
Felicia Jayasaputra

Capstone Portfolio

Section 1: Program.

I have attached the source zip file inside my /capstone/portfolio directory.

Section 2: Teamwork.

In this capstone project, each of us created 3 tests for Catscript and we exchange the 3 tests. I need to

make sure that the 3 tests that my partner created pass in my compilers and the other way around in

which my partner need to make sure that the test I created pass in his compilers. The tests we created

is some complex function like a nested if statement, print inside a function, and print a variable

expression. This is to make sure that even though the tests that we created consist of different

statements or expression, it should still work. Another thing that I did with my partner is that we

exchange is the Catscript documentation. Each of us will be writing a documentation of Catscript that

specifies all the functionalities and features of Catscript. This documentation must consist of all the

features of Catscript such as all the complete expression and statements and include the description

and examples for each expression and statements. This documentation will also include an

introduction and is divided into several sections. For example, like expressions header have different

types of expression which can be formatted using a sub header inside the expression header. With this,

it would make the reader easier to read and understand the documentation. This teamwork can be

described as I am the primary engineer and my partner is the documentation and testing engineer.

Section 3: Design pattern.

Below is the code in my capstone project where I implement memoization design pattern.

private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new

HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

 CatscriptType listType = LIST_TYPES.get(type);

 if (listType != null){

 listType = new ListType(type);

 LIST_TYPES.put(type, listType);

 }

 return listType;

}

One design pattern that is used in my capstone project is Memoization. This design pattern is

implemented by store the thing somewhere and if someone calls this method with the same argument,

look it up it that storage system rather than creating a new one. Above is the code that I use in my

capstone project which implement this memoization design pattern. This above code shows that if I

call that with int for the first time, it looks into the map and there is nothing there, it returns null. This

then create a new ListType wrapping the int type so it becomes a list of int and putting it into the map

and then return that. However, when the second time it calls int again, it looks at the map and there is

already int there and so it doesn’t re-initialize that and return the original list type. This code is

implementing the memoization design pattern. By doing this memoization design pattern in my

capstone project, it saves the computation of newing up a list type when it gets called with the same

type over and over again.

Section 4: Technical writing.

As we can see below is the below is the Catscript documentation.

Catscript Guide

This document should be used to create a guide for catscript, to satisfy capstone requirement 4

Introduction

Catscript is a simple scripting language. Here is an example:

Comments:

Comments are handled with "//" on the line at the point you want to comment:

Features

For loops:

For loops give the ability to loop over code multiple times even if the number of iterations changes each run. A for loop in Catscript

looks like this:

To use a for loop, you must provide a list to iterate over. There can be as many other statements including other for loops inside a loop.:

If statements:

If statements are conditionals for testing if a condition contained inside the statement is true. For example:

var x = "foo"

print(x)

//this is a comment print(12)

//the above print will not run

//but this one will

print(44) //since the comment is after the statement

for(x in [1, 2, 3, 4]) { //the variable x can be used later on in the loop as it is a local variable

print(x) //prints: 1 2 3 4

}

If the first condition is true, then the first print: "Print("True")" will execute/run. If the first condition is not true, then the else runs. If

statements are also "nest-able" meaning that they can be inside themselves as shown above in the example.

Variable assignment:

Variables can be assigned with an explicit type or with a implicit type. For example:

Types:

The supported types are as follows:

If an explicit type is not found from evaluation or declaration (var x : int) the type is object

Lists

Lists are supported in Catscript and are declared as follows:

if(true){

print("True")

}else{

if(false){

print("nested False")

}else{

print("nested True")

}

}

- int - a 32 bit integer

- string - a java-style string

- bool - a boolean value

- list - a list of value with the type 'x'

- null - the null type

- object - any type of value

List types supported are all basic types: int, string, boolean, list, and object.

Functions:

Functions can be created and called like so:

Functions can have as many statement's and expressions as desired in them, as shown above.

Functions can also have parameters passed into them:

As shown above, you can also have the type of the parameters be implicit or explicit as desired. There is no limit to how many

parameters are passed into a function, nor a minimum.

Argument lists:

Functions can have an argument list passed in when invoked to fill the required parameter list. Example:

These argument lists are required to be as long as the parameter list for the function definition is and if the type is not specified it

is treated as a string.

Built-in Function(s):

Catscript currently only has one built-in function, that is the print function that is being used in many of the examples. It only

supports printing a single expression at the moment, for example:

function x (){ //declare a function with the keyword "function" then the function name

var q = 4 //create variable

if(q > 3){ //check if condition is true

print(q) //prints: 4

}else{

print("q is not greater than 3!")

