
capstone.md 5/5/2023

1 / 9

Compilers: CSCI 468
Spring 2023
Griffin Austin
James Lucas

capstone.md 5/5/2023

2 / 9

Section 1: Program
See source.zip in this directory for all of the source code for this project. The grammar of Catscript is as follows:

catscript_program = { program_statement };

program_statement = statement |
 function_declaration;

statement = for_statement |
 if_statement |
 print_statement |
 variable_statement |
 assignment_statement |
 function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
 '{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
 { statement },
 '}' ['else', (if_statement | '{', { statement }, '}')];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,
 [':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +
 [':' + type_expression], '{', { function_body_statement }, '}';

function_body_statement = statement |
 return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")
additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

capstone.md 5/5/2023

3 / 9

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
 list_literal | function_call | "(", expression, ")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type_expression,
'>']

Section 2: Teamwork
Team member 1 was the primary engineer. Team member 2 was the secondary and quality assurance engineer. Team
member 1 was responsible for all source code other than the three tests in edu.montana.csci.csci468.demo.Scratch.
Team member 1 also created and populated this document.

Team member 2 was responsible for section 4 of this document as well as the three tests in Scratch.

An estimation of the percentage of time spent by each member was as follows: 95% team member 1 and 5% team
member 2.

Section 3: Design pattern
In CatscriptType the design pattern memoization was used. This block of code can be found at
edu.montana.csci.csci468.parser.CatscriptType lines 36-44.

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {
 CatscriptType listType = LIST_TYPES.get(type);
 if (listType == null) {
 listType = new ListType(type);
 LIST_TYPES.put(type, listType);
 }
 return listType
}

The reason this pattern was used is because list types are often used several times each during compilation. If this design
pattern was not used, a new instance of each type would be created and destroyed for each list object in the source code.
With this design pattern, unnecessary object creation is avoided and perfomance is therefore increased. If a list type
already exists in the map, its instance is used rather than a new object being created. Since fewer objects are created,
performing is increased and memory usage is reduced. Overall, memoization was used to cache the results of the function
call for increased performance on subsequent calls.

Section 4: Technical writing

Catscript Guide

capstone.md 5/5/2023

4 / 9

This section serves as a high level guide to interacting with Catscript. Examples are provided where appropriate.

Introduction
Catscript is a simple scripting langauge. Here is an example:

var x = "foo"
print(x)

which would output

foo

Features

For loops

For loops in Catscript function similar to those in other programming languages. A sequence of elements can be iterated
over as follows:

var numbers: list<int> = [1, 2, 3];
for (num in numbers) {
 print(num)
}

with output

1
2
3

If statements

The if statement is a conditional statement which allows for execution of different code blocks based on the specified
condition. If the condition evaluates to true, the code within the first set of curly braces executes. If it is false, then the
optional else block is executed.

if (7 * 2 == 0) {
 print('true')
} else {
 print('false')
}

which would output

false

capstone.md 5/5/2023

5 / 9

Print statements

This is a type of statement that allows a program to print to the console during execution. An expression is passed as an
argument and whatever it evaluates to is printed.

var x: int = 8
print(x)

would output

8

Variable statements

This is how new variables are declared and initialized. This statement can optionally include a type expression that
specifies the data type of the variable. If no type is specified, the variable is assigned to type object by default. The
evaluated expression on the right of the equal sign is the variable's value.

var x: int = 15

In this example, a new variable x of type int is declared with value 15. To declare a list, the following syntax is used

var y: list<int> = [1, 2, 3]

Function declaration

This is used to define a function. It consists of a function name, parameter list, optional return type, and body similar to
other programming languages. Here is an example of a function declaration in Catscript:

function add(a: int, b: int): int { // add is function name, a and b are parameters
 return a + b // body
}

Return statements

This is used only in the body of function declarations. It allows a function to return a value to where it is being called. If an
expression follows a return statement, whatever value the expression evaluates to is returned. Otherwise, the function will
return null.

function example(x: int) {
 if (x > 0) {
 return 1 // 1 is returned
 } else {
 return // null is returned

capstone.md 5/5/2023

6 / 9

 }
}

Function calls

This allows for calling functions with optional arguments as follows:

add(1, 2)

would call function add with arguments 1 and 2.

