Ike Wessel

CSCI 486 - Compilers Capstone Documentation

Section 1: Program. The source file for the code can be found in the
/capstone/portfolio folder under the name “source.zip”

Section 2: Teamwork. Our team was comprised of two members. Team member 1
took on the role of product engineer, and team member 2 took on the dual roles of
documentation engineer and testing engineer. Team member 2 would design a suite
of tests to drive team member 1’s solutions. Team member 1 would then implement
the various stages of the CatScript parser, checking their solutions against the tests
provided by team member 2. When team member 1’s solutions passed the tests,
team member 2 would then document them in detail. At the end of the project, team
member 2 then designed three major tests to verify the functionality of the finished
product. Approximately 60% of the total team spent on project development was
used by team member 1, while the remaining 40% was used by team member 2. The
tests can be found in the “NewEvalTests” folder under the “Eval” folder in the test
area. Here are the final tests produced by team member 2:

@Test

functionCallWithForAndIf() {

executeProgram(




executeProgram (

o

@Test

printingTypesWithForLoop() {

executeProgram(

Section 3: Design pattern. The one real design pattern that we implemented into
CatScript was the Memo pattern, which is used in the CatscriptType class in the
CatScript compiler, within the “getListType()” method. We used a memo pattern to
essentially cache the values of CatScript Types that have been previously queried.
We chose to do that instead of just grabbing the type directly to save us time when
this function is called multiple times over the course of several compilations. It is
worth mentioning that the current solution is not necessarily thread-safe. Here is a
screenshot of the method with the Memo pattern implemented:



Map<CatscriptType, CatscriptType>

CatscriptType getlListType(CatscriptType type) {

.get(type)

listType

Section 4: Technical writing. Here is the technical documentation written by team
member 2:

CatScript Documentation

Created by: Jadeyn Fincher
April 20th, 2023

Introduction:

CatScript is a language developed in CSCI 468 as a capstone compilers class at
MSU. This language is basic but has all the tools necessary to be a Turing complete
language. The following documentation will cover everything that the language covers,
from the grammar to how to use the expressions and statements covered in the
grammar. The language is compiled into java byte code during compilation and
currently, there is no transpilation support for the language, although javascript
implementations of this should be straightforward.

Control flow:

The control flow statements that you have access to in CatScript are if and else
statements for branching based on truthiness and for loops for iterations. Both are
covered under the statements part of this document and you can find the syntax and
example use cases there.



Grammar:

The following is the grammar defined for CatScript.

catscript_program = { program_statement };

program_statement = statement |
function_declaration;
statement = for_statement |
if_statement |
print_statement |
variable_statement
assignment_statement
function_call_statement;

‘“for', '(',
'{', { statement },

for_statement = IDENTIFIER, 'in', expression ')',

30

if_statement = ‘'if!', L)%y

'(', expression,
{ statement },

'} [ 'else', ( if_statement | , { statement }, '}'

print_statement = 'print', '(', expression, ')'

variable_statement =

[r:r,

'var', IDENTIFIER,
type_expression, ] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, , expression;
function', IDENTIFIER, '('

[t type_expression 1,

function_declaration = parameter_list, ')

function_body_statement = statement |
return_statement;
o0
'

parameter_list = [ parameter, parameter } 1;

parameter = IDENTIFIER [ , ':', type_expression ];

return_statement = 'return' [, expression];

expression = equality_expression;
equality_expressi = comparison_expression { ("!="
comparison_expression = additive_expression { (">"

additive_expression = factor_expression { ("+" -
factor_expression

= unary_expression { ("/" |

unary_expression = ( "not" "-" ) unary_expression

STRING INTEGER
function_call

primary_expression = IDENTIFIER
list_literal

"true" | "false"
expression,

list_literal = '[', expression, { ',', expression }

tion_call = IDENTIFIER, '(', argument_list , ')°'

argument_list = [ expression , { ',' , expression } ]

1t

int' |

type_expression = 'string' 'bool' | 'object' | 'list' [,

{ function_body_statement },

) 1;

'
E

1}

"==") comparison_expression };

) additive_expression }

) factor_expression };
) unary_expression };

primary_expression;

"hull" |

nyu

, type_expression, '>']




Statements:

FOR STATEMENT:

Use Case: The for loop allows for iteration based on the input parameters along with a
reference identifier to access the current item the loop is accessing. This is the only
iteration control flow structure cat script has defined.

Syntax:
KeyWord-Required, UserDefined-Required, Optional

for ( Identifier in Expression ){
Statements(0 or more)
}

Example Uses:

for(l in [1,2,3])
print(1)

}

for(1in x){
print(x)
print(l)

}

IF STATEMENT:

Use Case: The if statement is a piece of the control structure to allow branching based
on the truthiness of the value being evaluated. If the evaluation is true it will evaluate
statements contained in the brackets of the if statement, else if there is an else attached
it will evaluate those statements

Syntax:
KeyWord-Required, UserDefined-Required, Optional

if ( expression }{
Statements(0 or more)

}

OR

if ( expression }{
Statements(0 or more)

telse{

Statements(0 or more)



Example Uses:

if(1==1){
print(“true”)
telse{
print(“false)
}

ASSIGNMENT STATEMENT:

Use Case:

The assignment statement is used to assign variables/identifier expressions to values
after they have already been initialized with the variable statement. The inferred or
defined typing defined within the variable statement must be followed to avoid
compilation errors.

