

5/5/23, 4:03 PM Section 4: Technical Writing

https://md2pdf.netlify.app 1/6

Section 4: Technical Writing

CatScript Documentation

Introduction and Program Structure

CatScript is a simple functional programming language built with Java.

CatScript Variables

Variable Types

CatScript is a statically typed language that supports the following variable types:

int: a 32 bit integer
string: A Java style string
bool: A boolean value (TRUE/FALSE)
null: The null type
object: A variable with no specified type

In addition, CatScript supports list variables composed of identically-typed elements with a type from the
list above.

Variable Statements

Variables are initialized with the following grammar:

variable_statement = 'var', IDENTIFIER, [':', type_expression,] '=', expression;

List variables in particular are initialized with the following grammar:

list_literal = '[', expression, { ',', expression } ']';

Here are example variable statements with:

An int: var myInt : int = 10

5/5/23, 4:03 PM Section 4: Technical Writing

https://md2pdf.netlify.app 2/6

A string: var myString : string = "Hello World"

A bool: var myBool : bool = true

An object: var myObject : object = 10

An list of ints: var myIntList : list<int> = [1, 2, 3, 4, 5]

Additionally, CatScript supports both explicit and implicit typing of variables. If an explicit variable type is
not supplied, the default variable type is an object . Both of the following variable statements are valid
in CatScript:

var myVariable : int = 10 (an integer type)
var myVariable = 10 (an object type)

CatScript Functions

CatScript supports function definitions and function calls in similar ways to analogous programming
languages.

Function Definition

The CatScript syntax for a function definition is as follows:

function_definition = 'function', IDENTIFIER, '(', parameter_list, ')', [':' + type_expression,]

Where IDENTIFIER is the name of the function, parameter_list is the list of input parameters to the
function, [':' + type_expression,] is the return signature of the function, and is optional, and the
function_body_statement is a sequence of program statements that collectively define the behavior of

the function.

Here are several examples of function definitions:

function foo() { print("Hello World") }
function add(x : int, y : int) : int { return (x + y) }
function print(myString : string) { print(myString) }

Function Calls

Function calls can be created with the syntax:

5/5/23, 4:03 PM Section 4: Technical Writing

https://md2pdf.netlify.app 3/6

function_call = IDENTIFIER, '(', argument_list , ')'

Where IDENTIFIER is the name of the desired function to be called, and argument_list is the list of
arguments supplied to the function, the necessity of which are determined by the respective function
definition. Here are some example function calls of the example function definitions provided above:

foo()
add(5, 10)
print("Hello World")

Return Statements

If a function specifies a return type in it's function definition, CatScript requires a return statement after
completion of the function body of the appropriate type. If a function has no specified return type in it's
function definition, it is assumed that this function has a void return type and no return statement is
required. Return statements can be created with the following syntax:

return_statement = 'return' [, expression];

CatScript Expressions

CatScript supports common unary, arithmetic, and comparative expressions.

Primary Expressions

Primary expressions in CatScript are supported with the following grammar:

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
 list_literal | function_call | "(", expression, ")"

Unary Expressions

CatScript supports the not (logical negation) and - (numeric negation) unary operations. Unary
expressions are supported with the grammar:

unary_expression = ("not" | "-") unary_expression | primary_expression;

Here are examples of valid CatScript unary expressions:

5/5/23, 4:03 PM Section 4: Technical Writing

https://md2pdf.netlify.app 4/6

not True

- 100

not 50

-(10 + 20)

Additive Expressions

CatScript supports addition and subtraction operations on some expressions, depending on the type of
the expression. The formal grammar for an additive expression is:

additive_expression = factor_expression { ("+" | "-") factor_expression };

Addition is defined on int -typed expressions (convential addition), string -typed expressions (string
concatenation), and combinations of string and int expressions (string concatenation with the string
value of the integer).

Some examples of valid CatScript additive expressions are:

2 + 2 (evaluates to 4)
"Hello " + "World" (evaluates to "Hello World")
"There are " + "50" + " states in the US" (evaluates to "There are 50 states in the US")

Subtraction is only defined on int -typed expressions.

Factor Expressions

CatScript also supports multiplication and division operations on int -typed expressions. The formal
grammar for an additive expression is:

factor_expression = unary_expression { ("/" | "*") unary_expression };

Some examples of valid CatScript factor expressions are: - 5 * 7 (evaluates to 35) - 100 / 10 (evaluates
to 10)

It is worth noting that in CatScript, the order of operations follows traditional PEMDAS convention,
where multiplication and division are evaluated first, from left to right as appearing in the expression,
followed by addition and subtraction in a similar matter, and finally unary operation.

Comparison and Equality Expressions

5/5/23, 4:03 PM Section 4: Technical Writing

https://md2pdf.netlify.app 5/6

CatScript supports the evaluation of equality expressions and comparitive expressions among most
variable types. These expressions evaluate to true or false, depending on the relationship between the
expressions being compared. The formal grammar for an equality expression is:

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

Some examples of valid CatScript equality expressions are:

2 != 5 (evaluates to true)
true == true (evaluates to true)
"Hello World" == "Hello Earth" (evaluates to false)

The formal grammar for a CatScript comparison expression is:

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive_expression };

Some examples of valid CatScript comparison expressions are:

10 <= 17 (evaluates to true)

5 >= 5 (evaluates to true)

(10 + 4) > (7 + 20) (evaluates to true)

CatScript Flow Control

CatScript supports several flow control structures to manage the execution of code.

If Statements

CatScript supports standard if statements, as well as single else statements accompanying. The formal
grammar for an if statement is:

if_statement = 'if', '(', expression, ')', '{', { statement }, '}' ['else', (if_statement | '{'

If the initial condition supplied to the if statement evaluates to true, the statements contained in the "if"
portion of the statement will be executed. Otherwise, the statements contained in the "else" portion of
the statement will be executed.

A couple examples of valid CatScript if statements are:

5/5/23, 4:03 PM Section 4: Technical Writing

https://md2pdf.netlify.app 6/6

if(true) { print("True") }

if(a > b) { print("a is greater than b") } else { print("b is greater than a")

For Loops

CatScript supports for loops that loop based on a provided indexing variable and a list object of possible
values of this indexing variable. The formal grammar for a for loop is:

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
 '{', { statement }, '}';

A couple examples of valid CatScript for loops are:

for(x in [1, 2, 3]) {
 print(x)
}

for(x in ["a", "b", "c"]) {
 for(y in [1, 2, 3, 4, 5]) {
 print(x + y)
 }
}

Print Statements

CatScript supports basic print statements for expressions of any type. Suppling an expression to the
print() will result in the printing of the string value of that expression to the console. The formal

grammar for a print statement is as follows:

print_statement = 'print', '(', expression, ')'

