Section 1:
https://github.com/erinscheunemann/csci-468-spring2023-private/blob/main/capstone/portfolio/s

ource.zip

Section 2: For teamwork, we worked in a two-man group. My partner, Silas Almgren, was
tasked with quality assurance and documentation while I was tasked with developing our
compiler. My partner provided three high-level tests for me to use to test the compiler with.
These three tests were: nestedIfExecutes, typeCastsWork, and throwsException. (these tests are
located in the testsfrompartner.java file in the /eval folder in the /test directory of the compiler)
These were written to capture parts of the compiler that weren’t included in the many tests
already provided to us. They also provided me with a 4-page document that detailed how the
CatScript programming language works. I was in charge of development so I was in charge of
writing the code for our compiler. I was in charge of making sure the tests we were provided with
and the ones that my partner wrote passed.

Tests from partner:
eval;

"t edu.montana.csci.csci CatscriptTestBase;
org.junit.jupiter.api.Test;
~t edu.montana.csci.csci4b8.parser.ParseErrorException;

static org.junit.jupiter.api.Assertions.«;

class testsfrompartner extends CatscriptTestBase {
t
vold nestedIfExecut)
assertEquals("small\n", executeProgram("var enabled = true\n"

"1m);

@Test
0id typeCastsWork() {
assertEquals n", executeProgram("var x: int = 2\n"
j = x\n"
"print
assertEquals("hello\n", executeProgram("var x: string = \"hello\"\n"
ject = x\n"
"print

assertEquals("null executeProgram("var x = null\n"
y: ject = x\n"

@Test
void throwsExceptions() {
assertThrows (ParseErrorException.class, () — executeProgram(
seErrorException.c () — executeProgra
\"hello\""));
assertThrows (ParseErrorException.class, () — executeProgram("var x: int = \"hello\""));

https://github.com/erinscheunemann/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip
https://github.com/erinscheunemann/csci-468-spring2023-private/blob/main/capstone/portfolio/source.zip

Section 3: Our parser uses memoization within the getListType function in the CatScript parser.
Originally the getListType function was creating a new ListType object every time the function
was called. This could be very costly down the line as creation of a new object is resource
inefficient. Memoization allows for us to store the different ListType objects corresponding to
different types as they are created in a cache. In our case this cache is a map object. This means
that instead of creating a new ListType object every time, we can first check to see if the object
corresponding to the component type has already been created and if it has then we return that
already created item and if it hasn’t then we create it and add it to the hash map with its
component type as the key.

Section 4:

Catscript Guide

A language reference for Catscript
CSCI468

May 2023

Introduction

This document is a reference guide for the Catscript language. Catscript is a simple, statically
typed scripting language. It can be compiled to Java bytecode to be executed on the JVM. Here
is an example of a simple Catscript program:

var x = "foo"
print(x)
> 'f00'

Catscript programs can be written and executed with the CatScriptServer web utility packaged
with the source code. Additionally, you can write Catscript programs in your favorite editor, save

them with the . cat extension and compile them directly to Java bytecode.

Features

Variables

Variables in Catscript are declared using the var keyword. Variables must be initialized to a
value in order to be syntactically valid. Variables in Catscript are statically typed but the
language does have type inference. This means you can optionally give your variables explicit
types when they're declared. Here are two examples of valid variable declarations:

varx =10

var y: string = "hello"
print(x)
print(y)
> llOl
> 'hello’
Variable Type System
Catscript is statically typed and adheres to the following minimalist type system:
e int - a 32 bit integer
e string - a java-style string
® bool - a boolean value
e list - a list of value with the type 'x'
[J
)

null - the null type
object - any type of value

Print statement

The print () statement is used to display a value to the console. Any valid expression can be
placed in this statement - such as variables, literal values, and function calls.

var hi = "Hello, world"
print(hi)

> '"Hello, world'
Operators

Catscript has four basic mathematical operators: addition +, subtraction -, multiplication *, and
division /. These operators can all be used to perform mathematics on integer literals and
variables of the int type. The - keyword for subtraction also works for signing integers (i.e.
setting negative values). Additionally, the addition + operator can be used for string
concatenation. Finally, there is also the not operator which can be used on booleans to flip their
value.

varx=1+1
print(x)
> |2|

vary=x* 2

print(y)

>

var z = -1

print(z)

> -1

var hi : string = "Hello, "
var name = "Bob"
print(hi + name)

> 'Hello, Bob'

print(not true)

> 'false’
Comparisons

Catscript also supports the following comparisons between integer values: less than <, greater
than >, less than or equal to <=, greater than or equal to >=, equal to ==, and not equal to ! =.
Comparisons will evaluate to booleans.

10>5
> 'true'
3<=6

> 'true'

X pr— y
> 'false’
Conditional statements

Conditional statements can be used to optionally execute code based on the result of a boolean
expression. This is done by using the 1T keyword followed by a boolean expression wrapped in

parentheses - the code to conditionally execute then follows wrapped in curly braces. For
example:

x=12
if (x>10) {
print("that is a big number")

}

> 'that is a big number'

Additionally, the else keyword can be used to denote a block of code to run if the boolean
expression evaluates to false. For example:

X=5

if (x > 10) {

print("that is a big number")

} else {

print("that is a small number")

}

> 'that is a small number"

In additional to plain e 1se statements, e lse 1if statements can be used to apply additional
logic after an initial if statement. For example:

x=2

if(x==1){
print("doing action 1")
}elseif (x==2) {
print("doing action 2")
}elseif (x ==13) {
print("doing action 3")

}

> 'doing action 2
For loops

In Catscript, for loops can be used to iterate over lists. When a for loop is executed, it will iterate
over the items of the specified list, storing these values in a variable of your choosing. Each
iteration, this variable will update and the body of the loop will execute. For example:

for (x in [1,2,3]) {
print(x)

}

>

>

>3

Functions

In Catscript, functions can be used to define a block of code that you would like to reuse in your
code. Functions may return a value with a specified variable type or may simply be void and
return nothing at all. Additionally, functions can be passed any number of parameters to be used
in their execution. These parameters are optionally typed, unless you are performing type
specific operations. See below.

function printer(x) {
print(x)

h

printer("hi")

> 'hi'

function add(x: int, y : int) {
return X +y

}

var num = add(1,2)

print(num)

> |3|
It is also worth noting that Catscript functions support recursion.

Errors

Incompatible Types

When you encounter this error you will see the message: Incompatible types. This occurs
when when you attempt to assign data to a variable of a conflicting type or when you attempt to
perform an operation on a data type that isn't supported. For example:

var X : int = "example"
> 'Error: Incompatible types'

Unterminated List Literal

Indicated by the error message: Unterminated list literal, this error occurs when the
closing bracket | is omitted when initializing a list.

var x =[1,2,3
> 'Error: Unterminated list literal'
Unterminated Argument List

This error occurs when a function is invoked with a dangling comma in its list of arguments. The
error message: Unterminated argument list will be shown.

function test(X,y) {
print(x +y)
}
test(1,)
> '"Error: Unterminated argument list'
Duplicate Name

This error occurs when a variable is initialized with a name that is already used in the current
scope. The error message: This name is already used in this programis
shown.

varx =1

var y = "test"

> 'Error: This name is already used in this program'’

Unknown Name

This error occurs when a variable name is referenced that doesn't exist. The error message: This
symbol is not defined

print(x)
> "Error: This symbol is not defined'
Argument Mismatch

This error occurs when a function is invoked with an incorrect number of arguments. The error
message: Wrong number of arguments is shown.

function add(x:int,y:int): int {
return X +y

}

add(1)

> 'Error: Wrong number of arguments'
Missing Return Statement

This error occurs when a function with an explicit return type doesn't contain a return statement
or if a function only has partial return coverage. The following error message is shown:
Missing return statement in function

function test(x,y) : int {
if(x >y) {return x}
}
> '"Error: Missing return statement in function'
Unexpected Token

This is a general syntax error that occurs when you have a character somewhere it shouldn't be or
if you are missing a token somewhere in an expression or statement. The error message:
Unexpected token is shown. For example, if the = is missing from a variable assignment
statement.

nn

varm"j

> 'Error: Unexpected Token'

Section 5:

Catscript Multiplication Sequence Diagram

User CatScript Lexer Parser ParseTree
I s | | |
I | |
| evaluate ("2 * 3") | |
| > | |
I | |
I | |
I | |
I | |
I] |
| arse(tokIans] I
| P > |
I | |
I I parseExpression() I
I | |
I | |
I | |
| | parseFactorExpression() |
I | |
I | |
: : parselntegerLiteral() :
I | ; |
I | |
I y |

parselree

I - ------ r------ T
I | |
| | exacute()
I | |
| I n I.'|

B
| <+ ------- R e
I
| I'|BI'|

| |
- T I I
| |

This is a sequence diagram detailing the process that the CatScript compiler goes through to
tokenize, parse, and execute the command “2*3”. This helps to show the process and how
everything is connected within the compiler. It is shown that the string is broken into lexemes by
the lexer, or tokenizer, and then those tokens are sent to the parser which returns a parse tree.
This parse tree is then used to execute the command and returns the result, 6, to the user.

AssignmentStatement

‘ CatscriptProgramJ

‘ FunctionCallStatement

VariableStatement

ParenthesizedExpression }—»

IfStatement

‘ FunctionDefinitionStatement

Statement ForStatement

SyntaxErrorStatement
PrintStatement

ListLiteralExpression

v

ParseElement

A

ReturnStatement

‘ UnaryExpression . .
IntegerLiteralExpression

StringLiteralExpression] ‘
4///{ SyntaxErrorExpressionExpression
. . Expression
‘ ComparisonExpression }—»

‘ AdditiveExpression

EqualityExpression

{ BooleanLiteralExpression

FactorExpression

TypelLiteral ‘ IdentifierExpression

FunctiﬂnCaIIExpression} ‘NullLiteralExpression}

This is a class diagram detailing how all the classes work together in the compiler. There are two
main parent classes, Expression and Statement, from which the various expressions and
statements within the language inherit from. These are then used by ParseElement to make up the
compiler’s parsing and execution functionalities.

Section 6: While designing our parser we had many design choices to make in order to make our
parser work effectively and efficiently. One of the choices we made was to not use the visitor
pattern that is common in many other compilers. The visitor pattern abstracts the operators or
behaviors from the objects that perform these behaviors. This would have allowed us to write

visitors that would have accepted objects of our classes, in this case expressions or statements,
and allowed us to perform operations on them. Instead we chose to add those functions directly
to the classes. This meant that we would have to add an execute and compile method to each
expression or statement class but it saved us a lot of complexity that we would have added had
we used the visitor pattern. This allowed us to better focus on the code we were writing rather
than trying to figure out how to use one design pattern over a multitude of classes.

Section 7: For our software development life cycle (SDLC) we went with test driven
development (TDD). TDD is a SDLC where software is written in order to pass tests that were
written using the project's specifications. We choose to go with this SDLC over others because
we are starting with very specific specifications from the CatScript grammar so it made sense to
turn these specifications into tests and then use those to figure out what code to write. We started
with a number of tests for each part of the CatScript compiler starting with the tokenizer and then
moving on to the parser and so on. This allowed for us to write code for the compiler in an order
that made sense and allowed for us to check whether or not our code was to the set specifications
along the way.

