CSCI 468
Spring 2023
Camille Custer
Avery Jacobson

Section 1: Program - include a link to the zip file mentioned above

See source.zip in this directory

Section 2: Teamwork - Discuss your partners documentation and testing contribution, as
well as your primary work on the project

My partner Avery Jacobson wrote the Catscript documentation that is in section 4 of this
document. He wrote complex tests for me to test my code as well. The workload was shared
with about an 80-20 ratio as | did all of the coding on this project.

Section 3: Design pattern - We are going to memoize type access in the review session

A design pattern used in this project was the memoization pattern. It is used when costly
functions are called multiple times with the same input instead of taking up excess space. The
first time it is called, the result is saved in a hashmap. When a function is called with the same
argument, the hashmap is searched and if the result is stored in it, the result will be returned. If
it is not in the hashmap, it will be added for future use. This improves the speed and efficiency of
the program.

Below is my implemented memoization pattern.

Map<CatscriptType, CatscriptType> LIST_TYPES HashMap<>();

CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST_TYPES.get(type);
listType null
listType ListType(type);
LIST_TYPES.put(type, listType);

listType;

Section 4: Technical Writing - Include the documentation generated by your partner for
the catscript programming language

Catscript Guide

Introduction:

Catscript is a statically typed functional programming language that
consists of commonly known expressions and statements in programming
languages. Documentation for this language is listed below.

A

Catscript Types

var: The Catscript “var” type initializes a name to a value within the
script. The “var:” may be followed by an explicit type, expression, or
can be implicitly defined.

Implicit:

Explicit:

object: The Catscript “object” is the root of the class hierarchy. Every
Catscript class has object as their superclass. “int”s, “bool”s, and all other
types implement methods of the object class.

int: The Catscript “int” type represents a whole number integer value ranging
from -2731 to 2731-1.

string: The Catscript “string” type represents a set of characters in a string
format. String values are immutable by default.

bool: The Catscript “bool” type represents a Boolean value. The “bool” type
can take on only two values, true or false. The bool type is essential in
programming logic.

null: The Catscript “null” type represents a null object value. This null
object value has no distinct string, integer, or Boolean value. The null
object represents an empty value.

list: The Catscript “list” type represents a list literal of any of the above
Catscript types. The type must be specified within brackets. The Catscript
list can be implemented as an iterator.

Expressions

Comments:

Comments in Catscript are snippets of text that are not read in by the
Catscript interpreter. You begin a comment with two forward slashes. A comment
is terminated at the end of the line.

Primary Expressions:

Primary Expressions in Catscript consist of any literal expressions or
identifiers present in the program. Primary expressions can be parenthesized.

The following are all examples of primary expressions:

Unary Expressions:

Unary expressions in Catsxript are either “-“ or “not”. The “-“ expression is
only applicable with an integer value, and will flip the value from positive
to negative, or negative to problem. The “not” expression is applicable with
Boolean values, and will invert the Boolean value.

The following are examples of unary expressions:

Factor Expressions:

Factor expressions in Catscript are only applicable to integer types. Factor
expressions use only “*” and “/” operators, are used to multiply and divide
integers, respectively.

The following are examples of factor expressions:

Additive Expressions:

Additive Expressions in Catscript are used to add or subtract values. Int type
objects can be added or subtracted form one another, while string values can
be added (by concatenation), but not subtracted. If an integer is added to a
string, the integer value will be treated as a string value and concatenation
will occur.

The following are examples of additive expressions:

Comparison Expressions:

Comparison Expressions in Catscript are used to compare two expressions, using
either “<”, “»*”, “<=", or “>="”. These operators (respectively) are less than,
greater than, less than or equal to, or greater than or equal to. These are
used to compare the lefthand side and righthand side. These expressions return
a Boolean value of either “true” or “false”.

The following are examples of Comparison expressions:

Equality Expressions:

Equality expressions in Catscript determine if the lefthand side is equal or
not equal to the righthand side. This expression uses the equality operator
“==” and the not-equals operator “!=”. This expressions returns a true or
false value similar to the comparison expression.

Statements

For Loop Statements: For loops in Catscript are very similar to for loops in
other languages. For loops begin with “for”, followed by an identifier,
followed by “in”, followed by another iterative identifier. This loop will
repeat for every element in the second iterative identifier, referred to by
the first identifier name.

