Senior Team Portfolio

Compilers — CSCI 468: 001 202330
Spring 2023

Team Members:

Griffin Austin

James Lucas

Montana State University Computer Science Department

Senior Team Portfolio

1|Page



Senior Team Portfolio

Section 1: Program

Along with this portfolio there is an attached zip file which contains all of the source code for the

associated project.

Below is the Grammar for the language that we built from the ground up: CatScript.

catscript_program = { program_statement };

program_statement = statement | function_declaration;

statement = for_statement | if_statement |print_statement | variable_statement |assighment_statement |
function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')', '{', { statement }, '}';

if_statement ="if', '(', expression, ')', '{', { statement }, '}’ [ 'else’, ( if_statement | '{, { statement }, '} ) ];

print_statement = 'print’, '(', expression, ')’

variable_statement = 'var', IDENTIFIER, [":', type_expression, ] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function’, IDENTIFIER, '(', parameter_list, ')' +
[+ type_expression ], '{', {function_body_statement }, '}’;

function_body_statement = statement | return_statement;

parameter_list = [ parameter, {',' parameter } ];

parameter = IDENTIFIER [, ":', type_expression ];

return_statement = 'return’ [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive_expression };

additive_expression = factor_expression { ("+" | "-" ) factor_expression };

factor_expression = unary_expression { ("/" | "*" ) unary_expression };

unary_expression = ( "not" | "-" ) unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"| list_literal | function_call |
"(", expression, ")"

list_literal = '[', expression, {',', expression }']’;

function_call = IDENTIFIER, '(‘, argument_list, ')’

2|Page



Senior Team Portfolio

argument_list = [ expression , {"',', expression } ]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<', type_expression, '>']

Below are the static types associated with CatScript.
int - a 32-bit integer
string - a java-style string
bool - a Boolean value
list - a list of value with the type 'x'
null - the null type

object - any type of value

Section 2: Teamwork

Team member 1:
Tokenization: 15%
Expression parsing: 15%
Statements parsing: 20%
Evaluations: 25%
Compilation: 10%
Team member 2:
Test Writing: 5%

CatScript Documentation: 10%

Section 3: Design pattern

Throughout our code we come upon places where we have calculated an output for a given
input once before. In order to limit the number of calculations performed by our code we used the
memoization optimization technique. This involves storing outputs that have high processing time or
high power associated with generating that output. This pattern can be seen in the CatscriptType.java

file on line 37-46. By using this pattern for the function getListType() on line 38, we eliminate the need to

3|Page



Senior Team Portfolio

create a new ListType() object when looking for types in a given list repeatedly. If we were to not use
memoization in this function we would create a new ListType() object every time we called that class.
Rather, by using memoization, we only make the ListType() object once and add to it when needed. This
is necessary because there can be more that one type within each list; which is described within the

CatScript grammar.

Section 4: Technical writing.

Catscript Guide

Introduction

Catscript is a simple scripting language. Here is an example:

Which, when ran, will output:

foo

Features (can be structured with the grammar given above)

For loop

For loops are implemented in CatScript so that they function like that of other for loops in other similar
languages. The for loop allows you to iterate over elements, example below:

var myArray : list<string [ "one™, "two", "three”
(str myArray )

print(str)

Output

one two three

If Statement

4|Page



Senior Team Portfolio

The if statement is used to execute code based on a condition. If the user would like to specify an else
branch, that is available to them, shown below:

var decision
(decision)

print("Decision™)

print(”"No Decision™)

Output

Decision

Print Statement

Print statements are used to display information to the user. This is done by calling the print function
with a given argument, and that is then pushed to the console for display, shown below:

Output

Hello World!

Variable Statement

Variable statements are used to declare new variables of any type. The type can be implicit using a colon
and a static type, or the optional colon and type can be left out. If the type is left out, then the variable is
of type object. Variable with implicit declaration is shown below:

var myInt : int = 14

Function Call

Function calls are used to call functions with optional arguments. A function call is shown below:

5|Page



Senior Team Portfolio

function add(first:int, second:int): int
I
L

(first+second)

var additionValue:int = add(10,20)
print(additionValue)

Output

30

Function Declaration

Function declarations are used to declare a function. By using the keyword function, and a name
followed by optional parameters and return type, you can declare any function that you would like;
shown below:

function add(first:int, second:int): int
I
L

(first+second)

var additionValue:int = add(10,20)
print (additionValue)

Output

30

Assignment Statement

Assignment statements are used to assign a new value to an already declared variable, seen below:

var myInt : int = 1@
myInt 15

print(myInt)

6|Page



Senior Team Portfolio

Output

15

Equality Expression

Equality expressions are used to check equality between two objects within the program. There are two
ways to check for equality by using either “=="(equal) or “!="(not equal), shown below:

var one
var two

print (one
print(one

Output

false true

Comparison Expression

Comparison Expression are used to compare two objects within the program. There are many ways to
compare two objects. There is [>, <, =>, =<] to compare objects, which can be seen below:

var one 1
var two 2
var twoAgain

print(one > two)
print(one < two)
print(two twoAgain)
print (one two)

Output

false true true false

Additive Expression

Additive Expressions are used to add two integers or string together, shown below:

7|Page



Senior Team Portfolio

var one:int
var two:int

var strOne:string - “"Hello ™

var strTwo:string - “"World!™

print(one+two)
rint(strOne:strTwo

Output

3 Hello World!

Factor Expression

Factor expression are used to multiply or divide values within the program, shown below:

var ten:int 10
var five:int 5

print(ten*five)
print (ten/five)

Output

502

Unary Expression

Unary expressions are used to negate values. This can be seen below:

var negOne 1
var myBool = true

print(negOne)
print(not myBool)

Output

-1 false

8|Page



Senior Team Portfolio

Section 5: UML.

CatScript Sequence Diagram

User CatScript Lexer Parser ParzeTree
| - | | |
I | |
| evaluate(2*5+1) | |
I | |
I | |
I | I
I | I
I | |
I ] I
| arse(to IcIens} |
| — |
I I parseExpression() |
I I ] I
I I I
I I I
| | parseAdditiveExpression() |
I I I
I I I
: : parseFactorExpression() :
I I ; I
I I I
: : parselntegerLiteral() :
| | « | |
I I I
I parseTree |
| - r-—---- T

1
: I execute()
I I I
| I "11
| <o 1= -- o Il
I

Section 6: Design trade-offs

The most important design trade-off that we did was that we created the parser from scratch

rather than just using a tool to create the parser for us. We did this so that we could have a more

9|Page



Senior Team Portfolio

intuitive recursive decent algorithm for the parser. By creating the parser from scratch, we not only got
to understand parsers on a low level, but we also made the algorithm more understandable to anyone
that can read code. However, this took more time and effort than just using a parser tool. Overall, this
trade-off was one that we would not take back as making the parser from scratch proved to be useful

throughout the rest of the project.

Section 7: Software development life cycle model

Throughout this project we used test driven development. This is where you write tests before
you write the code. This allows the team to create inputs and desired outputs which allows you to create
the code that makes those tests pass. This model was very helpful for our development because a code
language is quite complex. By having the tests, we were able to break the project down into smaller
pieces that were easily manageable. Without the tests, the whole project would have felt much more
daunting than it already was. By focusing solely on making the tests pass, we could focus on each part of
the language separately starting from the ground up. This development model did not hinder us in any
way, and | believe that this was one of the only models that would have worked for this project. Overall,
test driven development got us thinking about what the code should look like before we even wrote it,

which made the whole process much smoother and clear.

10| Page



