S¥Ey Senior Compiler

Portfolio

Kruize Christensen &
Zach Snyder

Christensen, Kruize
MONTANA STATE UNIVERSITY

Catscript Documentation

Section 1: Program
This is located in the directory csei-468-spring2023/capstone/portfolio/source.zip

Section 2: Teamwork

With this compilers project, we were told to choose a partner toward the beginning of the
semester. The partner I chose was Zach Snyder who I have personally worked with in other
classes and projects. Also his reputation of being a hard worker from other students at Montana
State University. Like every other class, we have set up a repository on GitHub we each had our
separate code to work on. So it made working on this project a little interesting. What I mean by
that is we basically worked separately until one of us came to an impasse on one of the tests.
Most of the time, working separately caused us to run into different issues, where the others

could walk through how they got their test to pass.

Member 1 Member 2
Contributions: Contributions:

- Main Coder - Tester

- Problem Solver - Ideas/methods

Percentage Worked: 60% contribution

of time

Percentage Worked: 40% contribution

of time

Member 2 Tests

additive

print(%"Hella

print(y~Hello World!

Member 1 Tests

executeProgram

ossertEquals

Section 3: Design pattern

The memorization pattern, also known as caching, is a design pattern used in computer
programming to optimize the performance of an algorithm by storing the results of time-

consuming calculations and returning them when the same calculation is required again.

This design pattern is particularly useful when dealing with repetitive computations, as it

can significantly reduce the time needed to execute them. By saving the results of a calculation,

the algorithm can avoid repeating the same calculations multiple times, thereby improving the

overall efficiency of the code.

In the case of the project, the class decided to implement the memorization pattern by
using a HashMap to store the Catscript Types that were determined in the code. This allowed the
program to save time-consuming calculations and retrieve them later if the same input was
provided again. The HashMap provides a fast and efficient way to store and retrieve data,

making it a suitable choice for this purpose.

Overall, implementing the memorization pattern can help improve the efficiency and
speed of the code by reducing the number of calculations required. It is a useful design pattern to
consider when dealing with algorithms that involve repetitive computations or when the speed of
the code is a crucial factor.

e T T o AT T
TODO memolze this cao

HashMap

Section 4: Technical writing

1

Introduction

This program is a compiler for Catscript. Catscript is a statically typed
language that can compile to JVM Bytecode. It uses a recursive descent
parser and is able to work with objects, type inference, and primitives. It can

also work with other features that will be shown later in the documentation

Background

A compiler takes code written in one language and translates it into another
language. Mostly, it will take code in text form and export it into binary
form. The way our compiler works is through its five main components: the
tokenizer, the parser, the JavaScript transpiler, evaluator, and bytecode. We
developed it in the JetBrains software, IntelliJ, and used GitHub as our
repository. Carson Gross designed the project and gave us everything we

needed to finish it.

Expressions

An expression is a bit of code that will evaluate to some integer, string, or
boolean at some point. All expressions in Catscript inherit an abstract
Expression class. The abstract expression class uses a method called

getType() to return what type that a given expression will evaluate to.

3.1 Primary Expression

Primary expression may be any of the following:

e [dentifier
e String literal
e Integer literal
e Boolean literal
e Null literal
e List literal
e Parenthesized expression
e Function call
Any of the expression/statement that has another expression will at some

point become a form of a primary expression.

3.2 Factor Expression

Multiplication and division are implemented with the factor expression. The
operations are * and /. The following are valid factor expressions in

Catscript:

foo * -2

4 / -2

(x -y)*5

3.3 Additive Expression

Addition and subtraction is done with the additive expression. The
operations are + and -. The + operator can also be used for string

concatenation. The following are valid additive expressions in Catscript:

foo + 6

10 - 6

bar + “foo”

3.4 Unary Expression

Not and negative are done with the unary expression. The operators for this

are ‘not’ and -. The following are valid unary operators in Catscript:

not true

3.5 Identifier Expression

The variables are implemented with the identifier expression. This
expression holds a string as it’s variable name. It also contains the variable’s
type since Catscript is a statically typed language. The name of the variable

is then used to look for its value in the symbol table.

3.6 Equality Expression

Equals is implemented with the equality expression. The operators for this is
== for equals and != for not equals. The following are valid equality

expressions in Catscript:

X jrt—
x =10

foo == bar -y

3.7 Comparison Expression

Less than, greater than, less than or equal to, and greater than or equal to are
all implemented with the comparison expression. The operators in order are
<, >, <=, and =>. The following are valid comparison expressions in

Catscript.