OUTPUT:

5 is the number
6 1s the number
7 is the number

If Statements:

If statements in Catscript rely on an expression that returns a Boolean value.
If the expression within the if statement evaluates to true, the following
block of code will execute. A Catscript if statement also has the
functionality to implement an “else” clause. This else clause will execute if
the expression within the if statement evaluates to false. If statements
typically rely on a comparison expression, but can also execute off of an
equality or Boolean literal expression.

Print Statements:

Print Statements in Catscript operate using the “print” keyword followed by an
expression with surrounding parentheses. This expression is typically a string
value enclosed in quotations, but can also be a variable value. The print
statement then returns the value to a terminal.

F|

TPUT:
my message

Variable Declaration Statements:

Variable declaration statements in Catscript begin with the “var” keyword and
are followed by an identifier. The Catscript Type of the var can be determined
implicitly by following the identifier with an equals and assigning it a
value. Variable types can be explicitly defined by following the identifier
with a colon, and a Catscript type.

Function Declaration Statements:

Functions in Catscript are initialized using the “function” keyword, followed
by an identifier. The function is then later referenced or called using this
identifier. Following the identifier is a set of parentheses. If the function
requires parameters, you will initialize parameters within the parentheses.
This is followed by a block of statements enclosed in curly braces. This block
of statements is executed when a function call statement to the given
functions identifier is called.

Functions will either return an object, integer, string, list, Boolean, or
null.

OUTPUT: 3

Function Call Statements:

Function call statements in Catscript begin with an identifier that is linked
to a function definition. If the function definition requires input
parameters, these are placed within parentheses in the function call. If the
function does not require parameters, leave the parentheses blank. When the
function is called, the body within the function definition executes, given
the parameters you implemented.

Return Statements

Return Statements in Catscript begin with the “return” keyword and are
followed by an expression. Return statements are only callable within the
function definition body. The expression value following the return statement
will be returned by the function.

OUTPUT: 3

Section 5: UML - Include and discuss one of the UML diagrams included in this directory

Below is a simple UML sequence diagram of the compiler evaluating an expression.
if (2>1) {
print (2)
}

The compiler starts by tokenizing the expression. The tokenizer then passes those tokens on to
the parse to build the parse tree. The recursive descent algorithm begins with parseStatement()
function and goes through each function until there is a match. In this case, the match is with
the “parselfStatement()” method. After the if statement has been parse, the inside condition
(2>1) must be parsed. The inside expression is parsed as a comparison expression. After the
comparison expression evaluates to “true”, the inside expression of the if statement will be
executed. True is returned and “2” is printed.

Catscript expression evaluation example

F ¥

User Catscript Tokenizer Parser ParseTree
T T T T T
| | | |
| evaluate ("if(2 = 1){ print(2) }") | | |
[g | |
e .	
tokenize ("if(2 = 1) print(2) }") >	
tokens	
DR u	
: parse(iokens) I o :	
[v	
: : parseStatement() :	
]
	parselfStatement()
: : parseExpression() :	
	;
: : parseComparisonExprassion() :	
]
parseTres	
el [T	
: ll execute() lL o	
	"true’
Ittt T--""--- B B	
.	
2	[
	[
	[

Section 6: Design trade-offs - You must write this, maybe discuss recursive descent vs. a
parser generator?

Using a recursive descent parser instead of a parser generator made understanding the
structure of the parser much easier. Recursive descent gives total control over the parsing and it
takes much less work. Recursive descent is much more efficient and easier to debug than a
parser generator. This project was my first time using recursive descent and | found it to be
logical and simple to understand. The recursive descent structure of the parser followed the
grammar almost exactly, making a pyramid-like design for the code, starting with the broadest
function at the top.

Section 7: Software development life cycle model - We did Test Driven Development,
please discuss your experience with it

TDD was the best possible software approach for building the compiler as it is such a large
project. With TDD, | was able to start small and take each test on one by one, rather than
feeling overwhelmed trying to write the entire thing at once. My experience with TDD really
helped me learn to debug my code as well. Prior to using TDD, | manually debugged my code
which takes way longer than if | had help from the debugger in VSCode. Most tests began as
failed and through simple code writing | was able to get tests to pass. Once the tests passed, |
was able to increase the complexity and quality of my code until it met all requirements.