Syntax:
KeyWord-Required, UserDefined-Required, Optional

Indentifier = Value
Example Uses:

A=2
B = “Hello world”

PRINT STATEMENT:

Use Case:

The print statement is used to evaluate an expression and print the value back out onto
the system. The value in the local server will display prints below the field allowed to
create your program.

Syntax:
KeyWord-Required, UserDefined-Required, Optional

print(expression)
Example Uses:

print(“hello world”)
print(1+2)

Var a=3+2
print(a)



VARIABLE STATEMENT:
Use Case:

The variable statement is used to define new variables and their values. They also
support set typings if you do not want to use an inferred type system for these. This is
also if you want to implement a strongly typed system. The value of the variable
statement can later be changed with the assignment statement, but the typing of the
variable cannot be changed.

Syntax:

KeyWord-Required, UserDefined-Required, Optional

var ldentifier : type_expression = expression

OR

var ldentifier = expression

Example Uses:

vara=2
var:int a =2

var b = “hello”

FUNCTION CALL STATEMENT:

Use Case:

The function call statement is used to call an already-defined function to evaluate it.

Syntax:

KeyWord-Required, UserDefined-Required, Optional
functionName(arguments(0 or more))

var a = calculator(2,2)

print(calculator(2,2))



FUNCTION DECLARATION STATEMENT:

Use Case:

The function declaration statement is used to create callable functions that perform
certain user-defined functions with given or no parameters. These functions can return
values and have side effects that can be used to manipulate data as need be.

Syntax:

KeyWord-Required, UserDefined-Required, Optional

function identifer ( parameter:type_expression(0 or more) ) : type expression {
Statements(0 or more)

}
OR
function identifer ( parameter:type_expression(0 or more) ){

Statements(0 or more)

Example Uses:

function calculator (firstitem:int,secondltem:int):int{
return(firstitem+secondltem)

}

RETURN STATEMENT:

Use Case:

The Return statement is used to evaluate an expression and return the value to
whatever is calling it. A major use-case of this is within function calls to return a value

after the instructions have been completed within the body of the function.

Syntax:
KeyWord-Required, UserDefined-Required, Optional

return expression
Example Uses:

function calculator (firstlitem:int,seconditem:int):int{
return(firstitem+secondltem)



Use Case: The equality expression is used to evaluate whether two expressions are
equal depending on the operand and return a boolean value of the result.

Operands:
I=  -> If both expressions are not equal to each other this will evaluate to true
== ->If both expressions are equal to each other this will evaluate to true

Syntax:
Expressionl Operand Expression2

Example Uses:
1!=2 -> Evaluates to true
1==2 -> Evaluates to false

Use Case: The comparison expression is used to evaluate the values of the left-hand
side expression and the right-hand side expression and compare the values to return a
boolean value based on the result.

Operands:

> -> [f the left expression is greater than the right expression this will return true else
it will  return false

>= -> [f the left expression is greater or equal to the right expression this will return true
else it will return false

< -> If the left expression is less than the right expression this will return true else it
will  return false

<= ->|f the left expression is less than or equal to the right expression this will return
true else it will  return false

Syntax:
Expressionl Operand Expression2

Example Uses:

1>2 -> Evaluates to false
2>2 -> Evaluates to false
2>=2 -> Evaluates to true
2<3 -> Evaluates to true



Use Case: The additive expression is used to add or subtract the value of the right-hand
expression and the left-hand expression and returns the calculated value based on the
result.

Operands:
+ ->Returns the left and righthand expressions values added together

- -> Returns the value of the left-hand expression minus the value of the right-hand
expression

Syntax:
Expressionl Operand Expression2

Example Uses:
1+2 -> Evaluates to 3
1-2 -> Evaluates to -1

Use Case: The factor expression is used to handle division and multiplication between
the right-hand expression and the left-hand expression and returns the calculated value
based on the result.

Operands:
* -> Returns the right-hand and left-hand values multiplied together as a value
/ -> Returns the left-hand value divided by the right-hand value as a value

Syntax:
Expressionl Operand Expression2

Example Uses:
10*2 -> Evaluates to 20
10/2 -> Evaluatesto 5

Use Case: The unary expression is to take a value of a boolean or integer and apply a
negative or switch the boolean value depending on the

Operands:

not -> Applies a boolean switch to booleans and returns the switched boolean value
- -> Applies a negative switch to any value and returns that value

Syntax:
Operand Expression

Example Uses:
not true -> Evaluates to false

- 10 -> Evaluates to -10



PRIMARY EXPRESSION:

Use Case: The primary expression is used to evaluate literals, expressions, and
variables down to their core values.

