
Senior Capstone Portfolio

Compilers 468

Spring 2023

Team Members:

Joseph DiPrizio

Tyler Koon

Capstone Documentation
Joseph DiPrizio

May 2023
Section 1: Program

Section one of the capstone project is the code that is implementing a compiler for the Catscript

programming language. To fulfill this section, I have included a zip file with this document that

contains all of the code that allows the Catscript compiler to function, as well as all of the tests that

were used to guide the development of the Catscript compiler.

Section 2: Teamwork

I worked with Tyler Koon, who I will refer to as team member one on this project. Team member one

focused on the Catscript documentation for the compiler, and I worked on the implementation and

coding of the compiler. The documentation goes in depth into the different features that Catscript

provides and gives examples of how to use these features. This technical document can be found in

section four of this documentation. Member one also wrote several tests that are contained in the

CatscriptCapstoneTests.java file in the zipped code file. These tests ensured that the compiler is able

to handle if statements that utilize a return statement, for loops that are nested within one another,

and for loops combined with several features that modify control flow, such as if statements or

function calls. The Java code for the tests is the following:

package edu.montana.csci.csci468.eval;
import edu.montana.csci.csci468.CatscriptTestBase;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;
public class CatscriptCapstoneTests extends CatscriptTestBase {
 /**
 * The following test verifies that 'if' statements handle return behavior correctly.
 * That is, if they encounter a return statement during execution, they do not run any following
code.
 */
 @Test
 void ifStatementHandlesReturn() {
 // The following program should print 5 and not -1
 assertEquals("5\n", executeProgram(
 "var x = 0" +
 "function validReturn() {" +
 "if(x == 0) {" +
 "x = 5" +

 "return" +
 "}" +
 "x = x - 1" +
 "}" +
 "validReturn()" +
 "print(x)")
);

 // The following program should print 10 and not 0
 assertEquals("10\n", executeProgram(
 "var x = 1" +
 "function validReturn() {" +
 "if(x == 0) {" +
 "x = 5" +
 "return" +
 "} else {" +
 "x = 10" +
 "return" +
 "}" +
 "x = x - 1" +
 "}" +
 "validReturn()" +
 "print(x)")
);
 }
 /**
 * The following test verifies that 'for' statements can be nested, and iterate the parent iterables in
the
 * correct order.
 */
 @Test
 void forStatementsCanBeNested() {
 assertEquals("1\n4\n5\n6\n2\n4\n5\n6\n3\n4\n5\n6\n", executeProgram(
 "var x = [1, 2, 3]" +
 "var y = [4, 5, 6]" +
 "for(i in x) {" +
 "print(i)" +
 "for(j in y) {" +
 "print(j)" +
 "}" +
 "}"
)
);
 }
 /**
 * The following test verifies that 'for' statements can include compound statements, such as
function calls and if
 * control flow logic like 'if' statements.
 */
 @Test
 void compoundForStatements() {

 assertEquals("1\n2\n3\n", executeProgram(
 "var x = [1, 2, 3]" +
 "function test(y: int) {" +
 "print(y)" +
 "}" +
 "for(i in x) {" +
 "test(i)" +
 "}"
)
);
 assertEquals("2\n", executeProgram(
 "var x = [1, 2, 3]" +
 "for(i in x) {" +
 "if(i == 2) {" +
 "print(i)" +
 "}" +
 "}"
)
);
 assertEquals("-1\n2\n-1\n", executeProgram(
 "var x = [1, 2, 3]" +
 "for(i in x) {" +
 "if(i == 2) {" +
 "print(i)" +
 "} else {" +
 "print(-1)" +
 "}" +
 "}"
)
);
 }
}

I primarily worked on the code for the Catscript compiler. I started with tokenization, which involved

analyzing input and grouping it into different categories. For example, input such as 123 is tokenized

to be an integer, and x was tokenized as an identifier. Parsing was the next step, which was broken

into parsing expressions and parsing statements. The difference is expressions evaluate to a value,

such as “1+1”, whereas statements act as a sort of action, like “print(x)” or a for loop. Once the

compiler was able to tokenize and parse input, the last steps were evaluation and JVM bytecode. This

step involved going through each type of statement and expression and breaking it down into

bytecode so the compiler was able to evaluate it, and we could compile Catscript code down to JVM

bytecode.

