
CAPSTONE DOCUMENTATION 1

Compilers Capstone 2023

Samuel Mocabee, Computer Science Professional

Montana State University Bozeman

Author Note

“Computers are incredibly fast, accurate, and stupid. Human beings are incredibly slow,

inaccurate, and brilliant. Together they are powerful beyond imagination.”

- Albert Einstein, physicist

CAPSTONE DOCUMENTATION 2

Abstract

The contents of this portfolio will go through a detailed report over the intricacies of the

Catscript compiler. Technical documentation will be included to show readers a basic

understanding of the Catscript language and function as a guide to learn how to code in

Catscript. Teamwork was applied to the project as well, as team member one created additional

tests to ensure the successfulness of executing programs in the Catscript language compiler.

Several UML design diagrams are also included to show simplistic examples of how the

compiler process works, and we will also look at a specific design pattern used in the process of

coding and the trade-offs that came with those choices and their justification. Lastly will be

viewing the software development life cycle model that was used to develop the capstone

project.

Keywords: Source code, Teamwork, Design Pattern, Technical Writing, UML, Design

Trade-offs, Software Development Life Cycle Model.

CAPSTONE DOCUMENTATION 3

Section 1: Program

Attached to the document is a zip file of the final repository for CSCI 468, compilers. It

holds the completed base source code for the compiler that was written over the course of the

semester.

Section 2: Teamwork

 Coding for this project was done individually allowing for team member 1 and I to get a

deeper understanding of the compiler allowing us to work through the tokenization, parsing, and

evaluation process at our own pace and through our own coding process. The primary

contribution of team member 1 to this capstone project was through the tests that he wrote to

ensure the validity of the compiler’s structural ability and the technical documentation of the

Catscript programming language.

Having team member one create additional test and the documentation for the language

allows a separation in roles, as I function as the primary engineer responsible for the creation of

the compiler and team member one who acts as the documentation and testing engineer. With

this structure the roles are also reversed as I generate tests of my own to not only further

evaluate my own compiler but to also be the role of the documentation and testing engineer and

send the tests and technical documentation for team member 1’s capstone project.

The following are the tests for my compiler created by team member 1. The first test

makes sure that the if else statements work in a function declaration, the second test ensures that

for loop and return statements work within a function declaration, and the third test checks

complex expression evaluation and string concatenation.

CAPSTONE DOCUMENTATION 4

package edu.montana.csci.csci468;

 import edu.montana.csci.csci468.CatscriptTestBase;

 import org.junit.jupiter.api.Test;

 import java.util.Arrays;

 import static org.junit.jupiter.api.Assertions.assertEquals;

 import static org.junit.jupiter.api.Assertions.assertNull;

public class CapstoneTests extends CatscriptTestBase {

 @Test

 void functionDefinitionWithIfStatementTest() {

 String input = "function foo(x : int) : int {\n" +

 "if(x > 10){ print(2) }" +

 "else{ print(x)}" +

 "return x * 10" +

 "}\n" +

 "print(foo(9))";

 String expectedOutput = "9\n90\n";

 assertEquals(expectedOutput, executeProgram(input));

 }

 @Test

 void functionDefinitionWithForLoopTest() {

 String input = "function foo(x : int) : int {\n" +

 "for(i in [1, 2, 3]){ print(i) }" +

 "return x" +

 "}\n" +

 "print(foo(9))";

 String expectedOutput = "1\n2\n3\n9\n";

 assertEquals(expectedOutput, executeProgram(input));

 }

 @Test

 void complexExpressionEvaluationTest() {

 String input = "1 + 3 * 13 - (12 / 2)\n";

 String expectedOutput = "34\n";

 assertEquals(expectedOutput, executeProgram(input));

 input = "\"this\" + \"is\" + \"a\" + \"string\"\n";

 expectedOutput = "thisisastring\n";

 assertEquals(expectedOutput, executeProgram(input));