X <342

foo * 3 => bar * y

3.8 Conclusion of Expressions

This wraps up how the expressions are implemented in Catscript. Next will

be the documentation on the implementation of statements.

4 Statements

Just like how the expressions are all inherited from the Expression class, all
statements in Catscript inherit from the Statement class. Statements differ
from expressions by changing the program's state as opposed to how

expressions evaluate to a value.

4.1 Assignment Statement

Variables are modified with the assignment statement. The following

includes the syntax for the Catscript assignment statement:

e I[dentifier
e =symbol
e Expression

The following has valid assignment statements in Catscripts:

x = 5
foo = “Hello world!”
x =1 + 1

4.2 For Statement

Syntax for For Statement includes the “in” keyword. The for statement is
only used for iterating through a list and can't count to a certain value.

Catscript for statements require the following:

e ‘For’ keyword
e ‘(‘ symbol
e A variable name

e ‘In’ keyword

e An expression

e ‘)’ symbol

e “{‘symbol

e A series of lines to evaluate
e ‘}’symbol

The following is a valid for statement in Catscript:

for (xin[l, 2, 3, 4, 5]{

print(x)

4.3 Function Call Statement

In order to call a statement, you need to use a function call statement. The
program makes sure that the number and type of the arguments match the
definition of the function. As well, the program checks for a function that
exists with the same name and is in the symbol table. Function calls are

made with the following:

e Function name

e ‘(‘ symbol

e Function arguments
e ‘)’ symbol

The following is an example of a Catscript function call:

foo(x, V)

aFunction(foo, bar)

4.4 Function Definition Statement

Functions that can be used elsewhere are defined by the Function Definition
Statement. All functions can have a return type. But they can also return void
if there is no given void type. Functions in Catscript are created as the

following:

e ‘Function’ keyword
e Function name

e ‘(‘ symbol

e Parameter list

e ‘)’ symbol

e ‘:’symbol as well as the functions return type (optional)

e ‘{‘symbol
e Lines of statements for the function to evaluate
e ‘}’symbol

The following is how Catscript functions are defined:

function foo (x : string, y : string){

return X +vy

4.5 If Statement

Syntax for if statements require the ‘if” keyword as well as ‘else if” and
‘else’ optionally. It is used to determine if the block of code underneath it

can run or not. The if statement in Catscript is created as the following:
e ‘If’ keyword
e ‘(‘symbol

e Expression

e ‘)’ symbol
e ‘{‘symbol
e A series of lines to execute
e ‘}’symbol
e Optional ‘else’ keyword
o Optional ‘if” keyword and statement
o “{‘ symbol
o Series of lines to execute
o ‘}’symbol

The following is a valid if statement in Catscript:

if (x=>5){
print (x)

b

else if (x < 0){

print y

4.6 Print Statement

The Print Statement is used to print lines. The keyword “print’ is required for
this. The print statement can only have expressions passed into it. The

following is the syntax for print statements:

e ‘print’ keyword

e ‘(‘ symbol

e Argument or string
e ‘)’ symbol

The following is an example of a Catscript print statement.

print (“Hello World!™)

print (X)

4.7 Return Statement

In order to exit a function, the return statement is used. This would possibly
return any value. This statement can only be used inside of a function.
Otherwise, it throws a syntax error. The return statement in catscript has the

following syntax:

e ‘return’ keyword

e Expression that is being returned

The following is an example of a valid return statement in Catscript:

function foo (x : int, y : int){

return X +y

4.8 Variable Statement

New variables are declared and assigned with the variable statement.
Catscript can not declare a new variable without giving an expression that is
to be assigned as a value. If a type is not specified, the variable type is
guessed from the getType() method. Otherwise, Catscript verifies if the type
is assignable from a type that is meant to be returned from the expressions
getType(). If it doesn’t, then the program will throw an Incompatible Types

error. The following is the syntax for Catscript variable statements:

e ‘var’ keyword
e Variable name
e ‘=’symbol
e Expression

The following are valid variable statements:

var x = 5

var y : int = 5

S Type System

A very simple type system is used in Catscript. The following include the
proper types:

e String - A string similar to how Java operates

e Int - A 32 bit integer

e Bool - a boolean value that can either be true or false
o List<x> - alist of values of a given type (x)

e Object - type of value

e Null - null type

6 Conclusion

Through this project, we learned a lot about how coding languages are made and

how we’d go about making our own if needed in the future. We got to put the

pieces together with each stage to learn how a compiler works to translate

languages. This is a project that has inspired me to make my own language in the

future.