}

}

x() //fucntion call

function x (y, z: int){ //multiple parameters can be passed in with commas between them

print(y) //prints: String

print(z) //prints: 1

}

x("String", 1) //calls x with y = (String) and z = (1)

function f(x:int, y:string){

print(y) //prints y

print(x + 3) //prints the result of x + 3

}

f(3, "Hello") //prints Hello 6

Returns:

A function can return a value from it and hold it in a variable or use it for a calculation. An example of returns are as follows:

As shown above, a function can be called and the return value used for other purposes. The above code uses the return value from

x() returning 1 to do a math calculation. If a return is placed outside a function definition it is treated as a syntax error.

Expressions:

Expressions are evaluated in order of (left to right) Primary>Unary>Factor>Additive>Comparison>Equality (with left being

evaluated first and right being evaluated last, this is also the way binding strength scales with left being strongest and right being

weakest).

Parenthesized expressions:

Wrapping expressions in a parentheses is supported in Catscript, this can allow for more clearly showing what order expressions

should be evaluated in, for example:

Primary Expressions:

Primary expressions are an expression that evaluated to a basic type, a variable, a function call, a list, or a parenthesized

expression. The supported types are: true, false, null, list_literal, function_call, (expression), Identifier, String, Integer.

Unary Expressions:

A unary Expression gives the ability to negate a primary expression, example:

function x(){

return 1 //returns the int value 1

}

print(x()) //uses the returned value to print 1

var y = x() + 2 //uses the return value to perform a math calculation and store it in a variable

print(y) //prints out the value of the variable using the returned value

print(2 * (2 + 4)) //result is 12

print(2 * 2 + 4) //result is 8

if(not true){ //use not to negate a boolean

print("Not True") //not reached

}

if(-1 < 0){ //negates a number

print("-1 is less than 0") //prints: -1 is less than 0

}

The '-' does not work with Boolean's and the "not" keyword is not for negating numbers.

Factor Expressions:

A factor expression supports multiplication and division between numeric unary expressions. Example:

As shown above, nesting expressions does not matter as the unary is evaluated for each side of the sign first.

Additive Expressions:

An additive expression handles both concatenation of strings and addition of numbers, Example:

Comparison and Equality Expressions:

All equality and comparison expressions are left to right comparatively, meaning that: left > right, checks if left is Greater than right.

Comparison expressions are treated as more tightly binding than equality expressions.

Comparison Expressions:

Catscript supports 4 comparison expressions: < : Less >: Greater <=: Less or Equal >=: Greater or Equal Below are examples of
each:

Equality Expressions:

Catscript supports 2 equality expressions: ==: Equal !=: Not Equal Below are examples of each:

print(10 / 5) //prints: 2

print(10 * 5) //prints: 50

print((2 + 4) * (2 / 2)) //prints: 6

if(1 == 1){ //checks if 1 is equal to 1

print("Equal!") //prints: Equal!

}

if(1 != 5){ //checks if 1 does not equal 5

print("Not Equal!") //prints: Not Equal!

}

Section 5: UML.

Below is the UML Sequence Diagram for the steps of multiplication in Catscript.

Section 6: Design trade-offs.

The design trade off decision that I made is doing parser by hand which uses a recursive descent

algorithm instead of using parser generators. Most of the parser in other universities uses parser

generators when creating parsers and I’ve notice that writing a parser by hand can be a lot easier,

simpler, and nicer to create parser than using a parser generator. Parser generators take a

language specification and generate a parser for that specification. The input will most likely be a

lexical grammar in some sort of Regular Expression and a language grammar in some sort of

EBNF. This will generate a lexer or parser for you and the code will be very hard to be read

which makes it hard to debug aswell. In addition, the code that it will generate will be way

longer than if we were writing parser by hand. On the other hand, this recursive descent

algorithm is widely used in industry and it teaches the recursive nature of grammars in a very

clear way. This algorithm is way more flexible since we can create our own execute method to

execute something and we could modify it. The code is also more readable because we are doing

it by hand, and which makes it easier to debug. Moreover, the code that we wrote using this

recursive descent algorithm is also way shorter and simpler which is nicer for creating a parser.

Therefore, I decided to use the recursive descent algorithm in my capstone project compared to

using parser generators.

Section 7: Software development life cycle model.

The model that I used to develop my capstone project is using a Test Driven Development

(TDD). There is a bunch of test suite and is divided into different sections (tokenizer, parser, eval

and bytecode). This test suite is to check and make sure that all the expression or statements is

doing the right thing. If I pass all the test, this means that it does the right thing that it’s supposed

to do. I need to pass all those test suite in this capstone project and this test helps me check if

there’s anything wrong with my compiler. This test model is very useful to develop my capstone

project as I know which one is not working and fix it from there.

	Introduction
	Comments:
	Features
	For loops:
	If statements:
	Variable assignment:
	Types:
	Lists
	Functions:
	Argument lists:
	Built-in Function(s):
	Returns:

	Expressions:
	Parenthesized expressions:
	Primary Expressions:
	Unary Expressions:
	Factor Expressions:
	Additive Expressions:

	Comparison and Equality Expressions:
	Comparison Expressions:
	Equality Expressions:

