
CSCI 468 Capstone Portfolio
Compilers: CSCI 468

Spring 2023
Justin Kerr, Billy Wood



2 Kerr

Section 1: Program

https://github.com/jikerr15/csci-468-spring2023-private/blob/main/capstone/portfolio/sour
ce.zip

Section 2: Teamwork

Our team consisted of two members, referred to as Team Member 1 and Team Member 2, who
collaborated effectively to complete this project. Each team member contributed a significant
amount of time and effort towards the project. The team members had different and specific jobs
to complete and the effort by both led to a successful outcome. The contributions are as follows:

Team Member 1 Contributions (Myself: Justin Kerr)

As the primary engineer, Team Member 1 was responsible for tokenizing, parsing, evaluating,
and compiling the CatScript language. They meticulously worked through the phases of coding
and testing, ensuring that the parser could accurately interpret and execute a diverse array of
CatScript programs. Their focus was on constructing a robust and efficient parser capable of
handling various language constructs, data types, and expressions.

Team member 1 developed and implemented three test cases to test against his own Catscript
language but also to test against team member 2 Catscript language.

1. Complex Expression Parsing Test (parseComplexExpression()): This test case assessed
the parser's ability to accurately parse and interpret complex mathematical expressions
involving arithmetic operations and comparisons. The test verified the correct formation
of equality, additive, and integer literal expressions within the parsed expression tree.

2. Function Call with Complex Arguments Test
(parseFunctionCallWithComplexArguments()): This test case evaluated the parser's
ability to parse function calls containing a mix of different argument types, including
integer literals, nested function calls, and list literals. The test ensured that the parser
correctly identified the function name, the number of arguments, and the argument
types.

3. Nested List Literal Expression Parsing Test (parseNestedListLiteralExpression()): This
test case verified the parser's ability to accurately parse nested list literals containing
integer literals and other nested lists. The test examined the correct formation of list
literal expressions, the number of values within each list, and the types of values
contained in the nested lists.

Team Member 2 Contributions

https://github.com/jikerr15/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip
https://github.com/jikerr15/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip


3 Kerr

Team Member 2 was responsible for generating detailed technical documentation outlining the
syntax, structure, and features of the CatScript language. This documentation served as a
crucial resource for understanding the language's underlying principles and guided the
development of the parser.

Moreover, Team Member 2 developed and implemented three test cases to evaluate the
parser's functionality:

1. Fibonacci Sequence Test (fibonacciSequence()): This test case assessed the parser's
ability to execute recursive functions by calculating the Fibonacci sequence up to the
10th element.

2. String Concatenation in For Loop Test (stringConcatenationInForLoop()): This test case
evaluated the parser's ability to process string concatenation within for loops, ensuring
the parser's capacity to handle complex expressions.

3. Sum Square Difference Test (sumSquareDifference()): This test case verified the
parser's ability to compute the difference between the sum of squares and the square of
sums within a specified range of numbers.

Our team's collaborative efforts in documentation, test case development, and parser
implementation resulted in a highly functional and reliable parser for the CatScript language.
Team Member 2's contribution in generating technical documentation and developing essential
test cases played a critical role in ensuring the parser's accuracy and dependability, while Team
Member 1's work on tokenizing, parsing, evaluating, and compiling provided the foundation for
the project's success.

Section 3: Design Pattern

In my capstone project, I used the Memoization design pattern to optimize the performance of a
certain part of the code. Specifically, I implemented memoization in the CatscriptType class to
avoid the expensive creation of new ListType instances whenever the getListType method was
called with the same CatscriptType argument.

public static CatscriptType getListType(CatscriptType type) {

ListType listType = memoizedListTypes.get(type);

if (listType == null) {

listType = new ListType(type);

memoizedListTypes.put(type, listType);

}

return listType;

}



4 Kerr

I chose to use the Memoization pattern in this case because creating new ListType instances for
every call to getListType was computationally expensive, and it was common for the same
CatscriptType to be used multiple times. By implementing the Memoization pattern, I
significantly reduced the overhead of creating new ListType instances by storing previously
created instances in a HashMap and returning them when the same CatscriptType was
requested again.

This design pattern led to improved performance, lower memory usage, and a more efficient use
of resources in the capstone project. Using the Memoization pattern allowed the program to
focus on executing other parts of the code, thus providing a better overall user experience.