 }

CAPSTONE DOCUMENTATION 5

Section 3: Design Pattern

One specific design pattern used in the capstone project is a memoization pattern located

in the CatscriptType.java class in the function getListType. Memoization is an optimization

technique to speed up computer programs by storing the results of function calls and returning

the cached result when the same input occurs again. In the context of the compiler, when we call

the getListType function with a CatscriptType; for this example let us use an int type. It

investigates the hash map to see if the map contains the type of int. If not, it returns null and from

there, we create a new list type or a list of int in this case and then puts this data into the hash

map and returns the list type. Now if we run the function again the program will not re-initialize

a list of type int, it will instead return the original list type we created. Allowing us to save

computation of renewing a list type when it we call the function with the same type repeatedly.

The following is the Memoization pattern code used in the project.

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new

HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

 CatscriptType listType = LIST_TYPES.get(type);

 if(listType == null){

 listType = new ListType(type);

 LIST_TYPES.put(type, listType);

 }

 return listType;

}

CAPSTONE DOCUMENTATION 6

Section 4: Technical Writing

Catscript Programming Language Technical Documentation

Provided by Team member 1

Introduction

Catscript is a small user-friendly programming language designed with simplicity in mind. It

provides a straightforward syntax that enables programmers to write clear code. Catscript is a

small functional and statically typed language. This documentation serves as a comprehensive

guide to Catscript grammar and syntax. In this documentation, you will find detailed

explanations of the various components of the Catscript language, including program structure,

statements, control structures, functions, expressions, literals, and types. We will also provide

examples and use cases to help you better understand the concepts and apply them yourself.

Recursive descent parsing is a top-down parsing technique used by Catscript to analyze and

process its source code. This method starts at the highest level of the grammar and recursively

applies the rules of the grammar to break down the source code into smaller components. The

parser examines the input one token at a time, matching the grammar rules and constructing a

parse tree in the process. If a rule cannot be successfully applied, the parser backtracks to a

higher level in the grammar and attempts alternative rules. Recursive descent parsing is a popular

choice for its simplicity and ease of implementation, which makes it well-suited for Catscript's

limited features.

Types

In Catscript, types define the structure and behavior of data, determining the kind of values that

variables can hold and the operations that can be performed on those values. The language offers

a set of built-in types that cater to a variety of use cases, enabling you to create expressive

programs. The language consists of seven distinct data types, namely: String, Integer, Boolean,

List Literal, Object, Null, and Void. CatScript is statically typed and can be declared in variable

statements and function declarations. All the types in CatScript are built on those defined in Java.

At the time of evaluation CatScript also provides type checking in the validation step. When

declaring variables or function parameters, you can optionally specify their type to enable type

checking, which helps catch potential errors early in the development process. Types can also be

used in generic contexts, such as defining lists of specific element types.

CAPSTONE DOCUMENTATION 7

Integer:
In CatScript integers are built off the Integer.class in Java. It is important to note that in

CatScript integers are the only numeric type that are provided. Any number that is provided is

interpreted as a 32-bit integer.

Here is an example of declaring a variable as an integer and using it in an additive expression.

var x : int = 2

x + 2

Strings:
In CatScript strings are built on the String class in Java but have some characteristics of their

own. All strings are denoted with double quotes.

Here is an example of a variable string.

var str : string = "Hello World!"

str + " I am a string!"

Boolean:
In CatScript strings are built on the Boolean class in Java. A Boolean literal in CatScript is put

using the keywords “true” and “false”

var is_true : bool = true

is_true == false

Lists:
In CatScript lists are built into the language as list literals and can be composed of any type. It is

important to note that lists in CatScript can be composed of object types and therefore any mix of

types.

Here are some examples of lists.

var my_list : list <int> = [1, 2, 3]

Objects:
In CatScript objects are built on the object class in Java. They are the root of all types and so can

be the base for any type.

CAPSTONE DOCUMENTATION 8

Null:
In CatScript the null type is also based on the object class in Java. Anything can be set to null in

CatScript.