Section 5: UML

FunctionCallExpr

sonExpression

dentifiertxpression

iteralExpression

SyntaxErrorExpression

v

ParsaElement

Variob!

FunctionDefinitionst

Uy &

Statement <
NAr¥

FunctionCollStatement

PrintStatement

Hooleanti

SeriptProgrom

ReturnStater

¥ErrorStatement

enthesizedExp

essian

Section 6: Design trade-offs

When learning about and using the recursive descent algorithm, which is a way to create
parsers. The way this works is that we create a function for each production in the grammar of
the language we're working with. These functions are then called recursively throughout the

program as needed to parse the input we're given.

For example, imagine we want to create a parenthesized expression like (6+3). We would
start by calling the "expression" function and then work our way down to the
"primary_expression" function to get the necessary parenthesis. After that, we'd call the

"expression" function again. This shows how the algorithm works recursively to parse input like

(((145)-2)+7).

By using the recursive descent algorithm, we're able to break down complex expressions
and parse them efficiently. It's a powerful technique that's widely used in programming,
particularly in parsing languages. I also really enjoyed using the diagram below as a reference for

the majority of the coding.

catscript_program = { program_statement };

program_statement = statement
function_declaration;

statement = for_statement
if statement
print_statement
variable_ statement
assignment_statement
function_call_statement;

for_statement = "for', "(', IDENTIFIER, 'in', expression "),

{", { statement }, "}';

if_statement = "if', "(', expression, "),
{ statement },
'} ["else', { if_statement “{", { statement }, '}

print_statement = 'print', "(", expression, ")’

variable statement = "wvar', IDENTIFIER,

[":", type_expression,] "=", expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=", expression;

function_declaration = "function®, IDENTIFIER, "(", parameter_list, "}" +

[":" + type_expression], "{", { function_body_statement }, '}’

function_body statement = statement
return_statement;

parameter_list = [parameter, {"," parameter }];

parameter = IDENTIFIER [, s type_expression];

return_statement = "return’ [, expression];

expression = equality expression;

equality expression = comparison_expression { ("!=" "==") comparison_expression };
comparison_expression = additive expression "¢=") additive expression };
additive expression = factor_expression { ("+" "-") factor_expression };

ngm man
[

factor_expression = unary_expression { () unary_expression };

wnary_expression = { “"not” "-")} unary_expression primary_expression;

primary_expression = IDENTIFIER | STRIMNG INTEGER "trug" "false"” "null™
list_literal | function_call "(", expressiom, ")"

list_literal = '[", expression, { ',', expression } ']";

function_call = IDENTIFIER, (', argument_list , ")’

argument_list = [expression , { "," , expression }]

type_expression = "imt’ 'string’ "bool” "object’ "list" [, "¢" , type_expression, "2"]

The recursive descent algorithm offers several advantages for creating parsers. For one, it
clearly demonstrates the recursive nature of parsers, making it easier to understand how they

work. Also, it's a commonly used approach that's widely used in the industry.

However, there are some trade-offs to consider when choosing this design approach over
using a parser generator. For instance, you may need to create more infrastructure for the
program, and you may end up having to write more code to achieve the same tasks. Despite these
drawbacks, the recursive descent algorithm remains a popular and effective technique for

creating parsers.

Section 7: Software development life cycle

model

To guide the code’s development in the capstone project, we used the Test Driven
Development (TDD) model. Carson Gross set up the code's base model, including all necessary
classes and framework, and created a test section in our repository with various "assertEquals()"
tests for our expressions, statements, and other functionality. These tests helped us identify which
methods needed work and which code we had to create ourselves to pass the checkpoints and

ensure that our program was running correctly and smoothly.

I had prior experience with TDD in my earlier classes such as Computer Systems and
Data Mining, where we were required to complete tests for our final grades. I found TDD to be
an excellent model to work with because it provided a clear indication of what was necessary to

achieve a passing grade and a functional code base. However, some tests were not useful in

indicating what code was missing or if something was not functioning as intended. To address
this, we used the debugging method in IntelliJ, stepping through the tests to pinpoint problems.
One of the issues that arose was an infinite loop that took a lot of stepping through or to find. It
was disheartening when this happened because when one thing broke a lot of others broke as

well.

Working with a large codebase such as this helped us gain experience in working with
legacy code and solving problems with our written code. This experience was valuable for
building teamwork skills and closely resembles how projects are executed in the corporate world.
Sometimes it was based on collaboration and other times it involved a lot of searching through

the code itself.