Section 4: Technical Writing

Catscript Guide

Introduction

Catscript is a simple scripting language. Catscript is a compiled language, and is compiled into
JVM bytecode. Catscript is not an object-oriented language, but a procedural language. The
concepts of classes, methods, and data structures are not present in Catscript, however the
goal is to follow a sequence of tasks and to perform each task in order.

Features

Data Types

There are six data types within Catscript. They are:

int - a 32-bit integer
string - a Java-style string
bool - a boolean value
list - a list of value(s) of type 'x'
null - null type
object - a value of any type

There are no floating-point numbers, only signed integers.

Strings in Catscript are similar to strings within Java. They are immutable and placed within a
string pool.

The two boolean values are true and false.



5 Kerr

Lists are the only data structure within Catscript. All elements within a list must all be of the
same type.

Comments

There are only line comments in Catscript. A line comment can be created by placing two
forward slashes directly next to each other " // ".

// This is a comment in Catscript and will not be seen as executable code.

Any code written on the same line as a comment will not be compiled

// print("This code will not print.")

// The for loop below will result in an error

for(x in [1, 2, 3]){

print(x)

//}

Line endings

Catscript does not require a semicolon (;) or any other character to terminate a line of code.

Variables

Variables are declared using the `var` keyword. Variable types can be declared explicitly, but
are not required.

Variable Declaration with Implicit Type

var x = "foo" // the type of 'x' is string

var y = true // the type of 'x' is bool

var x = "bar" // This is an illegal declaration. A variable with name 'x'

already exists

// Assign existing variable a new value

x = "bar" // is a legal assignment, and is now bool type



6 Kerr

x = 1 // is also a legal assignment. 'x' is no longer bool type and is now

int type

Variable Declaration with Explicit Type

var x : string = "foo" // variable 'x' must be assigned a value of string

type

var y : int = 1

var yy : int = "bar" // will raise an error for an illegal assignment

var z : object = "" // type object can have any value

var a : list<int> = [1, 2, 3] // list type must be followed with the type

of elements to hold

var b : bool = true

//Variables keep their explicit type declaration during reassignment

var num : int = 1

num = 2 // is a legal assignment

num = "bar" // is an illegal assignment. 'num' was expecting a value of int

type

Scope

Catscript uses static scoping, and variables can be global or local.

var x = 10 // this is a global variable

if(true){

var y = 5 // this is a local variable

// 'y' can only be seen within this if statement

print(x) // 'x' is visible and accessible within the if statement



7 Kerr

print(y)

x = x - y

}

print(x)

print(y) // 'y' is not able to be seen or accessed

//outside of its declaration in the if statement

// This will result in an error

Mathematics

Catscript supports addition(+), subtraction(-), multiplication(*), and division(/). Parentheses can
be used in an expression for operation precedence.

2 + 2 // evaluates to 4

2 - 2 // evaluates to 0

2 * 2 // evaluates to 4

2 / 2 // evaluates to 1

2 * (2 + 2) - 2 // evaluates to 6

Math operations can be used during declaration or reassignment

var val = 1 + 1

val = val * 2

Boolean Expressions

There are three boolean expressions in Catscript:
1. Boolean Literals
2. Value Comparison
3. Equality

Boolean Literals



8 Kerr

Literals values are `true` and `false`

Value Comparison

There are four comparison operators:
1. Greater than (>)
2. Less than (<)
3. Greater than or equal to (>=)
4. Less than or equal to (<=)

2 > 1 //evaluates to true

2 >= 2 //evaluates to true

2 > 2 //evaluates to false

2 > 3 //evaluates to false

Equality

Two equal signs (==) are used to check for equality.

2 == 2 // evaluates to true

2 == 3 // evaluates to false

Not Operators

There are two not or negation operators: the keyword `not` and `!` (bang).

not is used with boolean literals

not true // evaluates to false

not false // evaluates to true

not can be used recursively

not not true // evaluates to true



9 Kerr

not not false // evaluates to false

! is used to negate equality expressions and to check for inequality

2 != 2 //evaluates to false

2 != 1 // evaluates to true

Boolean Variables

Variables can be assigned with boolean expressions. The value of the variable is the result of
the expression.

var boolresult = 2 > 1 // the value of 'boolresult' is true

boolresult = 2 != 2 // the value of 'boolresult' is false

Strings

Strings are immutable and cannot be indexed or sliced. Strings can be concatenated using the
addition(+) operator.

var hello = "Hello"

var world = "World"

var greeting = hello + " " + world // "Hello World"

Strings can be concatenated with any data type to create a new string.

