in the func�on’s declara�on in terms of data type and

order.

Here’s an example of a func�on call statement, where the func�on myFunction is called
with three arguments:

myFunc(4, "Express", false)

For a more detailed explana�on of the func�on call syntax in Catscript, please refer to the
Func�on Call Expression Sec�on.

Func�on Declara�on Statement

In Catscript, you can use func�on declara�on to define a reusable piece of code that can be

called from different parts of the program. To declare a func�on, use the “func�on” keyword

followed by the func�on name, a set of parentheses that contain a list of parameters (if

any), and the func�on’s body enclosed in curly braces.

Here’s the basic syntax for a func�on declara�on statement:

function subtract(num1, num2): int {

 var result = num1 - num2 return result}

Next, let’s take a look at the three types of statements that can be used in func�on
declara�on statements in Catscript.

Func�on Body

The func�on body is where the actual logic of the func�on resides, and it can contain any

valid Catscript statement, such as variable declara�ons, control structures, and func�on

calls. The func�on body is defined within the curly braces {} that follow the func�on

declara�on statement.

Keep in mind that the func�on body statement in Catscript must contain at least one
Catscript statement.

The following example illustrates a valid func�on body statement:

function myFunc(x: int): bool {

 var flag = false if (x <= 8) { print("x is less than or equal to 8") flag = t

Parameter List

The parameter list is a comma-separated list of parameters that the func�on accepts, with

each parameter consis�ng of a name and an op�onal type annota�on. If a type annota�on

is not provided, Catscript will try to infer the type from the value passed in when the

func�on is called.

Here’s an example of a parameter list composed of two values with type annota�ons:

function myFunc(param1: bool, param2: string) {

 // function body}

Return Statement

In Catscript, a func�on can return a value using the return statement. If the func�on returns

a value, the return type must be specified in the func�on declara�on. The return statement
can also be used to exit a func�on early and return a value.

Keep in mind that in Catscript, all branches of code are expected to have a return

statement.

The following example illustrates a func�on with valid return coverage.

function vaidFunc(param1: string, param2: string): string {

 return param1 + param2}

A func�on with invalid return coverage has at least one branch of code that will never hit a

return statement.

Here’s an example of a func�on with invalid return coverage:

function invalidFunc(x: int): bool {
 if (x >= 7) { return true } else { print("Less than 7") }}

If an argument less than 5 is passed into the func�on, the return statement will never be

executed, resul�ng in invalid return coverage.

Expressions

Equality Expression

In Catscript, you can use equality expressions to compare two values and determine if they

are equal. The == operator is used to check if two values are equal, while != is used to
check if two values are not equal. Equality expressions evaluate to boolean values and are

frequently used as the expression in if statements.

Here’s an example that compares two numbers using the equality expression:

if (1 == 0) {
 print("0 and 1 are equal")}

else {

 print("0 and 1 are not equal")
}

Comparison Expression

Comparison expressions can be used to compare values and produce boolean results.

Available operators include:

> for greater than

< for less than

>= for greater than or equal to

<= for less than or equal to

if (0 > 1) {
 print("x is greater than y")}

else {

 print("x is not greater than y")
}

Addi�ve Expression

Catscript provides addi�ve expressions to perform arithme�c opera�ons on numeric values.

The addi�on operator + is used to add two values, while the subtrac�on operator - is
used to subtract one value from another.

Here’s an example of a print statement that uses an addi�ve expression:

print(2 + 3) // Output: 5

Addi�ve expressions can also be used with string values. In this case, the addi�on operator
+ is used to concatenate strings together. The following example demonstrates this

behavior:

var str1 = "HELLO"
var str2 = "WORLD!"

print(str1 + ", " + str2) // Output: HELLO, WORLD!

Factor Expression

In Catscript, a factor expression refers to an expression that involves mul�plica�on or

division of two operands. The order of opera�ons applies to factor expressions just like any

other mathema�cal expression. Mul�plica�on and division are performed before addi�on

and subtrac�on, so it’s important to use parentheses when necessary to ensure that the
expressions are evaluated in the correct order.

The following example demonstrates a simple mul�plica�on opera�on between two

integers:

print(3 * 11) // Output: 33

Here’s an example of a factor expression that includes parentheses to enforce order of

opera�ons with an addi�ve expression:

var result = (2 + 1) / 3

print(result) // Output: 1

Unary Expression

A unary expression is an expression that operates on a single operand. The unary operator

can be either not or - .

The not operator performs a logical nega�on on a boolean value. When applied to a

boolean value, it returns the opposite boolean value. The following example demonstrates
this:

var y = false

print(not y) // Output: true

The - operator in Catscript performs nega�on on a numeric value. When applied to a
numeric value, it returns the value mul�plied by -1 . Here’s an example:

var y = 3

print(-y) // Output: -3

Primary Expression

In Catscript, a primary expression is the simplest form of expression and can take on several

forms, such as an iden�fier, a literal, a func�on call, or a parenthesized expression.

Iden�fiers are used to access the value of a variable or to call a func�on. In the following
example, name is an iden�fier:

var name = "Johnson"

Literals are fixed values that are directly represented in the code. There are several types of

literals, including strings, integers, booleans, null, and list literals.

