Final Capstone Portfolio

CSCI 468 - Compilers — Spring 2023

Travis Brase

Aurora Duskin



Section 1: Program

Please see included source.zip file for source code

Section 2: Teamwork

This project was split into two main sections with each team member completing their
own compiler based on an initial code base provided by the instructor. For the majority
of the semester each member worked through a series of checkpoints that evaluated
their progress and understanding of the material. Near the end of the semester the
team members exchanged their compilers and wrote additional tests and
documentation based on the compiler provided by the other team member. Both team
members were essential to the completion of this capstone project. Provided below is
an estimated breakdown of time spent on the project:

Total Estimated Hours: 60

Code Development 83.33%: (Member 1) 50 Hours split evenly across the 4 sections
Technical Writing 6.67%: (Member 2) 4 Hours

Testing/Debugging 3.33%: (Member 2) 2 Hours

Portfolio Completion 6.67%: (Member 1) 4 Hours

Section 3: Design pattern

We used the memoization pattern a prime example of this starts on line 35 of the
CatscriptType.java file of my project. Memoization is basically a form of caching, that
allows us to use less system resources when repeating tasks by storing the data and
then simply recalling it instead of re-computing again and again. Our implementation is
only effective for a single threaded application, however, since that is all that we are
working with it is sufficient for this use case.

private static final Map<CatscriptType, CatscriptType> LIST TYPES = new
HashMap<> () ;

public static CatscriptType getListType (CatscriptType type) {

CatscriptType listType = LIST TYPES.get (type);
if (listType == null) {

listType = new ListType ((type));

LIST TYPES.put (type, listType);



}

return new ListType (type)

Section 4: Technical writing

Expressions

Syntax | Arguments Return Usage
Type
X>y Int, double, float | boolean Evaluates TRUE if x is strictly greater than y, else
returns FALSE
X<y Int double, float | boolean Evaluates TRUE if x is strictly less than y, else
returns FALSE
x>=y | Intdouble, float | boolean Evaluates TRUE if x is greater than or equal to y,
else returns FALSE
x <=y | Intdouble, float | boolean Evaluates TRUE if x is less than or equal to y, else
returns FALSE
X == Int double, float boolean Evaluates to TRUE if x equals y, else returns
FALSE
x!=y | Intdouble, float | boolean Evaluates to True if x does not equal y, else returns
TRUE
X*y Int double, float | Type of Multiplies the value of x by the value of y and
inputs returns the result
xly Int, double, float | Type of Divides the value of x by the value of y and returns
inputs the result
X-Yy Int, float, double | Type of Subtracts the value of y from x and return the result
inputs
X+y Int, float, double | Type of Adds the value of y to x and returns the result
input
X+y String, int, String concatenates the values into a single string literal
double, float expression and returns the resulting string
Statements
Syntax Usage




if(boolean){expression}else{expression}

If the boolean evaluates to TRUE then execute the
expression inside the first set of {} otherwise
executes expression inside the second set of {}

for(x in array[]){expression}

Executes the expression within the {} the number of
times equal to the size of the array. During each
loop the matching element of the array may be
accessed by an expression using x as the label to
access.

print(x)

Prints the value of x to the console

function foo(x){expression}

Establishes foo as a callable function that accepts
argument(s) x and executes the expression within
the {}




Section 5: UML.

Catscript Additive Sequence

User CatScript Lexer Parser ParseTree Catscrpt

| evaluate ("5 + 5")

-

|
|
|
i I >
: lex("5 + 5") !
I |
I tokens |
..... — m m = = = = = = = = = = = ______-..
parse(tokens)

parseExpression()

parseAdditiveExpression()

i

parselntegerLiteral()

—_—_—— e e e e = e =,

parseTree

Section 6: Design trade-offs

The biggest trade-off of this class was that we wrote our parser by hand as opposed to a
parser generator. We did this because it gives us a more in-depth view of the parser
instead of having the generator use it for us. If this compiler were to be written in a real-
world environment instead of an academic one it would have made more sense to use



the generator since that would be a more efficient use of actual development time,
instead of writing it all by hand.

Section 7: Software development life
cycle model

We used Test Driven Development (TDD) for this project. Basically, we were given a large
suite of tests that we then focused our efforts around completing those tests. From an
academic perspective this makes a lot of sense and is convenient since it provides an
easy-to-follow roadmap for the semester and the expectations for the class. However,
one potential drawback to this approach is that it makes it possible to target the tests
and therefore not complete the spirit of the assignment, as the tests may pass, but the
program would be flawed for real-world use. As part of the teamwork aspect of this
project we wrote tests for each other. The additional tests that | was provided are as
follows:

@Test
void testFunctionCallsInForLoop () {
assertEquals("1\n2\n3\n", executeProgram("function foo (x) {print (x) }”+
for(x in [1, 2, 3]) { foo(x) I™)):
}
@Test
void testAllOperators () {
assertEquals (5, evaluateExpression("2 * 3 / 2 + 4 - 2"));
}
@Test

void testMixAndMatch () {
assertEquals("2a", evaluateExpression ("1 + 1 + \"a\""));

}