1 + "a" // "1a"

"a" + 1 // "a1"

null + "a" // "nulla"

"a" + null // "anull"

For Loops

For loops being with the `for` keyword. The following expression must be contained within
parentheses, and the body of statements must be contained within braces.



10 Kerr

The expression must contain:

1. Variable name
2. in keyword
3. expression indicating when the loop will terminate

for(x in [1, 2, 3]){

print(x)

}

The for loop above will loop three times and print each element in the list [1, 2, 3].

If Statements

Catscript only supports if and else statements. There is no if-else statement within Catscript.
The expression must be a boolean expression. An if statement can be by itself or joined by an
else statement. An else statement must be preceded by an if statement.

//equality

if(1 == 1){

print("1 is equal to 1")

}

if(1 != 2){

print("1 is not equal to 2")

}

//comparison

if(2 > 1){

print("2 is greater than 1")

}

if(2 <= 1){

print("1 is greater than or equal to 2")

}



11 Kerr

//true or false

if(true){

print("true")

}

else{

print("false")

}

if(false){

print("false")

}

else{

print("true")

}

Creating Functions

Functions are created using the `function` keyword, followed by the name of the function and
ending with a left parenthesis and a right parenthesis.

Function declarations must contain a left brace and a right brace, between which statements are
written for the function body.

function myfunction(){

print("This is my function!")

}

Functions can have arguments or parameters. The type of the argument or

parameter is not required.

function myfunction1(arg1, ...){

print("This is my function with arguments!")

print("Here is argument number 1:")

print(arg1)

}

The argument or parameter of a function can have an explicitly declared type.



12 Kerr

function myfunction2(arg1 : int){

print("This is my function with explicit argument types!")

print("arg1 is an integer")

print(arg1)

}

Functions can have an explicitly declared return type

function myreturnintfunction() : int{

return 1

}

Functions with object return type can return any data type

function myreturnfunction1() : object{

return 1

}

function myreturnfunction2() : object{

return "Hello World!"

}

Functions can be recursive.

function myrecursivefunction(arg1 : int){

if(x >= 0){

myrecursivefunction(x - 1)

print(x)

}

}

This recursive function will count up from 0 to 10 and print each number to the user's screen.

Calling Functions

Functions that have been declared are called with the name of the function followed by a left
parenthesis and a right parenthesis. Any function arguments go in between the parentheses in
the proper order, and are comma separated.



13 Kerr

myfunction()

myfunction1(arg1, ...)

var x : int = 10

myfunction2(x)

var invalidArg : string = "foo"

myfunction2(invalidArg) // 'invalidArg' is an illegal argument type.

// Expected int but string was given

myrecursivefunction(x)

Section 5: UML Diagram

The Catscript Multiplication Sequence Diagram demonstrates the interaction between various
components of a simple arithmetic expression evaluation in the Catscript language. The
diagram shows the flow of events when a user inputs an expression, "10 * 3", and the system
processes it to return the result, "30".

The main components participating in the sequence are:

1. User
2. CatScript
3. Lexer
4. Parser
5. ParseTree

The process begins with the User providing an arithmetic expression to the CatScript
component. In this case, the expression is "10 * 3". CatScript is responsible for coordinating the
activities of the other components. Upon receiving the expression, CatScript activates the Lexer
component to tokenize the input. The Lexer processes the expression and returns a set of
tokens to CatScript. Next, the Parser component is activated by CatScript, which sends the
tokens to the Parser for parsing. The Parser uses various parsing functions (e.g.,
parseExpression(), parseFactorExpression(), and parseIntegerLiteral()) to build a parse tree
representing the input expression. Once the parse tree is created, CatScript receives it from the
Parser and proceeds to execute it by activating the ParseTree component. The ParseTree
component executes the parse tree and returns the result, "30", back to CatScript. Finally,
CatScript delivers the result to the User, completing the process. The Catscript Multiplication
Sequence Diagram effectively illustrates the series of interactions and steps involved in
evaluating a simple arithmetic expression using the Catscript language. This diagram can be



14 Kerr

useful in understanding the flow of information and control among the different components
involved in the process.

