Compilers

CSCI 468
Spring 2023
Andrew Anselmo, Gabriel Ewsuk

Section 1: Program
See attached .zip file.

Section 2: Teamwork

My team worked on this project by delegating work to each party. I worked on the
compiler while my partner, Andrew Anselmo built high-level tests and
documentation for the Catscript Programming language. Overall Andrew did 10%
as stated above and I completed the compiler accounting for 90% of the project.

Andrew Anselmo’s, tests are located in the
/src/test/java/edu/montana/csci/csci468/CapstoneTest directory under
Capstonetest.java.

Description of Tests:
First Test[ifStatementInsideFunctionExecutes()] - This test is for ensuring that the
if statement inside a function executes.

Second Test - [functionCallsAnotherFunctionExecutes()] - This test ensures that
embedded function calls are executing properly. It calls one function from another

Third Test - [globalVariableExecutes()] - This ensures that global variables work.
This 1s done by creating a variable. Then the variable is called in the function
declaration statement.

Description of the Documentation:

Andrew begins things with a brief introduction to the program. Explaining
the basics of what script is and what it is capable of doing. From there he goes on
to describe expressions and statements within the program to help a user learn to

write their own code. Each description includes helpful examples, descriptions,
required parameters, and return values. With this documentation, someone with
basic programming knowledge would be able to write their own executable code.

Section 3: Design pattern

Memoization was used in this capstone project and it is located in the file located
in the CatscriptType.java file located in this directory:
csci468-private/src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java

From here it can be found in the CatscriptType class and within getListType
Method.
This is a screenshot of the method that implements memoization

Map<CatscriptType, CatscriptType> HashMap<>()

CatscriptType getlListType(CatscriptType type) {

CatscriptType listType = .get(type)
(listType ==)

listType = ListType(type)
.put(type,listType)

listType

This design pattern was used so that we don’t new up a list type every time we
create a list type already created. For instance a list type of int. The way it works is
going through the map to check if exists and if not it won’t create a new type. This
is similar to the idea of caching.

Section 4:

Catscript Documentation

Introduction

Catscript is a simple scripting language. Catscript has mathematical operations, iteration,
function declaration, variable declaration, if/else statements, a type system, return statements,
and print statements. While it may be simple there is a lot you can do with Catscript. Here is an
example of a Catscript program:

function foo(x : string) {
print (x)
}

foo(“hello”)

//output: hello

Features

AdditiveExpression
Example

1+ 1;

3 - 4;

“Cat” + “script”;
Description

Lets you add/subtract integers and concatenate strings
Parameters

Left hand side, right hand side, operator
Returns

Product of the additive expression

BooleanLiteralExpression
Example
X = true;
1if(X){ *this will execute* }
Description
Lets you work with boolean values, which are either true or false

Parameters
NA

Returns
A boolean literal, either true or false

ComparisonExpression

Example
1 < 4;
4 <= 6;
Description

Allows you to make comparisons between two operands
Parameters

Left hand side, comparison operator, right hand side
Returns

True if the comparison is true, false if the comparison is false

EqualityExpression
Example
1 == 1;
2 == 4;
Description
Lets you evaluate if two things are equal
Parameters

Left hand side, equality operator, right hand side
Returns
True if the operands are equal, false if the operands are not equal

FactorExpression
Example
4 * 3;
10 / 2;
Description
Allows you to do multiplication and division
Parameters

Left hand side, multiplication or division operator, right hand side
Returns
The product of the multiplication or division

FunctionCallExpression
Example

foo (x);

Description
Allows you to call functions
Parameters
Function name, argument with compatible type for function
Returns
Calls the function, and then the function will return something if that's what the function
does

IdentifierExpression
Example

A\W/4

var x = ;
function foo(x) { print(x) }
Description
Names for things
Parameters
The identifier name
Returns
NA

IntegerLiteralExpression
Example

var x = 1
Description

Lets us have integer values
Parameters

NA
Returns

NA

ListLiteralExpression
Example

[1,2,3]
Description

Lets us have lists in catscript
Parameters

NA
Returns

NA

NullLiteralExpression
Example

var x = null;
Description

Allows us to have null value
Parameters

NA
Returns

NA

Parenthisized Expression

Example
(L + 1) * 3
Description
Lets us use parentheses to modify order of operations
Parameters
Expression inside parentheses
Returns

