

Section 1: Program
A zip file of the final repository is included in this directory.

Section 2: Teamwork

This project was created with a test-driven development life cycle. The following

tests were created by my partner, Luke Cormier. He was able to provide higher-level

tests to check my Catscript program for any flaws. The tests provided were as follows:

Test 1

public void returnStatementWorksTest1() {

 assertEquals("11\n", executeProgram(

 "function foo(x : int) : int {\n" +

 "return x + 2" +

 "}\n" +

 "print(foo(9))"

));

}

Test 2

public void localAndVarStatementWorksProperlyTest() {

 assertEquals("16\n", executeProgram("var x = 16\n"+

 "var y = x\n" +

 "print(y)"));

 assertEquals("null\n", executeProgram("var x = null\n" +

 "print(x)"));

 assertEquals("5\n18\n93\n", executeProgram("for(x in [5, 18, 93]) {\n" +

 " var y = x\n" +

 " print(y)\n" +

 "}\n"));

}

Test 3

public void varInsideFunctionWorksProperlyTest() {

 assertEquals("82\n", executeProgram("function foo() : int {\n" +

 " var x = 82\n" +

 " return x\n" +

 "}\n" +

 "print(foo())\n"));

 assertEquals("18\n21\n35\n", executeProgram("for(x in [18, 21, 35]) { print(x)

}"));

}

The first test ensures that the return statement works when using the additive

functionality, and also includes a print statement to parse through. The second test

verifies variable initialization works properly while also manipulating the data

through division. It also includes a for loop to ensure you can use declared variables

in for loop logic. The final test checks to make sure function declaration and

function calls work. The tests are located in /csci-468-sprint2023-

private/src/test/parser/ProvidedPartnerTests/PartnerTests.

The documentation provided by my partner Luke goes through the basic functionalities

of the Captscript language. It is important to keep in mind that Catscript is

statically typed. The documentation starts by reviewing simple comparisons. The

document then proceeds to explain included operations like addition, subtraction,

multiplication, and division. The guide also mentions the implementation of unary

operations in Catscript. The language also includes lists. You are able to initialize

lists and manipulate lists in Catscript. A major factor of Catscript is functions. You

are able to call functions and also create functions with parameters. The parameters

can be any supported type in Catscript. The functions in Catscript can return any type

and can also be sent any type. The language also includes return statements which can

also compute simple operations on the same line. Catscript also includes if and for

statements. It is important to point out that in order to use an else statement it

must be before an if statement. Lastly, Catscript supports print and variable

statements. Catscript supports all the fundamental parts of a program.

My primarily work on the Catscript program was writing code that passed tests provided

by Carson Gross. The project was split into three checkpoints, the first being

Tokenization, Expression Parsing, Statement Parsing and Evaluation and Compliation.

Each checkpoint consisted of numerous tests that had to be working before moving on to

the next checkpoint. For example, tokenization had to be completely functional before

working on the parser. This is because the parser takes in a stream of tokens provided

by the tokenizer, so it was my responsiblity to ensure their was no bugs or failures

in methods I wrote that fulfill the test requirements. This pattern would repeat

itself for all of the other checkpoints in the project.

Section 3: Design pattern
An important design pattern I used in the parser is memoization. Memoization is the

practice of improving efficiency and run time in the architecture of a program. This

is done by storing the outputs of any function in a cache or a memory structure. There

is no need to re-compute values that have already been computed. This is when

memoization comes into play. A great time to use memoization is during an expensive

operation. An expensive operation is a function or statement that has a high run time.

For example, in a file that contains movies with corresponding genres, you could

create memoization to improve efficiency whenever parsing through the collection of

objects for horror movies. Whenever you want to call horror movies, you could call the

memoization created that stores all of the horror movies instead of redoing the parse

through a massive file. This dramatically improves the efficiency of your data

collection process.

Sometimes it is not worth it to use memoization. There is no need to use memoization

on simple functions. The cache takes up memory, and if you have memoization for every

simple function or statement, it might end up making your program less efficient.

Another time to not use memoization is when the data changes. This is because the

value stored in the cache would be outdated compared to the newly manipulated data.

For example, if you were to add a horror movie to the previous example, it would make

the cache miss that newly added horror movie.

In the source code, the memoization design pattern used in the Catscript parser is

located in csci-468-spring2023-private/src/main/java/parser/CatscriptType

The way memoization was implemented in the Catscript parser started with implementing

a HashMap. This will serve as our cache and will be static. It is static because there

is no reason for memoization to be dynamic because of how it fundamentally works. The

function then grabs the type of Catscript. It then checks to see if an instance of

that type already exists in the previously created HashMap. If it is equal to null or

doesn’t exist, it will add the listType to the HashMap, but it also checks to see if

it is already there to prevent redundancies. This is an efficient way to save on

runtime in the Catscript parser.

