CSCI 468 — Compilers
Spring 2023
Capstone Portfolio

CS 468 Capstone for Jacob Rivers

Section 1: Programs

Over the course of this semester, we created a programming
language called Catscript as a way to explore the underlying software
which implements a programming language as well as the structure
and design of compilers.

Catscript is a simple scripting language which we designed,
implemented, validated, and documented. We ended the semester by
writing a compiler for the Catscript language. Our compiler takes in
Catscript programs and input and complies them to Java bytecode.
These bytecode programs can then be run on the Java Virtual
Machine (JVM).

The file included in this directory named source.zip contains the full
programs for the Catscript language implementation, Catscript Server,
Catscript testing and validation suite, and the Catscript compiler.

source.zip can also be found in my GitHub repository at the link below:

https://qithub.com/SejongKadonk/cs468-spring2023/blob/main/capstone/portfolio/source.zip

https://github.com/SejongKadonk/cs468-spring2023/blob/main/capstone/portfolio/source.zip

Section 2: Teamwork

There were two major parts of creating the Catscript programs where we
collaborated as a team.

e Creation of thorough Technical Documentation of the Catscript
Language

e Creation of new and unique tests for the Catscript Testing Suite
beyond those provided by Professor Gross.

Each team member wrote a technical document which gave an outline of
the major features of the Catscript language. In that technical document
they provided brief descriptions of each feature along with examples.

The team members then exchanged the document they personally wrote
with their partner. So, Team Member 1 (Jacob Rivers) wrote a technical
document for Team Member 2 (Kate Stallbaumer) to include in their
capstone portfolio and vice-versa. Section 4 of this document contains the
documentation written by Kate Stallbaumer.

In addition to writing technical documentation each team member
contributed extra tests to the Catscript testing suite and then exchanged
those tests with the other partner.

Team Member 1 wrote three tests which checked that the following
features worked properly:

e identifier reassignment
e true and false branches of if statements
e for statements embedded in functions

Team Member 2 wrote three tests which checked that the following
features worked properly:

e variable assignment
e scoping of functions
o if statements embedded in functions

Both team members shared the work of creating tests and documentation
equally, with each member devoting roughly equal time to each task.

Section 3: Design Pattern

Memoization is a useful design pattern for optimizing code quickly and
without making major structural changes to the class structure of a
OOP program.

Memoizing a function call is a way of making a function the result of
something that can be remembered by the program. The main idea
behind it is to execute a function only once. Follow up calls should not
run the logic but rather just look up and return the cached result.

In our CatscriptType class we memoized type access for list types.
Each time we construct a new list object we store the list's component
type in a hashmap. So rather than reinitializing the list types for list
objects every time the getListType() method is called it will first look up
the listType in the hashmap and return anything that it finds.

Because the Catscript type system is static we don’t need to invalidate
the cache after we are done with it. If we new up a list of integers a
thousand times, we only need to look up the integer listType once for
each of those constructors but never need to erase or overwrite the
cache.

While this particular implementation of memoization was an instance
that is relatively cheap in a computational sense, we implemented it as
a learning exercise. It was a good opportunity to practice using the
memoization design pattern and also to gain a better sense of the
parts of a compiler (or other programs we write in general) where
optimization and caching patterns such as memoization would be
useful for reducing the amount of redundant computation in a
program.

Section 4: Technical Writing

1. A Brief Guide to CatScript

1.1 Introduction

Catscript is a simple scripting language that is comparable to languages
like Java and Python. The Catscript Compiler program is a program
that takes in, processes, and executes code formatted in the Catscript
language. The execution of that code is based on its Java interpretation
and the compiler translates between them. An example of the Catsript
language can be seen here with more examples shown in the features
section:

var x = "Hello World"
print(x)

1.2 Features

1.2.1 Statements

For loops

For loops in Catscript are able to iterate over defined lists and perform
operations per iteration. Operations are able to contain more types of
statements such as print- statements and if-statements statements with
no issue.

Example:
for(xin[1, 2, 3]){
print(x)

If Statements

If statements in Catscript are able to have conditional statements that
restrict access to a portion of code unless the conditional statement
is met.

Example with conditional met:
if(1 < 2){

print("One is less than two")

Example with conditional not met:

if (1> 2){

print("One is greater than two")

Print Statements

Print statements in Catscript are able to take and print its contents such
as String or Integer Literals.

Example:
print("Hello World")
Output:
Hello World

Variable Statements

Variable Statements in Catscript are able to assign values to variable
names. Any of the primary expressions are assignable to variable

names. Types can be explicitly or implicitly defined when creating the
variables.