Concerning time spent on the project, team member one spent approximately six to eight hours on

the technical documents and tests for the Catscript compiler. I spent approximately 40-50 hours

implementing the compiler. This time was spent doing the following:

Tokenization 6 hours

Expression Parsing 6 hours

Statement Parsing and Evaluation 18 hours

Compilation 12 hours

Section 3: Design Pattern

For the design pattern, I chose to memoize the method getListType() that can be found in the

CatscriptType.java file. By memoizing this call, we store a ListType into a hashmap if we call the

function and it is the first time that ListType has been seen by the function. This means that

whenever we call getListType() again attempting to get the same type, we can retrieve it from the

Hashmap instead, thus saving resources. This code has been highlighted in the CatScriptType.java

file, and an image of the memoized function has been included at the end of this section.

Section 4: Technical Writing

The technical writing document was written by team member one, as was mentioned earlier in the

teamwork section. I have appended it onto the end of this page.

CatScript Documentation
Author: Tyler Koon

• CatScript Documentation
– Introduction
– Type System

∗ Concrete Types
∗ List Types

– Control Flow
∗ For Loops
∗ If Statements
∗ Functions and Return Statements

– Assignment
∗ Identifiers
∗ Variables

– Lists
∗ Defining Lists
∗ Accessing Lists

– Operators
∗ Arithmetic Operations
∗ Logical Operations

Introduction
CatScript is a high-level, C-like programming language that has been developed
for educational purposes. Though a small and simple language, it supports a
number of modern features, including a static type system, control structures
such as loops and functions, variable assignment, lists, and basic algebraic and
comparative operators. This documentation covers these features in detail, pro-
viding plenty of examples that demonstrate the CatScript language in action.

Type System
CatScript implements a simple static type system that uses a syntax similar
to TypeScript. Using a static type system promotes a more rigid development
process, and allows the CatScript compiler to provide mode comprehensive error
messages that supports a more convenient development environment.

Here is what it might look like to explicitly assign a variable as an integer:

var myNum: int = 10

Of course, CatScript also supports type inference. The following myNumPlusFive
variable will also be identified as an integer:

var myNumPlusFive = myNum + 5

1

Concrete Types

In CatScript, there are six concrete types: Integers, Strings, Booleans, Objects,
Null, and Void. These types and their Java mappings are provided in the table
below.

Type Name Java Mapping Description
int Integer java.lang.Integer 32-Bit Integer
string String java.lang.String String Value
bool Boolean java.lang.Boolean Boolean Value
object Object java.lang.Object Any Value
null Null java.lang.Object Null Type
void Void java.lang.Object Void Type

These concrete types follow a simple set of assignability rules. The int, string,
and bool types are all assignable to the object type. For example, an Integer-type
variable can be assigned to an Object:

var myInt: int = 10
var myObject: object = myInt

The same can be done with a String:

var myString: string = "Lorem"
var myObject: object = myInt

And a Boolean:

var myBool: bool = true
var myObject: object = myInt

That said, the Object types cannot be assigned to its primitive children (In-
tegers, Strings, and Booleans). For example, you are not allowed to assign a
variable of type object to another variable of type int:

var myObject: object = 10

// This is not allowed
var myInt: int = myObject

As a general rule of thumb, the assignability of the Integer, String,
Boolean, and Object types match the assignability rules of the cor-
responding Java types.

