Montana State University Computer Science Department
Senior Team Portfolio
CSCI 468 Compilers
Spring 2023

Alexander Fischer, Devan W. Eastman-Pittam

Section 1 Program:

You can find the project files in a zip file contained in the /capstone/portfolio directory of

my csci-468-spring2023-private github repo.
Section 2 Team Work:

For this project we had four major sections that we worked on during the semester. The
first was tokenization and being able to break apart code into readable tokens. The
second was working on parsing to be able to understand the tokens we produced during
tokenization. The third was evaluating the parsed tokens and statements. And finally
was generating bytecode for outputting results. Each group member wrote tests for the
other, which can be found in the byte code test area. Both group members spent
roughly 20 hours working on tests for the other member and assisted in their ability to
complete them. Team members 1 and 2 had roughly equal contribution in the group

work going towards completion of the project. Tests are in the bytecode test folder.
Section 3 Design Pattern:
HashMap<CatscriptType, ListType> HashMap<> ()

CatscriptType getListType (CatscriptType type) {

ListType maptype = .get (type)

(maptype==) {
ListType lstype = ListType (type)

.put (type, lstype)

For our project we used the memoization design pattern in our code as it fit the needs of

our project the most.

Memoization is the process of adding repeated data requests to a certain cache
location, and accessing the result from the cache in order to get the result instead of
constantly calculating the same result of a function over and over again. This limits the

total object creation amount and speeds up the program.

Section 4 Technical Documentation / Partners Catscript

Documentation:

Introduction

Catscript is a statically typed scripting language that is compiled to Java Virtual Machine
(JVM) bytecode. It is designed to be simple, and efficient.

Comments

Comments are used to document your code and make it more readable. In Catscript,
you can add comments using the two forward slash characters // followed by your

comment.

For example:

Variables

To declare a variable in Catscript, you must use the var keyword followed by the

variable name and variable type if required.

For example:

Catscript supports the following variable types:

int for integers values

e string for string values

e bool for Boolean values

e list for initiating a list of values
e null for null values

e object to create an instance of an object

Print Statements

Catscript has a built-in statement to print directly to the console. You can use print() to

print the value(s) you would like.

For example:

Math Operations

Catscript supports basic math operations such as: addition ‘+’, subtraction ‘-,

multiplication *’, and division ‘/’

For example:

Comparison Operations

Catscript supports greater than ’>’, less than ‘<’, greater than or equal to >=’, and less

than or equal to ‘<=’ operators.

For example:

Equality Operations

Catscript supports ‘=="and ‘1=’ operations for comparing equality and not equality

For example:

Unary Expressions

Catscript has two ways to negate values depending on type: ‘-* for variables and ‘not’ for

Boolean values.

For example:

var X
var y = -
print(x + y)

var z =

print(not z)

For-Loops

Catscript supports for-loop statements using the ‘for’ keyword. You can iterate over

each item in a list using the ‘in’ keyword

For example:

var list = [1,2,3]

(x in list){
print(X)

If-Else Statements

Catscript supports if-else statements for conditional branching. You can use the ‘if’
keyword followed by an expression and the body of code to run within your if statement.
You can also use ‘else if’ and ‘else’ to specify alternate conditions if the first condition is
not met.

For example:

While Loops

The while loop is used to execute a block of code if a certain condition is true. The

condition is checked before each iteration of the loop.

For example:

In the above code you can see that x will increase by 1 for each iteration of the loop

until x is equal to 10.

Functions

Functions are used to encapsulate a block of code and make it reusable. In Catscript,
functions are defined using the function keyword followed by the function name and a

set of parentheses containing any parameters that the function accepts.

For example:

function add(x,y){
X +y

}

var result = add(3,5)

print(result)

As seen above, the add function accepts two parameters x and y, adds them together,

and returns the result.

Section 5 UML.:

Catscript Multiplication Diagram

USER CATSCRIPT TOKENIZER PARSER PARSETREE

evaluate (2*3)

tokenize (2%3)

return tokens

[T
| |
| |
| |
| |

»! |
| |
| |
| |
' |

parse(tokens)

return parse tree
T

execute()

ngn

Y Y S Y-~
P R S B 4

-4 __]

[
L
[
[
i
[
[
I

Here is an example of how the catscript compiler functions for multiplication, in it it
shows the steps of sending requests for multiplication, tokenizing, parsing, executing,

and returning results.
Section 6 Design Trade Offs:

For this project we used recursive descent parsing which is a top down style parser
instead of bottom up parsing which had quite the large effect on the design decisions

made while working on project development.

Recursive descent is useful as you can better add to the process during development
working with tokens directly as your needs evolve instead of working with expressions

and grammars, but can cause issues as it is quite in depth to work with.

Section 7 Development Model:

For this project we used the test driven development model TDD. Carson developed
different tests for each portion of the project along the way and the end goal was to

have a complete compiler by the end of the semester.

Some benefits were that we had a clear goal in mind while working on the project and
that we could gradually progress along the way without having sudden changes to

expectations or assignments.

Some issues going with this style of development were that we were shoehorned into
certain coding decisions that we would not choose to fit the existing tests even if

another method could present comparable results.