Examples:
var X = 1
Or:

var x : int = 1

Assignment Statements

Assignment statements in Catscript are used when a variable is
being assigned to a different value. Variables can only be re-assigned
to the same type that they were implicitly or explicitly defined as, an
Integer variable cannot be assigned to a String value.

Example:
var x = 1
X =3

Function Definition Statements

Function Definition Statements in Catscript are statements that define a
function that is callable elsewhere in the program. The Function can be
defined with parameters and must be defined with a body. The

parameters can be defined explicitly or implicitly just like variable
statements. The body can contain any number and types of statements.

Functions are also able to contain return statements which should end

the function.

Functions with return statements should have a return type defined after

the name and parameters of the function.

Examples:

foo(a, b, ¢) {

print(a)
print(b)
print(c)
}
Or:
foo(a: string, b: string, c: string) {
print(a + b + ¢)
}
Or:

foo(a: int, b: int, c:int) :int {

returna *b *c

Return Statements

Return Statements in Catscript are statements that pass values from
functions to where they were called in the greater scope. Return
statements will end the function they are contained within. Return
statements can have expressions contained within them. Examples:

return x
Or:

return 1+1
1.2.2 Expressions
Primary Expressions

There are eight types of expressions defined under primary expressions:
Identifier, Integer Literal, String Literal, Boolean Literal, List Literal, Null

Literal, Function Call, and Parenthesized Expressions. Below, you will find
short descriptions and examples of each.

Identifier Expressions are expressions that represent a keyword defined by
the user:

X
y
z

Integer Literal Expressions are expressions that represent integer
numbers:

42
144

String Literal Expressions are expressions that represent strings of
characters:

"Hello World"

" am alive"

Boolean Literal Expressions are expressions that represent the True
and False symbols:

True

False

List Literal Expressions are expressions that represent a set of
Integer, String, Boolean, and List Literal Expressions:

[1, 2, 3]
["Hello", "World"]

Null Literal Expressions are expressions that represent the null
symbol. Null Literal Expressions are used when there is no value
represented for a variable:

null

Function Call Expressions are expressions that contain information
about what information to send to an existing functions parameters.
Function Call Expressions are used to signal the execution of a function
during runtime:

foo(1, 2, 3)

Parenthesized Expressions are expressions that contain any type of
expression inside two parentheses. The parentheses do not affect the
contained expressions in any way:

("Hello" + "World")
(12 < 24)

Unary Expressions

Unary Expressions are expressions that are applied to only one
expression. The two symbols that a unary expression can have, are the
negative symbol and not symbol which can only be applied to Integer
Literals and Boolean Literals respectively.

Examples:
-1

not True

Equality Expressions

Equality Expressions are expressions that have a double equal or
bang equal symbol separating two expressions, with the double equal
symbol asserting both sides are the same and the bang equal symbol
asserting both sides are different. The separated expressions may be
any type of expression.

Examples:
true == true

true 1= false

Comparison Expressions

Comparison Expressions are expressions that have a less than,
greater than, less than or equal to, or greater than or equal to
symbol separating two expressions. The separated expressions may
only be Integer Literals.

Examples:
1<2
2 >1
X <=y

y >=Xx

Additive Expressions

Additive Expressions are expressions that have an addition or
subtraction symbol, a plus or a minus respectively, separating two
expressions. The separated expressions may be Integer Literals, String
Literals, or Parenthesized expressions containing either Integer or String
Literals. String Literals can only be added together and not subtracted.

Examples:
llall + llbll

2 -1

Factor Expressions

Factor Expressions are expressions that have a multiplication or
division symbol, an asterisk or a slash respectively, separating two
expressions. The separated expressions may only be Integer Literals or
Parenthesized Expressions containing Integer Literals.

Examples:
5*6
30/ 5

1.3 Conclusion

This brief overview of the major features of the Catscript language shows
some concrete examples. For a formal generative grammar see the bottom
of the page at the following link: https://github.com/SejongKadonk/cs468-

spring2023

https://github.com/SejongKadonk/cs468-spring2023
https://github.com/SejongKadonk/cs468-spring2023

Section 5: UML

Catscript Factor Expression Sequence Diagram

evaluate ("9 * 8")

I'|?2I'|

CatScript Lexer Parser ParseTree
s | | |
I I I
I I
> | !
I I
I I
| I
I I
] I
! I
parse(tokens) > |
I I
I parseExpression() I
| I
I 4—‘ I
| I
| parseFactorExpression{) |
I I
I I
: parselntegerliteral() :
I < I
I I
pars eTree |
- ------- r=—----- T
I I
| execute()
| I
I L} .I'|
72
< ------- e
I
] !
T |
|
!