The Null and Void types are special in the CatScript language. Much like in
other high-level languages, the Null type simply corresponds with the null value.
Every type is assignable from the null type. For example, you can initialize a
variable as null, and then assign it to an integer later on:

2

// `futureInt` initialized to null; inferred type is `null`
var futureInt = null

// ... do something ... //

// The `futureInt` variable can then be assigned to an intger; inferred type in `int`
var futureInt = 10

On the other hand, nothing can be assigned from the void type. Thus, the
following assignment would not be allowed

// This is not allowed
var nonSense: void = 10

Instead, the void type is only used to identify functions that have no return
value:

// This is allowed
function myFunc(): void {
print("I do not return anything")

}

List Types

In addition to the six concrete types, CatScript implements a complex List type
that supports parameterization. The syntax for this type is list<T>, where T
is the component type for the List object. For example, assigning a variable to
a list of integers would look like:

var myList: list<int> = [1, 2, 3]

The component type supports all six concrete types in addition to the list type.
This allows for the assignment of nested lists, such as a list of lists of Integers:

var myNestedList: list<list<int>> = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Much like the Array type in Java, the CatScript List type is covariant; that is,
a list L1 is assignable to list L2 if, and only if, the component type of list L1 is
assignable to the component type of list L2. Unlike Java arrays however, lists
are immutable which prevents logical assignment errors, such as inserting an
Integer into a list of Objects.

To demonstrate the covariance of lists, consider assigning a list of strings to a
list of objects:

var myStringList: list<string> = ["a", "b", "c"]

var myObjectList: list<object> = myStringList

This would be valid because the string type is assignable to the object type.
Attempting to assign a list of objects to a list of strings however would be invalid:

3

var myObjectList: list<object> = ["a", "b", "c"]

// This is not allowed because type 'object' is not assignable to type 'string'
var myStringList: list<string> = myObjectList

Control Flow
In CatScript, there are three basic control structures: for loops, if statements,
and functions. These allow for advanced programming features, including iter-
ation, abstraction, and complex conditional logic.

For Loops

As with most other languages, the for loop allows for iterations through iter-
able items. Similarly to these other languages, the for statement takes on the
following form:

for(IDENTIFIER in ITERABLE_EXPRESSION) {
STATEMENTS

}

The IDENTIFIER will infer its type from the ITERABLE_EXPRESSION. So for exam-
ple, when iterating through a list of integers, the IDENTIFER will be of type int.
In CatScript, List are the only valid ITERABLE_EXPRESSION. Iterating through
a list of integers might look like:

var myInts: list<int> = [1, 2, 3]

// myInt infers the type of 'int' from myInts
for(myInt in myInts) {
// Do something

}

The body of the for loop can consist of any number of valid CatScript statements,
including additional for loops and the Return statement (which will cause the
loop to terminate prematurely). As an example, consider the following fully
qualified for loop that searches for a string in a list of strings:

var words: list<string> = ["cat", "script", "catscript"]

// word infers the type of 'string' from words
for(word in words) {
// Check if word is equal to my favorite word
if(word == "catscript") {
// If so, print a message and terminate the for loop
print("I have found my favorite word")
return

}

4

print("I have not found my favorite word")
}

If Statements

Another common control structure implemented in CatScript is the if statement.
Once again, this structure performs similarly to most other high-level languages,
taking the following form:

if(EXPRESSION) {
STATEMENTS

}

The EXPRESSION can be any valid CatScript expression that evaluates to a
truthy value (i.e., true or false), and the STATEMENTS can consist of any valid
set of statements, including additional if statements for compound conditional
logic. When the EXPRESSION evaluates to true, the STATEMENTS will be executed.
Otherwise, if the EXPRESSION evaluates to false, none of the STATEMENTS will
be executed. An example of this behavior is demonstrated below:

if(true) {
// These statements will be executed!
print("This will be printed")

}

if(false) {
// These statements will not be executed!
print("This will not be printed")

}

CatScript also supports else statements, allowing for the chaining of conditional
logic. The statement can be followed by either an additional if statement or a
set of STATEMENTS that will be executed if the preceding EXPRESSION is falsy.
As an example, consider this chain if if/else statements that reacts to an integer
value:

var myInt: int = 10

if(myInt == 5) {
// These statements will be executed if myInt is equal to 5
print("My integer is five!")

