Portfolio:

Zip File:
https://github.com/DrDisturbance/csci-468-spring2023-private/blob/main/capstone/portfolio/sour
ce.zip

Teamwork: Well, | coded the project, then jacob wrote a few tests, we found a bug and | fixed it,
and then he wrote the documentation and I'm finishing out this part. If we’re going by time

teammate number 1 spent over 110 hours total on this project, and teammate number 2 spent
2.5 hours or so creating the tests and then the documentation

Design Pattern:
The design pattern | implemented was called memoization, it basically means taking the output
of a function and mapping it to a specific input so if the same input happens, it doesn’t need to

calculate anything again. This was done in the catscript type file, and the code below that
relates to it will be highlighted in yellow.

edu.montana.

va.util.H

new CatscriptType ("int",

STRING = new CatscriptType ("string",

String.cl
BOOLEAN = new CatscriptType ("bool",
Boolean.class) ;

riptType OBJECT = new CatscriptType ("object",

scriptType NULL new CatscriptType ("null",

riptType new CatscriptType ("void",

String name;

Class javaClass;

CatscriptType (String name, Class javaClass) {

.name = name;

.JavaClass = javaClass;

boolean isAssignableFrom (CatscriptType type) {
if (type == VOID) {
return g
} else if (type == NULL) ({
return 5
} else 1f (.JavaClass.isAssignableFrom (type.javaClass)) |
return g

}

return

CatscriptType getListType (CatscriptType type) |

@QOverride

String toString () {

return name;

@Override
boolean equals (Object o) {
if (== 0) return g
if (o == | | getClass () != o.getClass()) return
CatscriptType that = (CatscriptType) o;

return Objects.equals (name, that.name);

@QOverride
int hashCode () {

return Objects.hash (name) ;

Class getJavaType () {

return javaClass;

ListType CatscriptType {
CatscriptType componentType;
ListType (CatscriptType componentType) {
("list<" + componentType.toString() + ">", List.class);

.componentType = componentType;

@Override
boolean isAssignableFrom (CatscriptType type) {
if (type == NULL) {
return g
} else if (type ListType) {
ListType otherList = (ListType) type;

return

.componentType.isAssignableFrom (otherList.componentType) ;

}

return

CatscriptType getComponentType () |

return componentType;

@QOverride

String toString () {

return .toString () + "<" + componentType.toString() +

| chose to use memoization primarily because we were asked to do it. But the effect it has is
pretty nice. Instead of running a bunch of code, it just checks with a hashmap and then answers
if it can, which makes repeated simple code a lot easier to handle.

Technical writing:

Catscript Guide

Catscript is a language developed in CSCI 468 at Montana State University. Its name derives from
our mascot, the Bobcat.

Introduction
Catscript is a simple scripting langauge. Here is an example:

var x = "foo"

print (x)
The above script will output, as expected
foo

CatScript can be much more complex, supporting functions, if statements, etc.

function fib(x : int) : int {
if (x == 0) {
return 0
} else if (x == 1) {

return 1

return fib(x-1) + fib(x-2)

print (£ib(10))
which should print

55

Features

Basic Expressions

Expressions are elements of the language that simply evaluate to some sort of typed value, such as an
integer, list, string, null, etc.

Additive Expression
The additive expression takes the formof a + bora - b.If both operands are integers, the

numerical value of the expression is directly computed, representing either their sum or difference. If
either of the operands are a string, string concatenation will instead be used.

Factor Expression

The factor expression takes the formof a * bora / b. Both operands must be integers, and the
numerical value of the expression will be directly computed. In the case of division, regular integer
division is used. Factor expressions have a higher precedence than additive expressions, so the
following are equivalent

a + b * c
a + (b * ¢)

Unary Expressions

The unary expression takes the form of -a or ! a. If a negative is used with an integer operand, the

integer’s value will be negated. If a bang is used with a boolean operand, the boolean’s value will be
negated. Unary expressions have a higher precedence than factor expressions, so the following are

equivalent

-a + b * -c
(ma) + (b * (-c))

Equality Expressions

The equality expression takes the formof a == bora != b.It compares two operands and returns
either t rue or false depending on their value. == will check if the values are equivalent, whereas

! = checks if the values are different. Equality expressions have the lowest precedence.

Comparison Expressions

The comparison expression takes the formofa <= b,a >= b,a < b,ora > b. It compares two
operands and returns true or false depending on the comparison of the numerical values of the
operands. Comparison expressions have a higher precedence than equality expressions, but lower
than additive expressions.

Parenthesized Expressions
The parenthesized expression takes the form of (a) . Parenthesized expressions force their operands
to be evaluated first, which can be useful for grouping statements, such as

a * (b + ¢)

where the value of b + c will be evaluated, then multiplied by a.

Identifier Expressions

Identifier expressions refer to a variable name and will simply evaluate to that variables value.
Variables are discussed later.