Expressions

In Catscript, expressions are fundamental building blocks used to represent values, perform

computations, and evaluate conditions. Expressions can consist of literals (e.g., integers, strings,

Booleans), variables, function calls, or combinations of these elements using various operators.

The language supports a rich set of operators, allowing you to create complex expressions

involving arithmetic, comparison, logic, and other operations.

Catscript expressions are organized hierarchically based on their precedence, which determines

the order in which operations are performed. The precedence levels, from highest to lowest,

include unary expressions (e.g., negation, logical NOT), factor expressions (e.g., multiplication,

division), additive expressions (e.g., addition, subtraction), comparison expressions (e.g., greater

than, less than), and equality expressions (e.g., equal, not equal).

When writing expressions in Catscript, parentheses can be used to group sub-expressions and

explicitly define the order of evaluation, overriding the default precedence rules. Expressions are

typically used as operands in various statements, such as assignments, conditional statements,

loops, and function calls, allowing you to create powerful and expressive Catscript programs.

Logic Operators:

Within the CatScript language there are the usual logic operators available to the user, greater

than, less than, greater than or equal to, less than or equal to, and equals.

Here are some examples of expressions using logic operators

x > 1

x < 4

x <= 5

x >= 2

x == 2

x == "foo"

CAPSTONE DOCUMENTATION 9

Arithmetic Operators:
Catscript offers the basic operations of addition, subtraction, multiplication, and division. It is

important to note that the addition operator can be used on integers or for string concatenation.

Here are a few examples.

1 + 1

3 - 1

4 / 2

3 * 3

Statements

In Catscript, statements are the primary building blocks that define the behavior and flow of a

program. They represent instructions that the program should execute, and are used to declare

variables, define functions, control the flow of execution, and perform computations or other

operations. Statements in Catscript are executed sequentially, from top to bottom, in the order

they appear in the source code. However, control structures can alter the order of execution by

branching or looping based on specified conditions. To group multiple statements together, you

can use curly braces `{}` to create a block of code, which is particularly useful when defining the

body of a function or the scope of a control structure.

For Loops:
In Catscript, for loops are used to iterate over a given range or collection, executing a block of

code for each element. The loop variable is specified by an identifier and can be used within the

loop body. For loops provide a convenient and readable way to perform repetitive tasks or

process elements in a sequence.

Here is an example of how to write a loop in CatScript.

for (x in [1, 2, 3])

{

 print(x)

}

CAPSTONE DOCUMENTATION 10

If Statements:
If statements are conditional constructs that allow you to execute a block of code if a specified

expression evaluates to true. Optionally, you can include an `else` block to execute code when

the condition is false. If statements are essential for controlling the flow of your program based

on conditions.

Here is an example of how to use it for statements in CatScript.

if (x > 10)

{

 print(x)

}

else

{

 print(10)

}

Assignment Statement:
Assignment statements are used to assign a new value to an existing variable, identified by its

name. This is a fundamental operation in any programming language, allowing you to store and

update values in your program.

Here is an example of how to write an assignment statement after a variable has been created.

var x : int = 10

x = 5

Variable Statement:
Variable statements are used to declare new variables with a specified identifier and an initial

value. Optionally, you can also define the type of variable, which provides type checking and

helps to catch potential errors early in the development process.

Here is an example of how to instantiate a variable in CatScript.

var x = 10

var x : int = 10

var x : bool = true

var x : string = "hello"

var x : object = "foo"

CAPSTONE DOCUMENTATION 11

Print Statement:
The print statement outputs the value of an expression to the console, allowing you to display

information or debug your program. It is a useful tool for understanding the behavior of your

code during development and testing.

Here is an example of the print statement.

print(10)

Function Definition Statements:
Function definition statements are used to create new functions with a specified identifier,

parameter list, and a return statement. The function body consists of a series of statements that

define the behavior of the function. Functions are essential for organizing your code into

reusable, modular units.