} else if (myInt == 10) {
// These statements will be executed if myInt is not equal to five, but is equal to 10
print("My integer is ten!")

} else {
// These statements will be executed only if myInt is not equal to 5 or 10
print("I do not know what my integer is :(")

}

5

Functions and Return Statements

The final control structures in the CatScript language are functions and return
statements. As with most other languages, functions can be used to associate a
set of statements with an identifier, which can be called later on in the program.
A function declaration simply consists of an identifier, a set of parameters, and
a set of statements:

function IDENTIFER(PARAMETERS) {
STATEMENTS

}

The IDENTIFIER can be any valid identifier, and is used to call the function
from elsewhere in the program. The syntax for calling a function is simply
the function’s identifier followed by a set of parenthesis containing a comma-
delimited list of the functions paraemters:

var myInt: int = 5

function myFunc(paramOne) {
// Do something
print(paramOne)

}

// Calling myFunc if the value of myInt is 5
if(myInt == 5) {

myFunc(myInt)
}

Additionally, the parameters in the PARAMETERS list can be explicitly types. If
they are not explicitly type, then the types will be inferred:

function add(a: int, b: int) {
// Variables a and b have been explicitely typed as integers
print(a + b)

}

In the CatScript language, the body of functions execute in their own scope,
allowing for the creation of local variables that persist only within a function
call. For example, the variables a and b in the preceding example are only
accessible within the body of the add function. That said, function’s have
access to any variables declared in the functions parent scope:

var five = 5

function addFive(a: int) {
// The variable five can be accessed from within `addFive` because
// `five` is declared in the parent scope
print(a + five)

6

}

Finally, function bodies can contain a return statement that allows for execu-
tion to be halted, and for a value to be returned to a function call.

function multiply(a: int, b: int): int {
// Return an integer representing the product of a and b
return a * b

}

var myValue = multiply(a, b)

Assignment
In CatScript, identifiers are to associate human-readable labels that with values.
These can be used in operations and control structures to compare and mutate
data.

Identifiers

An identifier is any valid alphanumeric string that is not a CatScript keyword
and does not begin with numerals or special characters. Examples of valid and
invalid identifiers are provided below:

Valid Identifier Invalid Identifier
MyIdentifier @myidentifier
MyIdentifier123 123MyIdentifier
forloop for

These identifiers can be assigned to any valid CatScript value (including func-
tions) using Variable Statements. Additionally, identifiers can be used in valid
Operations, or passed between Control Structures.

Variables

To assign a value to an Identifier, you can use the var statement. This functions
similar to its Java counterpart, allowing valid CatScript values to be associated
with a label. Assigning the identifier myNumber to the integer value 10 would
look like:

var myNumber = 10;

As has been demonstrated throughout this documentation, the variable state-
ment can also accept explicit typing information. Consider the same exmaple
of assigning an integer, but this time typing the myNumber variables as object:

var myNumber: object = 10;

7

Note: In CatScript, a variable statement must be assigned to a value
at creation; you cannot create uninitialized variables

In addition to the traditional value types described in the Type System section,
identifiers can also be assigned to function definitions:

var myFunction = function(): int {
// Do something
return 1

}

which can then be used to invoke a function declaration (the result of which can
also be assigned to an identifier):

var myFunctionResult = myFunction()

Lists
Lists are one of the more complex offerings of the CatScript language. They
allow for multiple instances of data to be stored in a single, iterable collection.