Product of expression inside parentheses

StringLiteralExpression
Example

var x = “foo”
Description

Lets us have strings
Parameters

NA
Returns

NA

SyntaxErrorExpression
Example
return new SyntaxErrorStatement (tokens.consumeToken ()):;
Description
Lets us create errors
Parameters
tokens .consumeToken()
Returns

NA

TypeLiteral
Description
This class lets us set Catscript types and get Catscript types
Parameters
type
Returns
Type if you are using getType()

UnaryExpression
Example
!true;
— 1 ;
Description
Lets us have negation and negative values
Parameters
Operator, right hand side
Returns
NA

ForStatement
Example
for(x in [1, 2, 3]){ print(x) }
Description
Lets us iterate through code
Parameters
Expression, variable name, body

Returns
NA

FunctionCallStatement
Example

foo (x)
Description

Lets us call functions
Parameters

Expression

Returns
If the function you are calling returns something then you will see that be returned

IfStatement
Example
if (x < y){ *do some stuff* };
Description
Lets us execute code only on certain conditions, if those conditions are not met we can
have an else statement after and that will execute
Parameters
Expression

Returns
NA

PrintStatement
Example
print (“foo”);
Description
Lets us print things out
Parameters
Expression
Returns
Prints out what is inside the parentheses

ReturnStatement
Example
return x;
Description
Lets us return things. If you have a return statement at the end of a function, when that
function gets called that thing will get returned
Parameters
Expression
Returns
Expression

SyntaxErrorStatement

Example
return new SyntaxErrorStatement (tokens.consumeToken ())

Description

Lets us create errors
Parameters

tokens .consumeToken()
Returns

NA

VariableStatement
Example
var X = 2;
Description
Allows us to create variables which is just a memory location where a value can be stored
Parameters
The value
Returns
NA

Section 5: UML.

Usar CalScript Lexer Parser ParseTree

| e | I
evaluate ("1 == 27)		
>		
[
]		
!		
: p-arsa[l:c-halni] > :		
I [parseExpressioni) [
	parseEqualityExpression()	
:		
parsaeTrea		
PEEENE N o		
	I	
	axecuta()	
[' “false"		
g - - - ---- e B e e s s s e m		
. _‘fﬂ_lﬂf _____		
r" T | | |
I I I

This is a sequence diagram that shows the sequence of events that occur during an
equality expression. First, the user sends the “1==2" to the script program to be
evaluated. From here the Catscript program sends the “1==2"to be tokenized.
Then the tokens are returned to the catscript program. The tokens are then sent to
be parsed where it will do a recursive descent by going through parseExpression,
then parseEqualityExpression. From here we return the parse tree. Lastly, we send
the execute command from the script to ParseTree to execute the program. It
returns false to the script program which then returns false to the user.

Section 6: Design trade-offs

For this project was the decision to utilize recursive descent instead of a parser
generator. One of the trade-offs is that this required me to actually code a parser
myself. While if I had used a parser generator, [would be able to parse
automatically. However, the benefit of using recursive descent is that it is simple
and easier to debug. Whereas the parser generator is not. This was a huge deal
because to get the tests to pass with TDD, we used the debugger in Intelij to help
solve issues. Overall, recursive decent was the better option for a small lightweight
language like catscript.

Section 7: Software development life cycle model

For this project, we used Test Drive Development (TDD). TDD is a lifecycle where
the developer identifies a requirement, builds a test for that requirement,
implements code to solve the requirement, and tests that code utilizing the relevant
Test. Often these requirements are broken up and delegated amongst different
parties. In most cases, tests are written by senior engineers. In this case, it was
written by our teacher, Carson Gross. This enabled us to understand the
requirements needed for the compiler and implement them. These tests are based
on the JUnit framework and utilize assert to make sure that outputs match the
requirements. For example, the ifStatementWorksProperly() test executes the code
- if(true){ print(1) } - the assert would ensure that the output is 1. With provided
tests, we are able to build a solid foundation to build future code on top of. This
helped us confidently build a functioning compiler in sequential steps without
having to go back and fix previous mistakes.

