
COMPILERS CAPSTONE

CSCI 468

Spring 2023

Amanda Faulconer

Section 1: Program

All the partner tests that both Rory and Amanda wrote are in the PartnerTests.java file.
Here is the absolute file path:

C:\Users\Amanda Faulconer\csci-468-spring2023-
private\src\test\java\edu\montana\csci\csci468\parser\PartnerTests.java

Section 2: Teamwork

The capstone project was executed through a series of test-driven development
sessions. Team member one (Amanda Faulconer) invested 90% of the time spent and
team member two (Rory Myer) invested 10% of time spent into the completion of all the
sets of tests. The final set of tests were developed by team member two, they were
subsequently provided to team member one. Team member one executed the tests
provided which completed the final round of testing.

Section 3: Design Pattern

The Memorization Pattern was the major design pattern that was implemented in the
software development of the Catscript compiler. This pattern is used within the
CatScriptType.java file to create list types in which each element can be stored within
itself allowing for memory space to be freed.

Section 4: Technical Documentation

Catscript Guide

Introduction

Catscript is a simple scripting language that compiles JVM Bytecode.

Features

Types

Catscript supports basic types for variables and is statically typed

● Int

A 32 bit integer

● String

A Java-style string

● Bool

A boolean value

● List

	 A list of values with type ‘x’

● Null

	 The null type

● Object

A value of any type

Keywords

Expressions

Catscript uses an expression class inherited by all expression types.

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [,
'<' , type_expression, '>']

else, if, for, function, not, null, print, return, true, false, var

● Primary

	 The default expression. Contains the following:

○ Identifiers

Represent a user defined keyword or variable

○ String literals

String of characters enclosed in quotation marks

○ Boolean values

True or false values

○ Null values

A null value

○ List literals

A list of values, can be composed of the previously addressed expressions

○ Function calls

Called at runtime, contains function parameters

○ (a series of) expressions

Expressions of any type

● Unary

Catscript implementation of single argument expressions. Unary expressions in catscript
use the ‘not’ symbol for boolean values and ‘-’ for integers.

● Additive

	 Catscript additive expressions implement addition and subtraction using the ‘+’

and ‘-’ operators, respectively.

● Factor

Catscript factor expressions implement multiplication and division using the ‘*’

and ‘/’ operators, respectively.

● Comparison

Catscript comparison expressions implement less than, greater than, less than or equal
to, and greater than or equal to, using the ‘<’, ‘>’, ‘<=’, ‘>=’ operators, respectively.

-x  
not false

3 + 7 // =10  
7 - 3 // = 4

3*3 // =9  
3/3 // =1

1 < 3 // true  
1 > 3 // false  

● Equality

Catscript equality expressions implement equal to and not equal to, using the ‘==’ and ‘!
=’ operators, respectively.

Statements

● Print Statement

Catscript print statements are implemented by using the ‘print’ keyword followed by an
expression. The expression is evaluated and sent to the print command.

● Variable Statement

Catscript variable statements are used to declare and assign variables, implemented
using the ‘var’ keyword.

● Assignment Statement

Catscript assignment statements assign values and expressions to variables

using the equal (‘=’) symbol.

● If Statement

Catscript if statements are used for conditional branching. If the condition stated after the
‘if’ keyword is met, the code enclosed by the statement will be executed.

3 == 3 // true  
3 != 3 // false

print(11) // prints '11'  
print("Hello World") // prints 'Hello World'

var mascot : string = 'Champ'  
var x : int = 11

x = 11  
x = x + 3

var x = 11  
if (x == 3) {  

print(3)  
} else {  

print(var)  
}

● For Statement

Catscript for statements are used to initiate a loop on the condition following the ‘for’
keyword.

● Function Definition Statement

Catscript function definition statements define functions used in a program. Indicated by
the ‘function’ keyword, followed by an identifier, parameter list, and potentially a return
statement.

● Function Call Statement

Catscript function call statements execute functions previously defined if parameters are
met accordingly.

● Return Statement

Catscript return statement uses the ‘return’ keyword to assign the return value to

its function definition.

var numbers : list<int> = [1,2,3]  
for (var i in numbers) {  

print(i)  
}

function multiply(x: int, y: int) {  
return x*y  

}

multiply(3, 11);

return x*y

Grammar

catscript_program = { program_statement };  
 
program_statement = statement |  
 function_declaration;  
 
statement = for_statement |  
 if_statement |  
 print_statement |  
 variable_statement |  
 assignment_statement |  
 function_call_statement;  
 
for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',  
 '{', { statement }, '}';  
 
if_statement = 'if', '(', expression, ')', '{',  
 { statement },  
 '}' ['else', (if_statement | '{', { statement }, '}'
)];  
 
print_statement = 'print', '(', expression, ')'  
 
variable_statement = 'var', IDENTIFIER,  
 [':', type_expression,] '=', expression;  
 
function_call_statement = function_call;  
 
assignment_statement = IDENTIFIER, '=', expression;  
 
function_declaration = 'function', IDENTIFIER, '(', parameter_list,
')' +  
 [':' + type_expression], '{',
{ function_body_statement }, '}';  
 
function_body_statement = statement |  
 return_statement;  
 
parameter_list = [parameter, {',' parameter }];  
 
parameter = IDENTIFIER [, ':', type_expression];  
 
return_statement = 'return' [, expression];  
 
expression = equality_expression;  
 
equality_expression = comparison_expression { ("!=" | "==")
comparison_expression };  
 
comparison_expression = additive_expression { (">" | ">=" | "<" |

Section 5: UML

The following UML Diagram shows the overall structure of the Catscript Language.

Section 6: Design Trade-offs

For the Catscript parser, a handwritten recursive descent algorithm was implemented.
Recursive descent parsers are top-down parsers, which can be more time-consuming
as all of the code must be handwritten, instead of using a parser generator. The
programmer is required to create a tokenizer, parser, evaluator, bytecode generator, and
JavaScript transpiler. This demands significant effort from the developer and is not very
space efficient. However, by handwriting the parser, the programmer can gain a deeper
understanding of all the components involved in building a parser. This, in turn, can
make the parser faster as the parse tree is built from the top-down, starting with the
non-terminals and relating them to a procedure, with no backtracking. In the end, the
programmer can have an incredibly useful and fast data structure to build upon.

One major advantage of a recursive descent parser is that each non-terminal is related
to a procedure. The objective of each procedure is to read a sequence of input
characters or a string, which can be produced by the corresponding non-terminal, and
return a token to the root of the parse tree for that non-terminal. For each production in
the grammar, a method is created, named after it. For example, 'parseEquality()'. Within
this method, the methods defined on the right-hand side of the production are called,
matching strings as needed.

Section 7: Software Development Life Cycle Model

Test Driven Development (TDD) was utilized for this project. TDD is a software
development process where test cases are created to validate and specify each
function within the program. The tests are written before the code and will initially fail
until the code is written to make them pass. This method involves repeatedly testing the
software against all the test cases to track its development progress.

Initially, the method seemed overwhelming to us because of the number of failing tests.
However, after the first checkpoint, we found it to be a preferred approach to software
development. By having tests to work off of, we can isolate specific sections of the code
that require improvement. If we had used traditional software development, we would
have had to backtrack to locate the errors and written many lines of code.

	Section 1: Program
	Section 2: Teamwork
	Section 3: Design Pattern
	Section 4: Technical Documentation
	Catscript Guide
	Introduction
	Grammar

	Section 5: UML
	Section 6: Design Trade-offs
	Section 7: Software Development Life Cycle Model