Defining Lists

A list is defined by a collection of comma delimited values between two brackets
([and]). For example, creating a list of integers would look like:

var myInts = [1, 2, 3, 4, 5]

As previously mentioned, lists can be explicitly typed using the special list
type, which accepts a component type (the explicit type of the contents of the
list). Explicitly typing the previous list might look like:

var myInts: list<int> = [1, 2, 3, 4, 5]

Lists can contain any valid CatScript expression (including additional lists),
however all elements of the list must be of the same type:

// This is allowed
var myListOfLists: list<list<int>> = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

// This is not allowed
var myListOfLists: list<list<int>> = [[1, 2, 3], ["Some", "string"], false]

Additionally, recall from the Type System section that the list type is covari-
ant, allowing for the assignment of lists according to the assignability of a lists
component type. Once again, this covariance is safe because CatScript lists are
immutable; that is, lists cannot be updated after creation.

Accessing Lists

The only way to access lists in CatScript is through iteration, which can be
achieved using a For Loop. The for loop populates an intermediate identifier

8

with each value of a provided list, allowing individual access to all elements in a
list. An example of how you might iterate through a list of integers is provided
below:

var myInts: list<int> = [1, 2, 3]

Print out each element in the 'myInts' list
for(value in myints) {
print(value)

}

Recall that intermediate identifier (‘value’ in the above example) infers its type
from the provided iterable. For more examples of using iteration to interact
with elements in a list, refer to the section on For Loops.

Operators
Finally, we consider the various operators implemented in the CatScript lan-
guage. These operators can be classified into two categories: arithmetic and
logical. For both of these categories, the CatScript language adopts right-
associativity rules. This means that expressions will be evaluated from right
to left, unless the order of operations is explicitly defined through the use of
parenthesis. As an example, consider the following additive expressions:

// This would be evaluated as 1 + (1 + 2)
1 + 1 + 2

// This would be evaluated as (1 + 1) + 2
(1 + 1) + 2

Additionally, all of these operators can accept any valid CatScript expression,
however the compiler will fail to parse expressions that are not supported by
the operation. For example, you can take the product of two identifiers which
represent integer values:

var valueOne: int = 2
var valueTwo: int = 2

// This is allowed (returns the integer '4')
var four: int = valueOne * valueTwo

However, you can not take the product of two identifiers that do not represent
integers:

var valueOne: string = "test"
var valueTwo: bool = false

// This is not allowed because valueOne and valueTwo are not valid integers
var four: int = valueOne * valueTwo

9

Arithmetic Operations

Arithmetic operators consume and return numerical values. In CatScript, there
are three such operators: Additive, Factors, and Unary. The additive expression
supports addition and subtraction operations:

// Sum two integers (prints '2')
print(1 + 1)

// Subtract three integers (prints '1')
print(3 - 1 - 1)

The additive expression is unique in that it can also support the concatenation
of strings by adding two string values:

// This is allowed (prints 'Mystring1')
print("My" + "string" + 1)

The factor expression supports multiplication and division:

// Prodcut of two integers (prints 4)
print(2 * 2)

// Quotient of two integers (prints 2)
print(4 / 2)

Note: CatScript only supports integer values, so any fractional result
will have the ‘floor’ operation applied

And the unary expression supports negation:

// Negate an integer (prints '-1')
print(-1)

// Negate an additive expression (prints -5)
print(-(6 - 1))

The unary expression is also unique in that it can support both numerical values
and logical values. See the Logical Operators section for more details on this
behavior.

Logical Operations

Logical operators consume two expressions and return a boolean value. In
CatScript, there are three such operators: equality, comparison, and unary.
The equality expression can be used to assess whether two expressions are equal,
and like most other high-level language uses the == and != syntax:

// Check if to integers are equal (prints 'true')
print(1 == 1)

10

// Check if two strings are equal (prints 'false')
print("orange" == "apple")

// Check if two strings are equal (prints 'true')
print("orange" != "apple")

This equality operator is expanded upon by the comparison expression, which
supports the following operations:

Operation Syntax
Less Than <
Less Than or Equal <=
Greater Than >
Greater Than or Equal >=

// Compare two integers (prints false)
print(5 > 5)

