
Kelby Abel
CSCI 468 - Capstone

Portfolio

Section 1 – Program

See the source.zip in this directory.

Section 2 – Teamwork

My primary work on the project was to write out code for a compiler with tokenizing, expression
parsing, statement parsing, evaluation and validation, execution, and compilation. Also wrote out
documentation for the CatScript programming language for my team member and wrote three
unit tests for their compiler.

The tokenizer included taking in input code and separating the code into tokens that were added
to a token list. A Token is an object that keeps track of start point, end point, line number, line
offset, string value, type, etc.. Characters such as +, -, (, “, etc. are added as tokens to a token list.
Doing so creates a way to parse the input code in the parsing section.
In this example, tokens are being checked for left brace and right brace, and adds the correct
token type to the token list.

else if(matchAndConsume('{')) {
tokenList.addToken(LEFT_BRACE, "{", start, postion, line, lineOffset);

} else if(matchAndConsume('}')) {
tokenList.addToken(RIGHT_BRACE, "}", start, postion, line, lineOffset);

}

Expression parsing uses the token list to parse multiple expression types. Tokens are checked for
matching characters or words which determine the correct expression type to parse.
In this example, the token list is being checked for MINUS or NOT tokens to parse unary
expressions.

private Expression parseUnaryExpression() {
if (tokens.match(MINUS, NOT)) {
Token token = tokens.consumeToken();



Expression rhs = parseUnaryExpression();
UnaryExpression unaryExpression = new UnaryExpression(token, rhs);
unaryExpression.setStart(token);
unaryExpression.setEnd(rhs.getEnd());
return unaryExpression;

} else {
return parsePrimaryExpression();

}
}

Statement parsing is very similar to expression parsing and uses the token list to parse multiple
statements. Tokens are checked for matching keywords to match to the correct statement type.

private Statement parsePrintStatement() {
if (tokens.match(PRINT)) {
PrintStatement printStatement = new PrintStatement();
printStatement.setStart(tokens.consumeToken());
require(LEFT_PAREN, printStatement);
printStatement.setExpression(parseExpression());
printStatement.setEnd(require(RIGHT_PAREN, printStatement));
return printStatement;

} else {
return null;

}}

In this example, the keyword PRINT is matched from the token list to parse print statements.
Other required characters are also checked to prevent syntax errors.

Evaluation properly returns the expected result of an expression.

public Object evaluate(CatscriptRuntime runtime) {
Integer lhsValue = (Integer) leftHandSide.evaluate(runtime);
Integer rhsValue = (Integer) rightHandSide.evaluate(runtime);

if (this.isGreater()) {
return lhsValue > rhsValue;

} else if (this.isGreaterThanOrEqual()) {
return lhsValue >= rhsValue;

} else if(this.isLessThanOrEqual()) {



return lhsValue <= rhsValue;
} else if(this.isLessThan()) {
return lhsValue < rhsValue;

}
return null;

}

In this example, the left hand side and right hand side of a comparison expression is evaluated.
Checks are made for the correct type of comparison. The correct value is returned for further
implementation.

Validation properly sets up statements to have the correct relations.
public void validate(SymbolTable symbolTable) {
expression.validate(symbolTable);
CatscriptType symbolType = symbolTable.getSymbolType(getVariableName());
if (symbolType == null) {
addError(ErrorType.UNKNOWN_NAME);

} else {
if(!symbolType.isAssignableFrom(expression.getType())) {
addError(ErrorType.INCOMPATIBLE_TYPES);

}
}

}

In this example, the assignment statement is validated to have the correct expression type to
match the variable type, if any.

Execution uses the validated statement to generate the correct output for the statement.
public void execute(CatscriptRuntime runtime) {
Object conditionalResult = expression.evaluate(runtime);
if(Boolean.TRUE.equals(conditionalResult)) {
for (Statement trueStatement : trueStatements) {
trueStatement.execute(runtime);

}
} else {
for (Statement elseStatement : elseStatements) {
elseStatement.execute(runtime);

}
}

}

In this example, the true and else statements of an if statement are executed to generate the
correct output.