Section 6: Design Trade-offs

In the development of the Cat Script parser for our capstone project, we faced a critical design
trade-off: whether to create the parser by hand or to use a parser generator. We ultimately
chose to hand-code the parser and employ a recursive descent algorithm to construct it. This
decision was driven by our desire to gain a deeper understanding of the grammar and to tackle
potential issues that may arise during the development process.

The recursive descent algorithm is a top-down parsing method that starts with the highest level
grammar rule and recursively applies production rules to match the input string. This approach
allows for greater control over the parsing process and enables the implementation of specific
error handling mechanisms. Moreover, it offers a clear and structured representation of the
grammar rules, which simplifies debugging and maintenance.

There were several advantages to hand-coding the parser. Firstly, it provided us with an
enhanced understanding of the Cat Script grammar, which was crucial in identifying and
addressing potential parsing challenges, such as dealing with ambiguous or left-recursive rules.
Secondly, developing the parser manually gave us greater control over the parsing process,
allowing us to fine-tune the parsing algorithm and implement custom error handling and
recovery mechanisms. This led to a more robust and user-friendly parser. Thirdly, hand-coding
the parser enabled us to optimize it specifically for the Cat Script language, potentially resulting
in better performance compared to a parser generated by a general-purpose parser generator.
Lastly, the process of creating a parser by hand served as a valuable learning experience,
deepening our understanding of parsing algorithms, grammar rules, and language design
principles.

However, there were also disadvantages to hand-coding the parser. Creating a parser from
scratch is a time-consuming process, which could have been reduced by using a parser
generator. Additionally, manually developing the parser increases the chances of introducing
errors in the implementation, which may affect the parser's correctness and robustness.
Furthermore, modifying the grammar in the future may require significant manual updates to the
parser, whereas a parser generator can automatically adapt to grammar changes.
In conclusion, the design trade-off of creating a Cat Script parser by hand using a recursive
descent algorithm proved to be beneficial for our capstone project. The advantages, including
enhanced understanding of the grammar, greater control over the parsing process, optimized
performance, and the educational value, outweighed the drawbacks. This decision facilitated the
development of a robust and efficient parser tailored specifically for the Cat Script language,
leading to a successful Catscript Parser.



15 Kerr

Section 7: Software development life cycle model

In our capstone project, we utilized the Test-Driven Development (TDD) model, which is an
iterative software development process that emphasizes writing tests before implementing the
actual code. Adopting this model played a significant role in ensuring the robustness and
accuracy of our cat script programming language projects. Our professor supplied us with the
initial tests, which provided a solid foundation for our work. Additionally, we created some of our
own tests to challenge each other, ensuring that both projects met high-quality standards.
The TDD model provided numerous benefits to our team, including improved code quality.
Utilizing the tests supplied by our professor and creating our own tests allowed us to establish a
strong basis for our programming language, ensuring that it met the desired specifications and
behaved as expected. The model also enhanced collaboration among team members. By
exchanging tests with one another, we were able to review and provide feedback on each
other's work. This process facilitated learning and enabled us to improve the overall quality of
our individual projects.

Another advantage of the TDD model was easier debugging. This approach helped us identify
and fix bugs early in the development process. By running tests frequently, we could isolate
issues and resolve them promptly, minimizing the impact on our project timelines. Moreover, the
TDD model led to faster development, as we could develop our projects incrementally, ensuring
that each new feature was thoroughly tested before moving on to the next. This approach
reduced the likelihood of encountering major issues later in the development process and
accelerated overall progress.
The test suite created during the TDD process, including the tests supplied by our professor and
those developed by ourselves, also served as valuable documentation, making it easier to
maintain and update our projects in the future. However, the TDD model also posed some
challenges for our team. Writing tests before implementing code can be time-consuming,
particularly at the beginning of the project. Luckily the professor provided most of these which
mitigated some of that issue.

Another challenge was achieving complete test coverage. While we strove to create
comprehensive tests, it was difficult to ensure that every possible scenario was covered. As a
result, there may have been some edge cases that our tests did not account for.
In conclusion, the Test-Driven Development model greatly benefited our team in the
development of our capstone projects. It allowed us to create robust, accurate, and
maintainable cat script programming language implementations while fostering effective
collaboration and learning from one another. Despite the initial time investment and potential for
incomplete test coverage, we believe that the advantages of TDD, combined with the guidance
of our professor and our own testing efforts, far outweighed the challenges.