The above UML diagram shows a typical sequence of operations to
evaluate a factor expression in a Catscript program, covering each step
from user input to program output.

To begin, a user inputs the expression “9 * 8” into the Catscript server and
clicks the “evaluate” button.

From there the Catscript program calls the lex() method on the input 9 * 8.
This is method call is passed to the Lexer which breaks the string into
tokens, namely the tokens 9, *, 8.

The tokens are then returned to the top level of the Catscript program
which then begins parsing. A parse() method call with the returned tokens
as input is passed to the Parser.

The Parser works down the recursive descent hierarchy for the expression
calling each successive level and returning the values as nodes on a parse
tree object.

After parsing is complete and a full parse tree has been assembled for the
Catscript program the execute() method is called on the Parse Tree Object.
This method returns a value of “72”.

Finally, the fully evaluated program output is displayed to the user.

It is interesting to note that this UML diagram can be generalized to
essentially any Catscript program with only slight modifications being
made. The Parser step would have to descend the recursive descent
hierarchy as many times as necessary to fully parse each expression and
statement in the program. Beyond this change, the basic structure and flow
of the sequence diagram would remain the same, starting with input,
proceeding to lexing, parsing, execution, and ending with output.

Noting this deep coherence in the structured sequence needed for the
evaluation of any Catscript program makes sense. Executing a program
requires the same series of algorithms and processes be executed, largely
without concern for the gritty details of the specific program itself.

Section 6: Design trade-offs

Early in the creation of Catscript we had to decide how to implement the
Catscript parser. There were two possibilities available: we could
implement the recursive descent algorithm ourselves or we could use a
parser generator.

We decided that the better option for the Catscript parser was to create our
own hand-made implementation of the recursive descent algorithm. There
were several reasons for his decision.

First, most compilers have their own native implementations of recursive
descent. Therefore, gaining experience with what is the industry standard
was a point in its favor. Second, by implementing the algorithm ourselves
we would gain direct experience with the details of the algorithm and gain a
practical understanding of how it works at the level of code. Finally, at a
more conceptual level, we would also gain a more concrete understanding
of the recursive nature of grammars. This conceptual understanding is
likely to serve us in the future and remain clear in our minds much longer
than if we had simply used an API that hid the details of the algorithm from
us. Using a parser generator would have not allowed us to gain as deep
and intuitive understanding of the grammar.

There were however still some trade-offs in using our own recursive
descent implementation. Using a parser generator would have given us
more experience with regular expressions and Extended Backus-Naur
Form as both are necessary to create input for most parser generators. We
briefly experimented with Regex and EBNF earlier in the semester and
gained a basic fluency in them. More experience with these would also
have been useful. But, while parser generators would have provided more
practice in these areas and could have been less work, we felt that it was
not worth it if it would rob us of the opportunity to gain a deeper
understanding of how formal language grammars work and their inherently
recursive nature.

Ultimately, | feel that the decision to implement our own recursive descent
algorithm was the right one, despite being less convenient. | finished the

course with a confidence that | could alter and refine our implementation to
other coding languages, as well as feeling at ease with the ideas behind it.

Section 7: Software development life cycle model

The software development model used to develop Catscript was a Test-
Driven Development model (TDD). In TDD, developers write automated
tests that capture the intended behavior of the code, and then write code to
pass those tests. This approach helps ensure that the code is thoroughly
tested and meets the desired specifications.

In short, TDD is a development model which aims to specify and validate
that a program’s implemented features function correctly and are bug free
before release.

The majority of the Catscript testing suite was written by Professor Gross
and it was our job to code, refactor, and run tests until we had created a
build of our program that passed the entire testing suite.

In addition to Professor Gross’ tests, which were used by the entire class,
each member of our team also developed and additional set of tests to
cover a few of the corner cases and other aspects of the Catscript
language that were not fully tested.

| truly enjoyed learning about compilers through a TDD approach and | felt
that it really helped me develop a solid understanding of the concepts and
ideas involved in the course as well as simply giving me a chance to
improve my skills as a programmer.

Testing provides a very concrete pass/fail goal to work toward when writing
code. This helped me to break down the very large and at times nearly
overwhelming task of creating a programming language and functioning
complier, and to divide problems into more manageable tasks. TDD also
acts as an extremely useful compliment to the debugger in the Intellij IDE.
Over the course of this semester, | became much more capable at
navigating the debugger, using it to understand where code was going
wrong, and understanding the state of my code at various points in
execution.

TDD is also a common industry standard for software development and
using it in this course makes me feel as though | have gained practical
experience which will be transferable to working as a junior developer in
the future.

