
 

1 | P a g e  
 

1 Senior Team Portfolio 

Compilers – CSCI 468: 001 202330 

Spring 2023 

 

Team Members: 

Griffin Austin 

James Lucas 

 

 

 

 

 

Montana State University Computer Science Department 

Senior Team Portfolio 

  



 

2 | P a g e  
 

2 Senior Team Portfolio 

Section 1: Program 

 Along with this portfolio there is an attached zip file which contains all of the source code for the 

associated project. 

 Below is the Grammar for the language that we built from the ground up: CatScript. 

catscript_program = { program_statement }; 

program_statement = statement | function_declaration; 

statement = for_statement | if_statement |print_statement | variable_statement |assignment_statement |  

function_call_statement; 

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')', '{', { statement }, '}'; 

if_statement = 'if', '(', expression, ')', '{', { statement }, '}' [ 'else', ( if_statement | '{', { statement }, '}' ) ]; 

print_statement = 'print', '(', expression, ')' 

variable_statement = 'var', IDENTIFIER, [':', type_expression, ] '=', expression; 

function_call_statement = function_call; 

assignment_statement = IDENTIFIER, '=', expression; 

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +  

[ ':' + type_expression ], '{',  { function_body_statement },  '}'; 

function_body_statement = statement | return_statement; 

parameter_list = [ parameter, {',' parameter } ]; 

parameter = IDENTIFIER [ , ':', type_expression ]; 

return_statement = 'return' [, expression]; 

expression = equality_expression; 

equality_expression = comparison_expression { ("!=" | "==") comparison_expression }; 

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=" ) additive_expression }; 

additive_expression = factor_expression { ("+" | "-" ) factor_expression }; 

factor_expression = unary_expression { ("/" | "*" ) unary_expression }; 

unary_expression = ( "not" | "-" ) unary_expression | primary_expression; 

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"| list_literal | function_call |  

"(", expression, ")" 

list_literal = '[', expression,  { ',', expression } ']';  

function_call = IDENTIFIER, '(', argument_list , ')' 



 

3 | P a g e  
 

3 Senior Team Portfolio 

argument_list = [ expression , { ',' , expression } ] 

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type_expression, '>']  

 

Below are the static types associated with CatScript. 

int - a 32-bit integer 

string - a java-style string 

bool - a Boolean value 

list - a list of value with the type 'x' 

null - the null type 

object - any type of value 

 

Section 2: Teamwork 

Team member 1: 

 Tokenization: 15% 

 Expression parsing: 15%  

 Statements parsing: 20% 

 Evaluations: 25% 

 Compilation: 10% 

Team member 2: 

 Test Writing: 5% 

 CatScript Documentation: 10% 

 

Section 3: Design pattern 

 Throughout our code we come upon places where we have calculated an output for a given 

input once before. In order to limit the number of calculations performed by our code we used the 

memoization optimization technique. This involves storing outputs that have high processing time or 

high power associated with generating that output. This pattern can be seen in the CatscriptType.java 

file on line 37-46. By using this pattern for the function getListType() on line 38, we eliminate the need to 



 

4 | P a g e  
 

4 Senior Team Portfolio 

create a new ListType() object when looking for types in a given list repeatedly. If we were to not use 

memoization in this function we would create a new ListType() object every time we called that class. 

Rather, by using memoization, we only make the ListType() object once and add to it when needed. This 

is necessary because there can be more that one type within each list; which is described within the 

CatScript grammar. 

Section 4: Technical writing.  

Catscript Guide 

Introduction 

Catscript is a simple scripting language. Here is an example: 

 

Which, when ran, will output: 

 

Features (can be structured with the grammar given above) 

For loop 

For loops are implemented in CatScript so that they function like that of other for loops in other similar 

languages. The for loop allows you to iterate over elements, example below: 

 

 

If Statement 



 

5 | P a g e  
 

5 Senior Team Portfolio 

The if statement is used to execute code based on a condition. If the user would like to specify an else 

branch, that is available to them, shown below: 

 

 

Print Statement 

Print statements are used to display information to the user. This is done by calling the print function 

with a given argument, and that is then pushed to the console for display, shown below: 

 

 

Variable Statement 

Variable statements are used to declare new variables of any type. The type can be implicit using a colon 

and a static type, or the optional colon and type can be left out. If the type is left out, then the variable is 

of type object. Variable with implicit declaration is shown below: 

 

Function Call 

Function calls are used to call functions with optional arguments. A function call is shown below: 



 

6 | P a g e  
 

6 Senior Team Portfolio 

 

 

Function Declaration 

Function declarations are used to declare a function. By using the keyword function, and a name 

followed by optional parameters and return type, you can declare any function that you would like; 

shown below: 

 

 

Assignment Statement 

Assignment statements are used to assign a new value to an already declared variable, seen below: 

 



 

7 | P a g e  
 

7 Senior Team Portfolio 

 

Equality Expression 

Equality expressions are used to check equality between two objects within the program. There are two 

ways to check for equality by using either “==”(equal) or “!=”(not equal), shown below: 

 

  

Comparison Expression 

Comparison Expression are used to compare two objects within the program. There are many ways to 

compare two objects. There is [>, <, =>, =<] to compare objects, which can be seen below: 

 

 

Additive Expression 

Additive Expressions are used to add two integers or string together, shown below: 



 

8 | P a g e  
 

8 Senior Team Portfolio 

 

 

Factor Expression 

Factor expression are used to multiply or divide values within the program, shown below: 

 

 

Unary Expression 

Unary expressions are used to negate values. This can be seen below: 

 

 



 

9 | P a g e  
 

9 Senior Team Portfolio 

Section 5: UML. 

 

Section 6: Design trade-offs 

  The most important design trade-off that we did was that we created the parser from scratch 

rather than just using a tool to create the parser for us. We did this so that we could have a more 



 

10 | P a g e  
 

10 Senior Team Portfolio 

intuitive recursive decent algorithm for the parser. By creating the parser from scratch, we not only got 

to understand parsers on a low level, but we also made the algorithm more understandable to anyone 

that can read code. However, this took more time and effort than just using a parser tool. Overall, this 

trade-off was one that we would not take back as making the parser from scratch proved to be useful 

throughout the rest of the project. 

Section 7: Software development life cycle model 

Throughout this project we used test driven development. This is where you write tests before 

you write the code. This allows the team to create inputs and desired outputs which allows you to create 

the code that makes those tests pass. This model was very helpful for our development because a code 

language is quite complex. By having the tests, we were able to break the project down into smaller 

pieces that were easily manageable. Without the tests, the whole project would have felt much more 

daunting than it already was. By focusing solely on making the tests pass, we could focus on each part of 

the language separately starting from the ground up. This development model did not hinder us in any 

way, and I believe that this was one of the only models that would have worked for this project. Overall, 

test driven development got us thinking about what the code should look like before we even wrote it, 

which made the whole process much smoother and clear. 