Assignment statements

This assigns a value to a variable that is already initialized.

var x: int = 10
x = 15

x is assigned a value of 15.

Function declaration

Define a new function with name, parameters with optional types, return type, and body.

function add(a: int, b): int {
 return a + b
}

Equality expressions

Compares two expressions for equality (==) or inequality (!=).

1 == 2 // false
'foo' != 'bar' // true

Comparison expressions

Compares two expressions using >, >=, <, and <=.

1 > 2 // false
5 >= 1 // true
2 < 3 // true
4 <= 4 // true

Additive expressions

Perform addition or subtraction on two expressions.

capstone.md 5/5/2023

7 / 9

3 + 1 // 4
5 - 2 // 3

Factor expressions

Perform multiplication or division on two expressions.

3 * 2 // 6
10 / 2 // 5

Unary expressions

Perform operations (not, -) on a single expression.

-5 // negative 5
not true // false

Types

Catscript is statically typed with the following types:

int: 32 bit integer
string: Java-style string
bool: boolean value
list: list of values with the type x
null: null type
object: any type of value

Section 5: UML
The following diagram illustrates the process, at a high level, when a user inputs an expression into Catscript.

capstone.md 5/5/2023

8 / 9

Catscript Multiplication and Comparison Sequence Diagram

User CatScript Lexer Parser ParseTree

evaluate ("5 * 2 > 5")

lex("5 * 2 > 5")

tokens

parse(tokens)

parseExpression()

parseComparisonExpression()

parseFactorExpression()

parseIntegerLiteral()

parseTree

execute()

"true"

"true"

Section 6: Design trade-offs
We created by hand a recursive descent parser instead of using a parser generator such as lex and yacc. The foremost
reason for this was because this method was more intuitive and provided much more educational value than using a
parser generator. While using parser generators would have greatly sped up development, it would have hindered the
understanding we obtained by making one by hand.

Second, creating a parser gives us more fine-tuned control than using a generator. We are able to implement custom error
handling and messages. The downside in this regard is the lack of robustness as a result of creating and debugging our
own parser. While parser generators, especially those such as lex and yacc have much more extensive testing suites than
our parser, so we can be more confident in the efficacy of parser generators. However, we were able to curtail this by
utilizing test-driven development.

capstone.md 5/5/2023

9 / 9

A large advantage of writing our own recursive descent parser is it reduces the dependencies in our program. There are no
external dependencies to the parser we have written; this would not be the case if we used a parser generator.

Section 7: Software development life cycle model
We heavily utilized test driven development (TDD) as our SDLC model. Prior to implementing any code, we were provided
an extensive test suite that outlined the expected functionality of each part of the compiler. By filling in the tokenizer,
parser, evaluator, and bytecode generator, these tests were slowly solved.

This model forced us to consider what our code should do before actually writing it. It also allowed us to find bugs much
earlier than if we used other methods. Any time a new piece of functionality was implemented, testing was immediately
performed and relevant changes were able to be made.

TDD also gave us the confidence that our code worked as intended and likely had few to no bugs. On the other hand,
there were a few instances of all tests passing, but the code still did not behave as expected. In this case, it became very
difficult to determine where the code was faulty and thus how to remedy it. Overall, TDD proved to be a large help despite
these challenges.

Alternatively, we could have used the waterfall model. This model requires prior stages of development to be completed
before continuing to later stages. Usually this consists of requirement gathering, design, implementation, testing, and
maintenance. Although this project could be neatly broken up into stages (tokenizer, parser, evaluator, and bytecode
generator), there is no convincing reason this needs to be a linear process in our case. If we were to choose this model
over TDD we likely would have experienced slower development and more difficult changes during later stages of the
project as it becomes impossible to modify earlier stages.

