
 CSCI 468: Compilers
 Senior Team Portfolio

 Devon Salveson & Samuel Ertischek

 Spring 2023

Capstone Documentation - Devon Salveson

Contents

1. A zip file of the program. source.zip
2. A PDF of the writeup and documentation. devon_salveson_portfolio.pdf (this file).

1. Program

The program can be found in the source.zip file.

2. Teamwork

Team Member 1: Devon Salveson

Team Member 2: Samuel Ertischek

Documentation

The documentation was written by team member 2, Samuel. The documentation can be found in section 4 of

this document. This documentation shows the features of CatScript and examples on how to use them. It

contains sections on types, statements, expressions, and functions. This documentation is a great resource

to get started with writing CatScript programs.

Testing

Testing was done by both team members. We used the test suite located at /src/test/java in the

source.zip file. These tests validate the functionality of the CatScript compiler. Additional testing was

completed by writing short CatScript programs and evaluating their output. This was done to ensure there

weren't any edge cases that may have been missed by the test suite.

Team Member 2 also provided three more complex test cases located in

src/test/java/edu.montana.csci.csci468/partner/TestsFromPartner. These tests evaluate
multiple pieces of the compiler at once, such as multiple math expressions at once, or conditionally printing

a string. These test further validate the functionality of the CatScript compiler.

Development

Team Member 1 was responsible for the development of the CatScript compiler. This included the Lexer,

Parser, and Bytecode Generator. This work was completed over the course of the semester in the following

order:

1. Tokenizing - Turning the input file/string into lexemes, and then into tokens.

2. Parsing - Turning the tokens into a parse tree.

3. Evaluation / Execution - Using the CatScript Runtime to evaluate/execute the expressions/statements

in the parse tree.

4. Bytecode Generation - Turning the parse tree into bytecode that can be executed in the JVM.

These 4 steps created a fully functional compiler with the phases nessecary to take us from the first step of

Lexical Analysis to the final step of Code Generation. These digestible steps allowed the work on the

compiler to be steadily worked on throughout the semester without having to jump back and forth between

major concepts.

3. Design Pattern

The design pattern I'd like to highlight and talk about is located in

/src/main/java/edu.montana.csci.csci468/parser/CatscriptType at line 38.

private static final Map<CatscriptType, ListType> LIST_TYPES = new HashMap<>
();

public static CatscriptType getListType(CatscriptType type) {
 CatscriptType listType = LIST_TYPES.get(type);

 if (listType != null) {
 return listType;
 }
 else {
 listType = new ListType(type);
 LIST_TYPES.put(type, listType);
 return listType;
 }
}

In this function, we memoized the type access. The point of memoizing this call is to reduce the number of

times we need to call the constructor to create a ListType. Whenever we parse a list type, we need to find it's

type. With other types, we simply pull them from the CatscriptType class directly. With a ListType, we

need to create that type. In the parser, whenever we're determining the type for a list, we need to call

CatscriptType.getListType() which originally just constructed a new type and returned it. This meant

that we were constructing a new ListType every time there was a list present in the code. By memoizing

this call, we're now only creating a new ListType when we haven't yet encountered that ListType. After

creating a ListType it's then stored in a HashMap so we can easily check if it exists the next time this

function is called. This is a great example of memoization and how it can be used to improve performance.

4. Technical Writing

The CatScript Documentation, which serves as the technical writing document, can be found beginning on

the next page.

Introduction

Catscript is a simple scripting langauge. Here is an example:

var x = "foo"
print(x)

CatScript Types

CatScript is statically typed, with a small type system as follows

● int - a 32 bit integer
● string - a java-style string
● bool - a boolean value
● list - a list of value with the type 'x'
● null - the null type
● object - any type of value

Features
For Loops
For Loops will go through every variable in a list and use that variable for the function it
has.

Here is an example:
list<int> x = [1,2,3,4,5]
for(y in x){print(y)}

The code above would output 1 2 3 4 5. This would be because the for statement would
go through each variable in the list x and print out that variable.

If Statements
An if statement will run the code it has if the expression it uses is true. If there is an else
statement below the if statement it will run the code it has if the if statement is false,
otherwise it will continue through the program

Here is an example:
var x = 5
if(x == 5){print(“x is 5”)}
Else{print(“x is not 5”)}

The code above would output x is 5 since the variable x is equal to 5. If x was not equal
to 5 the code would output x is not 5.

Print Statement
A print statement will print out whatever it contains whether that is a variable,
expression or a string

Here is an example:
print(“Hello World”)
var x = 5
print(x)

The code above would output Hello World and 5.

Assignment Statements
In catscript you can change the value of a variable using an assignment statement

Here is an example:
var x = 5
print(x)
x = 10
print(x)

The code above would output 5 and then output 10 since the variable is first 5 and it is
then changed with an assignment statement to 10.

Expressions
There are many different things that you can do with variables in catscript. The things
that you can do is listed below

Equality:
● !=

○ Compare the variable to something else to see if the variable is not equal
to what it is being compared to

● ==
○ Compare the variable to something else to see if the variable is equal to

what it is being compared to
Comparison:

● >

○ Compare the variable to something else to see if the variable is greater
than what it is being compared to

● >=
○ Compare the variable to something else to see if the variable is greater

than or equal to what it is being compared to
● <

○ Compare the variable to something else to see if the variable is less than
what it is being compared to

● <=
○ Compare the variable to something else to see if the variable is less than

or equal to what it is being compared to
Additive:

● +
○ Add the two objects together

● -
○ Subtract the second object from the first object

Factor:
● /

○ Divide the first object by the second object
● *

○ Multiply the two objects together.

