

Makayla Broyles
CSCI 468

Spring 2023
Team: Cameron Wilcox

Program Specifica.ons

catscript_program = { program_statement };

program_statement = statement |
 function_declaration;

statement = for_statement |
 if_statement |
 print_statement |
 variable_statement |
 assignment_statement |
 function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
 '{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
 { statement },
 '}' ['else', (if_statement | '{', { statement }, '}')];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,
 [':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
 [':' + type_expression], '{', { function_body_state
ment }, '}';

function_body_statement = statement |
 return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expres
sion };

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") addi
tive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null
"|
 list_literal | function_call | "(", expression, ")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type
_expression, '>']

Teamwork
For our team we had a main developer for each project and a

quality/business analyst. To do this, both of us completed the project as a
developer we than swapped tests and documenta=on. This verified that we both
learned the material but also worked collabora=vely. Occasionally, we also met
up to help debug each other’s code if one of us was needing some help.

Design Pa5ern
 The design paCern we used is Memoiza=on which is a type of caching. It
allows for a func=on to only run once and stores the result in memory. Therefore,
when it is run again, it returns the cached result instead of running the logic.

public static CatscriptType getListType(CatscriptType type) {
 CatscriptType listType = LIST_TYPES.get(type);
 if (listType == null) {
 listType = new ListType(type);
 LIST_TYPES.put(type, listType);
 }
 return listType;
}

◦

Technical Documenta/on

Catscript Guide

Introduction

Catscript is a simple scrip-ng language wri2en for CSCI 468 (Compilers). Here is an example:

var x = "foo"
print(x)
function bar(y,z):int {
 return y+z
}

Features

For Loops
A for loop is used to iterate over a block of code a set number of itera-ons, typically itera-ng

over a list of items. In Catscript, for loops require a list of objects to iterate over. Here is an

example:

for (x in [1, 2, 3]) {
 print(x)
}

Print Statement
A print statement is used to send output to the terminal. Here is an example:
print("Hello World!")

If Statement
An if statement is used to branch depending on certain criteria. It may be followed by an else if

there is code that needs to be executed if the boolean logic is not true. Here is an example of

both:

var x = 1
if(x != 1) {
 print("not 1")
} else {
 print("is 1")
}

Functions
Func-ons are used to extract blocks of code that may have a special significance. You may need

to give it inputs, in which case parameters may need to be defined. A func-on may be wri2en to

do a special computa-on. If that is the case a return statement may be used as the last

statement in a func-on to return the value. Here is an example of two func-ons, one which has

no parameters and returns nothing, and one which computes the square of a number:

function print_hello() {
 print("hello")
}

function square(x) : int {
 return x*x
}

Types and Operators

Types
The Catscript language supports six different types:

● int - a 32 bit integer

● string - a java-style string

● bool - a boolean value

● list - a list of value with the type ‘x’

● null - the null type

● object - any type value

These can be seen in the examples below:

var an_integer = 100
var a_string = "hello"
var a_bool = true
var a_list = [1, 2, 3]
var another_list<bool> = [true, false, true]
var null_type
var any_type : object = "some_type"

As shown in the last variable declara-on, you can declare a variable type explicitly. In this

example, lists are declared

Operators

The Catscript language supports many different types of opera-ons on these types. These

include:

● != (not equals)

● == (equals equals)

● > (greater than)

● < (less than)

● >= (greater than or equal to)

● <= (less than or equal to)

● + (addi-on and string concatena-on)

● - (subtrac-on and nega-ve)

● / (division)

● * (mul-plica-on)

● not (not operator)

UML Diagram

Design Trade-offs
 The main design trade off when wri-ng the Catscript parser was using recursive decent
instead of a parser creator. Parser creators are normally encouraged when learning how to
create a parser but using recursive decent allows you to learn to program the parser correctly.
Parser creators create code that is hard to understand and debug which is not always the best if
you are s-ll learning. Using recursive decent allowed me to con-nue to improve my
programming skills and really understand how a complier works.

So<ware Development Life Cycle
 For my capstone project I used test driven development. This is where all requirements
are translated into tests and as you develop you con-nue to run the tests against the classes
un-l they all pass. This model made development simple since there was only one main
developer. This development life cycle is one of my favorites because it really enforces the true
requirements as you develop.