Literal Expressions

Literal expressions include integers, such as 5, 7, 10; booleans, such as true, false; lists, which
take the form of [a, b, ¢, d]; strings, such as "hello", "jacob"; or null, denoted simply using
null.

Statements

Statements are elements that have some side effect when evaluated. That is, statements perform an
action.

Variable Statements

Variable statements take the form of var x = value,var y : type = value, etc. and declare
a new variable with the specified value and type. Variables have static typing, which can either be
infered (such as in the first example) or explicitly stated (such as in the second example).

Assignment Statements

Assignment statements take the form of x = value, and modify the value at an existing variable.
Since variables are statically typed, the new value must be a compatible type with the previous value.

If Statements
If statements take the form of

} else {

and provide a way to branch logic. The operand expression is evaluated, and when true the
statements within the i f clause will be run. When false, the statements within the e1se clause will
be run, possibly branching to more i £ statements.

For Statements
For statements take the form of

for (x in a) {

and provide a way to iterate over lists. The operand expression must be some list type, and the
identifier will take on the component type of the provided list. The statements within the clause will
run once for each element in the list, with the identifier’s value set to the corresponding element of
the list.

Print Statements
Print statements take the form of print (a) and simply print the value of the operand expression to
the console.

Function Statements
Function definition statements take the form of

function fnName(x : type, y : type, ...) : type {

and define a subroutine of logic that can be called via a function call such as fnName (valuel,
value2, ...).Functions can take in any number of parameters, that can either explicitly specify
or infer their associated types. The statements within the function clause will be run using the
parameter values as local variables. Functions can also return a type using a return statement

Return Statements

Return statements must exist within a function definition statement, and take the form of return
value. The type of value must match the return type of the function, or be empty if no value should
be returned.

Types
Catscript supports the following types:

int

bool
string
object
list<type>
null

void

The null type is only used for the nu11 literal, and can be assigned to any other type. The void type
is only used to denote a function returns no value, and cannot be assigned from any other type.

Parsing and Compilation

Catscript can either be evaluated at runtime using a Tree-Walk Interperter, or can be compiled to
Java Bytecode to be run on the JVM. Parsing is achieved using recursive descent. The grammar of
Catscript is shown below:

catscript program = { program statement };

program statement = statement |
function declaration;

statement = for statement |
if statement |
print statement |
variable statement |
assignment statement |
function call statement;

for statement = 'for', '(', IDENTIFIER, 'in', expression '")',
'{'", { statement }, '}';

if statement = 'if', '(', expression, ")', '{',
{ statement 1},
"}' ['else', (if statement | '{', { statement }, '}') 1;
print statement = 'print', '(', expression, ')'

variable statement = 'var', IDENTIFIER,
[':', type expression,] '=', expression;

function call statement = function call;
assignment statement = IDENTIFIER, '=', expression;

function declaration = 'function', IDENTIFIER, '(', parameter list, ')' +

[':' + type expression], '{', {
function body statement }, '}';

function body statement = statement |
return statement;

parameter list = [parameter, {',' parameter }];
parameter = IDENTIFIER [, ':', type expression];
return statement = 'return' [, expression];

expression = equality expression;

nzzu)

equality expression = comparison expression { ("!="
comparison expression };

comparison expression = additive expression { (">" | ">=" | "<" | "<=")
additive expression };

additive expression = factor expression { ("+" | "-") factor expression
i
factor expression = unary expression { ("/" | "*") unary expression };
unary expression = ("not" | "-") unary expression | primary expression;
primary expression = IDENTIFIER | STRING | INTEGER | "true" | "false" |
"null" |

list literal | function call | " (", expression, ")"
list literal = '[', expression, {','", expression } '1]';
function call = IDENTIFIER, '(', argument list , ')'
argument list = [expression , { ',' , expression }]
type expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,

type expression, '>'"]

UML:

[ForStatement [VariableSI}ateme7{] [CatScriptProgram]

AssignmentStatement FunctionDefinitionStatement}

ReturnStatement SyntaxErrorStatement]

Statement

FunctionCallStatement IfStatement

|
il

|

PrintStatement

Parse Element

ListLiteralExpression
x

[UnaryExpression

[StringLiteralExpression

[AdditiveExpression J

SyntaxEmorExpresion

[TypelLiteral

ComparisonExpression

IdentifierExpression
[IntegerLiteralExpression J EqualityExpression

[FunctionCallExpression } [ParenthesizedExpression]

[FactorExpression J

[BooleanLiteraIExpression] [NullLiteralExpression]

Design trade offs

We used a recursive descent model.lt was easy to implement, but likely will not result in code
that runs as fast as possible.

Software dev life cycle

The model we used for the development was test driven development, It's a simple model that
relies on getting tests to pass by set deadlines. It made meeting goals very achievable, but in
testing at the end we actually found a case where the built in testing was insufficient. | guess
that’s a pitfall. It also lent itself to procrastination as it's easy to put off a deadline like this until
it’s right on you.