"Hello, World!" // String literal

3 // Integer literal

false // Boolean literal
null // Null literal

[2,3,4] // List literal

Func�on calls are used to invoke a func�on with zero or more arguments. A func�on call is
denoted by the func�on name followed by parentheses containing the arguments passed to

the func�on.

function greet(name) {
 print("Greetings, " + name + "!")

}

greet("Johnson")
// example Function call

Parenthesized expressions are used to group expressions together to enforce order of

opera�ons or to clarify code. The expression inside the parentheses can be any valid
expression.

30 / (9 + 1)

List Literal Expression

In Catscript, a list is a collec�on of ordered values. A list literal is a way to define a list with a

specific set of values. List literals are enclosed in square brackets [] , with each element

separated by a comma , .

Here’s an example of a list literal containing three integers:

[7,9,0]

List literals can also include elements of dis�nct types:

[false, null, 5, "cat"]

Func�on Call Expression

A func�on call expression is used to call a func�on and pass arguments to it. It consists of

the func�on name followed by parentheses containing the arguments passed to the

func�on. The arguments can be expressions that evaluate to the expected data types
specified in the func�on’s parameter list.

It’s important to note that in Catscript, the func�on being called must

have been previously defined through a func�on declara�on statement.

The syntax for a func�on call expression in Catscript is as follows:

func(arg1, arg2, ..., argN)

Here’s an example of a func�on call expression in Catscript that passes two arguments, an

integer and a string, to a func�on called myFunction :

myFunc(1, "Hi")

Note that the order and number of the arguments passed to the func�on must match the

parameters defined in the func�on’s declara�on. It’s also worth no�ng that the func�on call

expression is an expression that evaluates to a value. The value returned by the func�on

can be stored in a variable or used in an expression.

Argument List Expression

Catscript uses an argument list expression to pass one or more arguments to a func�on.

This expression consists of zero or more expressions enclosed in parentheses and separated

by commas.

The example below shows an argument list being used in a func�on call, with the argument

list being the series of expressions between the parentheses.

myFunc(6, "yes")

Type Expression

CatScript variables are sta�cally typed, which means their type is determined at compile-

�me and cannot change during program execu�on. Type expressions are used in func�on

declara�ons, variable statements, and parameter lists. The CatScript type system includes

the following types:

int : A 32-bit integer.
string : A Java-style string.

bool : A boolean value, which can be either true or false.

list<x> : A list of values with a specific type x .
null : The null type, which represents the absence of a value.

object : The most general type, which can hold any kind of value.

The following example shows a variable statement with a type expression:

var num: int = 0

Type expressions can be used to indicate the return type of func�ons and specify the

parameter types, as shown in this example:

function isLessThan(x: int, y: int): bool {

 return x < y
}

Section 5: UML

The following sequence
diagram demonstrates how each
component interacts to evaluate
a Catscript program. In this
case, the input is a fairly simple
equality expression.

As you can see, the lexer breaks
the expression up into
individual tokens that are
returned to the Catscript
program.

The parser then uses the tokens
to build a parse tree via
recursive descent. The recursive
nature of the parser can be seen
in the chain of parse method
calls. Each call becomes more
specific from the top-level
“parseExpression()” call to the
three
“parsePrimaryExpression()”
calls (two for the integers in the
comparison expression and one
for the boolean literal).

Once the parse tree is
constructed, the execute method
is called, and we can see that
the value of true is passed back
to the user.

Section 6: Design Trade-offs

One design tradeoff in this project was implementing the evaluate method on the parse tree nodes
instead of utilizing the visitor pattern. The visitor pattern is very common in recursive descent
parsing, but it leads to a lot of complexity in the codebase. The main value of the visitor pattern
is improved code cleanliness which makes changing or extending the codebase much more
simple. The visitor pattern decouples the recursive descent algorithm from the parse tree node
data structure. This makes the life of the developer easier when changing the codebase in the
future.

Since we are not designing Catscript to be maintained for a long time, using the visitor pattern
does not make sense. Instead, I implemented the evaluate method directly on the parse tree node
data structure. As described earlier, this comes with a number of downsides. The codebase
becomes much more rigid due to the tight coupling between the recursive descent algorithm and
the parse tree data structure. This is not a significant consideration in our case because we do not
have to maintain the codebase after satisfying the specification. Therefore, it makes sense to
favor simplicity over flexibility and extensibility in this case.

Section 7: Software Development Lifecycle

The software development lifecycle model used in this project was the test-driven development
(TDD) model. In this model, we are given a set of tests that outline the expected functionality of
the program. These tests all failed in the beginning but served as a guide for implementing the
compiler. I found this model very useful as it quantifies exactly what the program needs to do.

I have used a similar model (design-by-contract) in a recent project, and I noticed a lot of
similarities. Most notably, specifying exactly what the program must do to satisfy all
requirements was very difficult. Fortunately, Professor Gross did the heavy lifting of providing
the test suites ahead of time. This allowed me to move very quickly from feature to feature
without having to worry much about whether or not the edge cases were covered.

I have also used the agile model in internships and personal projects. This model was great in
that it did not have the high up-front cost and allowed my team to change the requirements as the
project developed, but the lack of structure compared to TDD made it much more difficult to
quantify the expected behavior of the program.