Functions
A Function is a chunk of code that you can call to use repeatedly. An example is listed
below

Function printnum(var x)
{

print(x)
}

printnum(5)
printnum(10)
printnum(15)

The code above would call the function printnum and output 5 10 15.

5. UML

Sequence Diagram

The diagram I want to highlight is a Sequence Diagram. In our grammar, an if statement takes an expression

as input and that expression must evaluate to either true or false. We can pass an EqualityExpression to

an if statement in CatScript. This Sequence Diagram shows exactly how the major pieces of the compiler

come together to evaluate an expression.

First, input is passed to CatScript by the user. CatScript then passes it to the Lexer which will tokenize the

input. In this example the string input "2 == 2" if it were to be represented as a list would be [INTEGER,
EQUAL_EQUAL, INTEGER].

Once CatScript has the tokens, it then passes the tokens to the Parser. The Parser will then call

parseExpression(). Per CatScript's grammar, it will go down the list of expressions starting with parsing
the EqualityExpression. The EqualityExpression consists of 2 ComparisonExpressions with an
EQUAL_EQUAL or BANG_EQUAL token between them. Since we passed in "2 == 2", it will go down the list of
expressions until it finally gets to a UnaryExpression which will parse 2 to an IntegerLiteral which

EqualityExpression will later use to evaluate.

After CatScript has finished the Parser call, it will then have a parseTree for the program. We then call

execute() on that parseTree which will evaluate the expression using the values of the LHS and RHS
which is 2. Now that we've evaluated the expression, we can return the result of the expression which is

true.

Now that CatScript has successfully taken the input, turned it into Lexemes, turned the Lexemes into Tokens,

parsed the Tokens into a ParseTree, and evaluated the result of the ParseTree, we now have a result that can

be finally be passed back to the user.

The result: true.

6. Design Trade-offs

One of the design trade-offs I want to talk about is with how we're evaluating code. The Expression class

has an evaluate() method within, which is then inherited by each type of expression within CatScript.

Statements do something similar with an execute() method. This method is used to evaluate the value of

a particular expression. Earlier when I was talking about how the ParseTree was evaluating the code, this is

how. It takes each ParseElement and if it is an expression, will call evaluate() on an expression, like an

equality expression, and then the equality expression will call evaluate() on the expressions that make up

the EqualityExpression on the left and right sides of the operator.

This method has a few pros. It's very easy to think about while writing the code. We only need to consider

how this particular element evaluates, and can focus on any subsuquent evaluations as entire separate

problems. It also makes it very easy to add new expressions and add features to the language, because we

only need to define that new expression as a class that plays by the rules of the Expression class that it

inherits from. It is also very easy to debug, because in the case of an unexpected value, we can examine the

values returned by the evaluation of each expression, and find where exactly the bug is.

I do believe that this was the correct design choice for this project. Working on a project like this could get

very messy very quickly, but I felt that we were able to keep code very orgaized and overall, it made the code

easy to read and understand, not just to someone familiar with the project, but to those glancing at it for the

first time as well.

However, this method might not be considered best practice and there are valid concerns with it. The

primary concern would be that we're not separating our algorithm (parse tree evaluation / execution) from

our object structure (expression / statement classes). It is not considered best practice for a few different

reason. One of those reasons is that on objects with many operations (such as ours which have

evaluate(), transpile(), compile() and getType() adding new operations could become a large

task, where they need to be added to not only the abstract Expression class, but to every class that

inherits from Expression.

An alternative design choice would have been to use a Visitor Pattern. The Visitor Pattern would pass a

Visitor to the classes, and our implementation of that Visitor would be where any logic is happening. For

example, we could have had an abstract class called ExpressionVisitor which would implement the

methods such as evaluate() and then create classes such as AdditiveExpressionVisitor which

would handle the logic within the evaluate() method for an AdditiveExpression. This pattern would
have been more work to implement and possibly harder to work with considering we've now split each

ParseElement into different files within the src, but it would have achieved the separation of our algorithm /

logic and our object structure.

7. Software Development Life Cycle Model

The development model we used for this project was Test Driven Development. Test Driven Development

involves writing tests for the code before writing the code and then evaluating the completion of a task

against the passing of the tests. This model was chosen because it allowed us to consider edge cases

before beginning development, view a set of tests, and keep in mind the edge cases for a given task while

developing the solution. This model was a huge help in developing this compiler because it allowed us to

mentally keep track of progress because once the tests passes, that solution was complete except for any

additional testing we may want to complete.

There is one drawback I can see with Test Driven Development which is that the tests have to be incredibly

thurough for this model to be successful. In a case where edge cases are missed in tests or tests for

particular functionality are missed altogether, it could give a false sense of "correctness" or "completeness"

to a developer or development team.

Overall, I liked this model for this project. It allowed us to produce good code, and track progress without

using an outside tool or having to do much project management. I would absolutely use Test Driven

Development again as a model for future projects.

	cover_page.pdf
	devon_salveson_portfolio.md.pdf
	Technical Documentation (1).pdf
	devon_salveson_portfolio.md