// Compare two integers (prints true)
print(5 >= 5)

// Compare two integers (prints true)
print(5 < 6)

// Compare two integers (prints false)
print(7 <= 6)

Finally, the unary expression can also be used for logical negation by using the
! (bang) operator:

// Negate a boolean value (prints false)
print(!true)

// Negate a boolean value (prints true)
print(!(1 == 5))

Program Example
As demonstrated by this documentation, the CatScript language is small and
simple, offering an elementary approach to programming. That said, don’t let
this trick you into thinking that CatScript is ineffective at completing complex,
multimodal programming tasks. From a static typing system to fully qualified
functions and control structures, CatScript is quite a capable language. As an
demonstration of this capability, consider the following CatScript program which
iterates through two lists of integers and identifies if there is a combination of
values between those lists that sum to a target value:

11

// Function to identify if two lists contain a combination of integers that sum to a target integer.
function sumsToTarget(a: list<int>, b: list<int>, target: int) {

// Iterate through each combination of elements between lists a and b
for(value in a) {

for(value in b) {
// If the two values sum to the target, return true
if((a + b) == target) {

return true
}

}
}

// If no two values sum to the target, return false
return false

}

// Define lists and targer
var listOne: list<int> = [2, 7, 3, 5]
var listTwo: list<int> = [3, 8, 4, 6]
var target: int = 7

// Check if the lists contain a combination of values that sums to the target
var doesSumToTarget: bool = sumsToTarget(listOne, listTwo, target)

print("Lists contain a combination of values that sum to " + target + ": " + doesSumToTarget)

12

Section 5: UML

Analyzing a few UML diagrams, we first created a diagram that visualizes how we are using

statements and expressions. When we parse an element, it either parses a statement or parses an

expression. All of the classes that are connected to the “Expression” class are the expressions that

can be parsed, and the classes connected to the “Statement” class are different statements that can

be parsed, with addition to the CatScriptProgram class, since this is where the program first starts.

We have also included a sequence diagram of parsing a PrintStatement that instead of giving a broad

overview of the program, analyzes the workings of a single statement being parsed. The diagram

looks like the following:

Section 6: Design Trade-Offs

The major design trade-off that we pursued was using the recursive descent algorithm versus a

parser generator. There are several reasons behind this decision. The main goal of writing the

Catscript compiler was to function as an educational process. We wanted to implement a project

that would teach us more information about the topic. By using a recursive descent algorithm, we

were able to directly implement the functional part of the parser, which required having a strong

grasp of how the parser of a compiler functions. In contrast, using a parser generator directly

conflicts with this goal, and does not require as much of an understanding of how a parser functions.

While we could still have learned how a parser works, it would not have been achieved or even

helped at all by using the parser generator.

Another major benefit of the recursive descent algorithm is ease of debugging. By writing the parser

manually, we can track down errors and understand the code well enough to address them. A parser

generator would produce code that is not as clear, meaning if there is an error tracking it down and

fixing it would be far more difficult. Furthermore, we then are reliant on the parser generator’s error

messages, which if they are not clear results in an incredibly difficult process of debugging the parser.

Section 7: Software Development Lifecycle Model

The model we used for this project was Test Driven Development (TDD). The benefits of using this

approach were we had a clear vision of what needed to be implemented, and when it was

implemented correctly. Once the tests concerning a particular aspect were passed, we knew it was

safe to move on to the next area. For example, once all the tokenization tests were done, I moved

onto implementing the parsing expressions part of the compiler. The tests also helped to highlight

edge cases that we might have not considered while writing the code, leading to an overall more

robust system.

On top of these benefits, TDD also offers benefits to the writer of the code as a human being. When

programming the compiler, getting a test passing meant progress and that a level of success had

been achieved. This makes the coding far more enjoyable, which equates to more motivation to work

harder and longer. Without this, this progress would not have been as apparent, and it would have

been more common to lose focus while coding and produce a less effective compiler.