Syntax:
Expression

Example Uses:

1 -> Evaluates to 1
false -> Evaluates to false

[1,2,3] -> Evaluates to [1,2,3]

Var x =10
X -> Evaluates to 10

TYPE EXPRESSION:

Use Case: The type expression is used to set a defined type to whatever is being called

Syntax:

typing

Supported Typings:

There Are 5 main types supported within CatScript: Integer, String, Boolean, Object, and
List types.

INTEGER TYPE:

They can support all whole numbers such as 1,2,100000, 28818.... No support for
floating points within this type.

Formatting: CatScript will take the value without formatting

STRING TYPE:

This type can support strings similar to Java'’s strings such as “Hello world”, “T”, and

”

"test’problem™.

Formatting: Surround the value with double quotes -> “ “
BOOLEAN TYPE:

This type supports two values: true and false. Values work similarly to Java boolean
values



Formatting: CatScript will take the value without formatting

OBJECT TYPE:

Object typings work in the way that they unbox a value from a primitive. Certain
operations will not become available if an object type is set such as value addition.
String concatenation is still available.

Formatting: CatScript will take the value without formatting

LIST TYPE:

The list type is a bit more complicated as you can define a type of the list within it. Lists
support iterations being called on them, so they can be used inside of for-loops for easy
iterations

KeyWord-Required, UserDefined-Required, Optional

Formatting: list OR list<type expression>

Section 5: UML. Here is a UML diagram that illustrates a standard compilation cycle
in the CatScript compiler:

*SEE NEXT PAGE*



Catscript Var Statement Diagram

Lexer l Parser l | Statement Parser I l Expression Parser

CatScript
|

evaluate ("var s - list<int>=[1, 2, 3]") ]
P

lex("var s - list<int>=[1,2,3]") |
>

! T
| I
| |
| I
| I
| |
| |
| I
M |
I
A

parse(tokens)

| SIS ———

i

parseStatement()

parseEqualityExpression()

parseComparisonExpression()

i

parseAdditiveExpression()

i

parseFactorExpression()

L

parselUnaryExpression()

L

®

- parsePrimaryExpression()

L

parseEqualityExpression()

%

L

| parseProgramStatement()

parseStatement()

parseVariableStatementy()

parseExpression()

parseEqualityExpression()

L

parseComparisonExpression()

L

parseComparisonExpression()

L

parseAdditiveExpression()

L

parseFactorExpression()

L

parseUnaryExpression()

parsePrimaryExpression()

L

parseListLiteralExpression()

L

e

__Y

parseTree

I
]
I
I
I
I
|
|
I
|
I
|
|
|
I
I
I
I
I
I
I
|
|
I
I
|
|
|
|
|
i
|
|
|
|
i
|
|
|
i
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
I
I
l
I
I
I
I
I
I
I
I
I
|
I
I
I
I
i
I
|
I
I
I
I
|
|
I
I
I
I
I
I
I
<



Section 6: Design trade-offs. There was one main trade-off that we had to make
over the course of designing this compiler. Many first-time compiler developers
choose to use a tool such as Lux to GENERATE a compiler based off of a carefully
crafted set of regular expressions. Our team chose to take another route, and built
the whole compiler by hand, using the Recursive-Descent strategy, instead of using a
tool to build it for us with regex.

There are a couple drawbacks to this approach. For one, it takes significantly more
time to design and write, by hand, all of the overhead classes and methods in order
to support a larger application like a compiler. This overhead only gets larger as you
move on to more complicated phases like transpilation farther down the
development line. Also, it requires a much, MUCH more mature understanding of the
compilation process to attempt this method of implementation that many
developers simply do not have.

However, the advantages of the by-hand, Recursive-Descent approach far outweigh
any drawbacks. Because the compiler is not hidden inside the black box of an auto-
generating application like Lux, debugging is a thousand times easier, because all of
the code is written by a human developer, which means that variable names,
method names, logical flow, etc., should, in theory, be easier to read, easier to
understand, and easier to track throughout the debugging process. The Recursive-
Descent method of building a compiler also results in a codebase that is often 10+
times smaller than the generated code of the regex method and more efficient
computationally. And finally, the by-hand method forces the developer to gain a
much deeper understanding of the language that they are designing, as well as the
internals of any languages that they intend to compile to. This knowledge will only
benefit them as they work in the languages that are familiar to them.

Section 7: Software development life cycle model.

We used a test-driven development (TDD) model for our development. Everything
started with the requirements for what our final language had to be able to do. After
those were established, team member 1 wrote a suite of tests that would
theoretically guarantee the satisfaction of those parameters. Then team member 2
wrote the tokenizer, parser, evaluator, and verifier, and the final code through the
tests that team member one had provided. This worked extremely well for our team
because the natural of the application we were trying to build lent itself very well to
the TDD approach. As soon as we knew what the language needed to be able to do,
then it was relatively simple to work off of a test suite without worrying that some
needed future functionality might be missed, since the language was already well
defined before we even started coding.