Section 4: Technical writing

Catscript Guide
This document is a guide for catscript. It will discuss the function, features,

operation of Catscript as well as how to code and the expected output after the

execution of the code block.

Introduction

Catscript is a simple scripting langauge. Here is an example:

var x = "foo"

print(x)

Features

Catscript holds many features such as support for comparison expression. Such

comparisons as greater than, less than, greater equal, less equal and equal equal are

all supported by catscript. Here is an example:

1 > 2

1 < 2

1 <= 2

1 >= 1

Output:

false

true

false

true

Catscript also supports the use of equality expressions. Such equalities include the

use of equal and not equal expressions which are essential for conditional statements.

Here is an example:

1 == 1

1 != 2

Output:

true

false

The Catscript language has built in support for additive, and factor expressions for

expressions in math. These are essential for calculations in the Catscript language.

Here is an example:

int w = 1 - 1

print(w)

int x = 1 + 1

print(x)

int y = 2 * 3

print(y)

int z = 6 / 3

print(z)

Output:

0

2

6

2

Unary is also supported through Catscript. This provides the capability to code

operands with operators to return a result. Here is an example:

not true

-1

Output:

false

-1

Primary expressions are also supported by the Catscript language. Primary expressions

are used to identify the results and are the building blocks of more complex

expressions. Here is an example:

int x = null

bool y = true

str z = "false"

Null and integer would be the primary expressions.

A list literal is an expression followed by another expression in a list. Here is an

example:

function foo() : list {

 return [1, 2, 3]

}

print(foo())

Output:

[1, 2, 3]

Function calls are used in Catscript to create an identifier with an argument_list.

Function calls allow users to delcare a function, create the body of the function then

call the function to run the code in the body. Here is an example:

function foo() {

 var x = 10

}

foo()

print(x)

Output:

10

Argument expression are supported by Catscript which are important in creating

argument varaibles for functions to take in. Here is an example:

function foo(x) {

 print(x)

}

foo(1)

Output:

1

Types can also be utilized by the Catscript language to create types for variables

such as integers, strings, booleans, object and lists. Here is an example:

function foo() : list<int> {

 return [1, 2, 3]

}

print(foo())

int w = 1

print(w)

str x = "Hello"

print(x)

bool y = true

print(y)

object z = object

print(z)

Output:

[1, 2, 3]

1

Hello

true

object

Parameters are also a part of the Catscript language and allow for assigning

identifiers to expressions. Here an example:

str: "Liam"

Or a parameter list

[str: "Liam", str: "Joe"]

For loops

Catscript is also built to support the use and function of for loops. With for loops,

blocks of code can be executed a specified number of times. Here is an example:

for(x in [1, 2, 3]){

 print(x)

}

Output:

1

2

3

Return statements

Return statements are crucial in getting a value from a function when it runs a block

of code. Here is an example:

function foo() {

 var x = 10

 return x

}

print(foo())

Outputs:

10

If statements

If statements are another functionality that is available in the Catscript language.

If statements allow for conditions that need to be met in order for the program to

execute. Here is an example:

int y = 12

int x = 11

if(x > 10){

 print(x)

} else {

print(y)

Output:

11

Print statements

Print statements are another feature of the Catscript language that allow for printing

a desired line of text or a variable. Here is an example:

print(1)

Output:

1

Variable statements

Variable statements are used in the Catscript language to identify operands as

variable in the language to be called upon or even altered in a later expression. Here

is an example:

var x = 10

print(x)

var y = x + 10

print(y)

Output:

10

20

Assignment statements

Assignment statements are used in the Catscript language to give variables or operands

a value such as "true", "false", or "null" to variables such as strings, integers, and

booleans. Here is an example:

var x = null

print(x)

Output:

null

Function Call statements

Catscript is also built to support the use and function of Function call statements.

This allows users to call the function they've created in order to run the code built

into the body of the function. Here is an example:

function foo() {

 print(1)

}

foo()

Output:

1

Section 5: UML

The figure above is a sequence diagram of a simple comparison expression “1 < 2”,

which should return true. It first starts with the user sending a string to Catscript.

The string is read from left to right, so you will be able to see how the Catscript

program handles a simple comparison string. Catscript then sends it to the lexer. The

reason for this is that the Catscript program uses the lexer to break up the inputted

string into a stream of tokens. This is a major component of the Catscript program,

because without a tokenizer the parser will not know how to sort through it.

In the next step of this example, Catscript sends the tokens to the parser. The parser

then calls parsePrimaryExpression() to identify the type of values. For this example,

the function identifies ‘1’ as an integer with the help of IntegerLiteralExpression().