Compilation converts the tokenized, parsed, evaluated, validated, and executed code into Java
bytecode.

public void compile(ByteCodeGenerator code) {
code.addVarInstruction(Opcodes.ALOAD, 0);
expression.compile(code);
box(code, expression.getType());
code.addMethodInstruction(Opcodes.INVOKEVIRTUAL,

code.getProgramInternalName(),
"print", "(Ljava/lang/Object;)V");

}

In this example, print statements are compiled into the correct bytecode.

My sole team member, Jacob Clostio, wrote three unit tests for my compiler as well as the
documentation included in Section 4. The nature of the project means the percentage of work
done by each team member was about 90% to 10%. Team member 1, myself, completed 90% of
the project, and 10% was completed by team member 2.

Team member 2 created the documentation in Section 4 which does a great job at describing the
general grammar definitions of CatScript as well as an overview of what CatScript is. Team
member 2 also created three unit tests to test the functionality of the CatScript compiler. The
three tests are:



These tests are high level and help ensure that the compiler is compiling properly though various
applications. The first test confirms that if statements work inside for loops, this code is used
frequently in almost all user scripts. The second test confirms that code execution stops after a
return statement, without this working, return statements would be useless. The last test confirms
that the correct output is used with if statements and for loops inside functions. The output needs
to be correct or functions and if statements are broken.

Section 3 - Design Pattern
Memoization is the primary design pattern in CatScript. The general idea is if something has
already been created, it is stored, then if a method calls for it, the reference is found in storage
rather than creating a new one. Memoization in CatScript is defined with this code:



When the getListType function is called with a CatscriptType INT for the first time, it is stored
inside of a HashMap. The second time the getListType function is called with the same INT, the
HashMap is checked for it, and the type is returned. This prevents reinitialization of existing
CatscriptType types.

Section 4 - Technical Writing









Section 5 - UML



In this UML diagram, the code “66 * 7567” is evaluated through the parser. The User inputs the
code “66 * 7567” which is evaluated by the CatScript program. CatScript tells the lexer to
tokenize the input code and returns a list of tokens. This token list is parsed via the Parser. The
Parser calls the parseExpression() function, which will call the parseFactorExpression() function
because multiplication is parsed in the parseFactorExpression() function. Since the input was
multiplication of two integers, the parseIntegerLiteral() function is called. This parseTree is
returned to the CatScript program, which then calls the execute() function with the parseTree.
This returns the value 499422, which is the correct result of 66 * 7567 to the CatScript program,
which returns the value to the User.

Section 6 - Design Trade-Offs

Since the parser was generated by hand rather than using a parser generator, the design quality is
different. The parser created for CatScript utilized recursive descent parsing. Recursive descent
allows for understanding of grammars and the recursive nature of grammars, but this form of
parsing is less efficient than using a parser generator. Recursive descent parsing uses top down
recursion to formulate a parse tree. Whereas a parser generator like ANTLR uses external files to
generate a lexer and parser in a chosen language. The code length from generated code can also
be significantly longer than recursive descent parsing. These generated lexers and parsers can be
difficult to understand and debug and implementing new ideas even harder. Obscure syntax can
also be generated for obvious ideas if done by hand. In CatScript the visitor design pattern
cannot be used based on how it is coded. With a parser generator, the visitor pattern can be used
and allows for control over the parse tree that cannot be achieved through the generated code.

Section 7 - Software Development Life Cycle Model

Test Driven Development (TDD) was the primary method used when developing the CatScript
compiler. Given a test suite with specification for the language, overtime tests were fixed by
coding the tokenizer, parser, and Java bytecode converter.

Starting with the tokenizer, 16 tests were used to formulate a working tokenizer. These tests
included correct data type, basic syntax, basic keywords, etc. These tests were beneficial in
creating a successful tokenizer used in future tests.

The parser included approximately 116 tests for expressions and statement validation. These tests
included type checking, expression evaluation, and statement evaluation. Using these tests, code
was written to which bytecode could be generated for.



The Java bytecode converter was the last formulated code, with 15 tests that checked for correct
conversion to bytecode from CatScript. Tests included, expression compilation, statement
execution, and function compilation. These tests were very beneficial in understanding how
CatScript is converted to Java bytecode.

Test Driven Development was a great way to manage the progress of the CatScript compiler.
Another life cycle model could have been more beneficial, but TDD is great for understanding
what needs to be done, and how it can effectively be accomplished.