Here is an example of defining a function in CatScript.

for (x in [1, 2, 3])

{

print(x)

}

Function Call Statement:
Function call statements are used to invoke a previously defined function with a list of

arguments. The function call statement evaluates the return value of the called function, which

can be used in other expressions or statements.

Here is an example of how to call the function above.

print(foo(10))

Return Statements:
Return statements are used within function bodies to specify the value that should be returned by

the function when it is called. A return statement can include an expression that evaluates the

return value. If no expression is provided, the function returns `null`.

Here is an example of a return statement in a function.

for (x in [1, 2, 3])

{

print(x)

}

CAPSTONE DOCUMENTATION 12

Section 5: UML

In this section I have included four sequence diagrams showing the process of parsing a

numerical expression, a string concatenation expression, an if statement with a print, and a

function definition containing a for loop with a print, a return statement, and a print with a

funciton call statement.

CAPSTONE DOCUMENTATION 13

CAPSTONE DOCUMENTATION 14

CAPSTONE DOCUMENTATION 15

CAPSTONE DOCUMENTATION 16

Section 6: Design Trade-offs

The most notable design trade-off present in this capstone project was the recursive

descent parser that was handwritten rather than writing lexical and language grammars to use a

parser generator tool to create the parser. The justification of writing our parser for this capstone

by hand was that we found this process more intuitive to observe a more in-depth view of how

grammar works in compilers. Using a hand-written recursive-descent parser also allows coders

in general to have complete control over the parser, enabling more opportunities that parser

generators cannot accommodate, such as in-depth error messages and error recovery. It also gave

us the chance to write more complicated code and taught us the process of which a compiler goes

through to parse a language.

The comparison of the recursive decent method to the use of a variety of different parser

generators tools like LAX, YAK, or ANTLR had a more educational advantage than using the

technique of a parser generator program. Which would typically take the input in the form of a

lexical grammar specified by a regular expression, and a language grammar in a EBNF

(Extended Backus-Naur Form) syntax. While objectively leading us to a compiler that would

parse and run Catscript just like the compiler created for the capstone, it robs us of looking at the

bare bones of the parser process but also the chance to learn and create our own language for

future coding endeavors.

CAPSTONE DOCUMENTATION 17

Section 7: Software Development Life Cycle Model

The software development model that was used during the semester for the capstone

project was test driven development which was an extremely helpful and useful model for this

coding project. This software model continually tested previous test sections as well as the

current section on which I was working. Each section of the tests would only pass if the previous

sections were running properly, but as you progress you can have tests that uncover hidden issues

that were missed but still passed in previous sections. For example, while working on the

evaluation section one, a test was not executing properly because I had forgotten to adjust line-

offset in a previous parsing function. Despite this error the tests in the parser section still passed.

Using this development cycle allowed for step-by-step testing of the compilers capability while

also checking previously coded sections.

When starting the process of creating our compiler we were given a series of tests that

described the Catscript programming language. The tests for this project were divided into four

sections: tokenizer, parser, evaluation, and bytecode. All these tests would eventually lead to a

completed compiler, but to start this coding journey we focused on the tokenizer section. In this

series of tests, a stream of text was broken into tokens while also attaching additional context to

the tokens. For instance, the different operator types in the language or what the type of field of

the token is, for example an int, bool, etc. The next section of development focused on parsing

expressions and statements, while also type checking and symbol checking the tokens that were

read into the parser, and asserting errors in the code if the given program did not follow the

Catscript programming language. Once parse tests were evaluated correctly, we moved onto the

evaluation process which would ensure the basic expressions, functions, and statements were

generating the correct output based on the tests. Finally, the last sections of the tests would take

CAPSTONE DOCUMENTATION 18

the Catscript code and would check to make sure that the basic expressions, functions, and

statements were compiled correctly into bytecode. Ensuring the process of reading in the

Catscript programming language, tokenizing the language, parsing, evaluating, and compiling

the code down to byte code allowed us to successfully create our Catscript compiler for the

capstone project.