After identifying the integer, the parser then calls the parseComparisonExpression()

to identify the “<”; Catscript knows it as “LESS.” The parser then calls

ParsePrimaryExpression() again to identify the ‘2’ with the help of

IntegerLiteralExpression(). After the parser reaches the end of the file, it then

calls ComparisonExpression in the parser to evaluate the expression. The evaluate

function grabs both 1 and 2 and assigns them to a left and right-hand side value. It

then checks to see if it is true or false, in this case, it is true. The parser then

sends the parse tree back to Catscript and then calls execute(). After executing the

parse tree, the return value is passed back to Catscript which is then passed to the

user.

Section 6: Design trade-offs
A fundamental design choice for the capstone project was the decision between a parser

generator and a recursive descent parser. Both a parser generator and a recursive

descent parser contain lexical grammar and language grammar. In a parser generator,

you are injecting files with specific syntax set by the developers of the parser into

the generator. They both create a tokenizer and pass a string into it. The tokenizer

generates tokens that then get passed to the parser. The parser then converts it into

a parse tree.

Recursive descent is the most popular form of parser and for good reason. They are

used in the most popular programming languages. The recursive descent parser is built

recursively with no way to parse backward. Based on the grammar, you are able to

design the parser to recursively call other functions as listed in the grammar.

Parser generators function differently and act more like a tool. They take in grammar

files that specify how the generator should work. Parser generators do not develop the

machine code or byte code like recursive descent parsers do. So in order to generate a

lexer you will need a lexical grammar file. The lexical grammar then gets processed by

the generator and then turned into generated code. You are then able to define a

language grammar, and just like the lexical grammar, it gets processed and turns into

generated code.

If you are in need of a basic parser, it would be wise to take advantage of a parser

generator tool like Antlr. However, if you are a company that will use the parser

extensively it would be better to create your own recursive descent parser. This is

for flexibility reasons.

There are pros and cons to using a parser generator or a recursive descent parser. The

big difference between a recursive descent parser and a parser generator is the

recursive descent parser is built with recursion in mind. There is a parser generator

called Antlr that generates a recursive descent parser, but it is not fully

customizable like the Catscript parser that was built with the recursive descent

algorithm. Another pro for creating your own recursive descent parser is that it is

debuggable. Since the parser generator creates its own code, it is difficult for the

programmer to customize the tokenizer because the code is so abstract.

Another reason to create your own recursive descent parser and avoid a parser

generator is because of the natural hierarchy. There are so many internal components

to a parser generator. You will not have true access to the generated tree without

using the visitor pattern. For example, for the Antlr parser generator, the parse tree

class is internal to Antlr. In the Catscript program, there are no restrictions to the

parse elements, because it was made by hand.

Section 7: Software development life cycle

model
The software development life cycle model used to create the compiler was Test Driven

Development. This development cycle focuses on writing the tests and expectations for

your code. There are five stages to Test Driven Developmemt. The first stage is to

write a simple test for your program. The most important part of this life cycle is

writing tests that match your expectations. The next stage is to run the test. The

test will fail because there is no implementation to match the logic of the test.

Next, is to actually write the code that makes the test pass. It is important to only

write enough code to make your test pass. Next, you will refactor your code. This

ensures there are no duplicates or bugs in your code. Examples of refactoring are

moving your code to a more logical spot, or even splitting your functions into smaller

sub-functions which makes the program even more versatile. Finally3, you would go back

to step one and repeat the process until your program meets all expectations. If you

maintain this life cycle your development might take longer than other approaches, but

you will have close to no bugs or unexpected logic.

There are an enormous amount of good outcomes that come out of this development cycle.

I personally prefer it over others because it keeps you on track. Before moving on to

the next component of the compiler, like executing expression statements, it was

reassuring that the precious parts of the program like the scanner were working

perfectly. Another strength of this lifecycle is because of how the cycle is built,

you have complete control over your tests.

A disadvantage of this type of development cycle is time constraints. Since you can

not move on to the next step of the program until you have passed all the tests you

are required to get the foundation completely right before working on other easier

parts of the program. Oftentimes we can overlook a simple mistake because we have been

staring at it too long.

Another disadvantage of this development cycle is there is little room for

flexibility. If a team were to work on this project using Test Driven Development, it

would be difficult to do asynchronous development. This is because a test has to be

completely passed before moving on to the next stage of development. The team could

not work on different aspects of the project concurrently.

Overall, I believe this to be the best possible software development cycle when

building a program by yourself. If it was more than one person developing this I would

prefer an asynchronous development cycle. This was a great way to keep me on track and

also to keep my code from causing problems in the other components of the compiler.

