CSCI 468 Portfolio

Montana State University
Abigail Quinn | Jack Brown
Spring 2023

Section 1: Program

Source code can be found at
https://github.com/abbykq/csci-468-spring2023-private/tree/main/src

Section 2: Teamwork

In this project, the work was divided into a 95%-5% split, with the first team member
(Abigail Quinn) taking on all of the automated testing responsibilities. This team member
completed the testing process by completing the four checkpoints: tokenization, parsing,
evaluation, and bytecode generation. The second team member (Jack Brown) contributed
to the test-driven development cycle by writing an additional three tests. Each partner
wrote the Technical Documentation for the other partner.

Section 3: Design Pattern

The Memoization Pattern used in the CatscriptType.java class optimizes the storage and
retrieval of previously computed results. By mapping types to their corresponding lists in
a HashMap, the getType() method avoids redundant computation, resulting in improved
performance. This design pattern is especially useful in scenarios with expensive
computations or object creation.

TODO memoize this call
Map<CatscriptType, CatscriptType> HashMap<>()
CatscriptType getListType(CatscriptType type) {

CatscriptType listType = .get(type)
(ListType ==)

listType = ListType(type)

.put(type,listType)

ListType

https://github.com/abbykq/csci-468-spring2023-private/tree/main/src

Section 4: Catscript Technical Documentation (Jack Brown)

Introduction
Catscript is a statically typed simple expression built using recursive descent. The

finished project results in a functioning compiler. Examples of Catscript code can be seen
below.

Statements

For Statement
Uses an identifier(variable name) to iterate over an expression. A statement is executed
for each iteration.

e Grammar: 'for','(", IDENTIFIER, 'in', expression '),'{’, { statement }, '}’;

e for (i in [2, 4, 6])/{
print (i)

Output: 2, 4, 6

If Statement

Executes a statement if an expression(condition) returns true, otherwise the program
executes another statement.
e Grammar: 'if', '(’, expression, '), '{, { statement }, '}' ['else’, (if_statement | '{}, {
statement }, '}') |;
e if (20 > 10) {
print (“true statement”)
}
else {
print (“false statement”)
}

Output: “true statement”

Print Statement

Prints an expression in the Catscript Console
e Grammar: 'print’, '(', expression, ')’
® print(“Test”)
Output: “Test”

Variable Statement:
This statement initialized a variable with a given name (identifier). This variable can
either be initialized with an implicit type or a given type.

e Grammar: 'var, IDENTIFIER, [, type_expression,] '=', expression;

e var x : int = 10

Assignment Statement

Assigns an expression (a value) to a variable. This happens after the variable has already
been declared.

e Grammar: IDENTIFIER, '=', expression;

e x = 10

Function Call Statement
Calls a function using its identifier (method name) and a list of arguments.
e Grammar: IDENTIFIER, '(, argument_list, ')’ where argument_list = [expression , {
', expression }]

e foo(x)

Function Definition Statement
This statement creates/declares a function.It requires the ‘function’ keyword in order to
start the statement, a list of parameters(0 or more) and a starting and closing bracket.
e Grammar: ‘function’, IDENTIFIER, '(, parameter_list, ")’ + [':' + type_expression],
{', { function_body_statement }, '};

® Function foo(val) : object {}

Expressions

Primary Expression
Primary expressions are the baseline types which are present in every language. The
main eight in Catscript are IDENTIFIER, STRING, INTEGER, true, false, null, list literal,
and function call. IDENTIFIER is a name which is associated with a value, often called a
variable. A string is a zero or more characters combined together. An integer is a whole
number. “True” and “false” are keywords which always contain the value true or false.
“Null” is a keyword with an associated value of nothing. Its value is that it's empty. List
literal is a list of any type of primary expression. Function call is a call to a function that
already exists. This takes in a list of parameters to send to the function. Examples of each
are shown below.

e Grammar: IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"| list_literal |

function_call | "(", expression, ")"

e i, j, testVar : IDENTIFIER expression

e “Test”, “MSU”, “16jr4” : STRING expression

e 10, 20, -10 : INTEGER expression

e bool true : “true” expression

e Dbool false : “false” expression
e x = null : “null” expression
e [10, 20, 30], [“a”, “b”, “c”] : 1list literal expression

e foo(x) : function_call expression

Unary Expression

Unary expressions are a type of expression with one of two symbols attached to it: a not
or a negative sign. These expressions can only be an integer literal or a boolean because
those are the only two primary expressions which have two states of positive/negative or

true/false.
e Grammar: ("not" | "-") unary_expression | primary_expression;
e not True : returns False

e -20 : returns -20

Factor Expression

Multiplies or divides two unary expressions with one another.

e Grammar: unary_expression { ("/" | "*") unary_expression };
e 20/10 : returns 2
e 20 * 10 : returns 200

Additive Expression

Adds or subtracts two expressions with one another.

e Grammar: factor_expression { ("+" | "-") factor_expression };
e 10 + 20 : returns 30
e 10 - 20 : returns -10

Comparison Expression:

Check if two expressions are less than, less than or equal to, greater than, or greater than

or equal to one another.

e Grammar: additive_expression { (">" | ">="| "<" | "<=") additive_expression };

e 10 > 20 : returns False
e 10 >= 20 : returns False
e 10 < 20 : returns True

e 10 <= 20 : returns True

Equality Expression
Checks if two comparison expressions are equal or not equal. Returns true or false
depending on operand.

e Grammar: comparison_expression { ("!=" | "==") comparison_expression};
e 10 != 20 : returns True
e 10 == 20 : returns False

Types
int - a 32 bit integer
string - a java-style string
bool - a boolean value
list - a list of value with the type 'x'
null - the null type

object - any type of value

Section 5: UML

User CatScript Lexer Parser ParseTree
L		
I		
evaluate ("2 * 3")		
>		
o+ o	I	
lex("2 * 3") I I		
[tokens		
T]		
! rse(t kI n l		
parse(tokens) >		
[I		
: parseExpression() :		
I		
I		
	parseFactorExpression()	
	I	
I		

I |
: | parselntegerLiteral() I
| I |
| I |
| ' |

parseTree
| - T------ T
| I |
| | execute()
| I |
| I nen
6

| q------- R T
|
I ISII
*
|
|

This sequence diagram shows the process of Catscript computing a multiplication
expression. The user inputs the expression, then catscript tokenizes it, then the tokens
are parsed, going through parseExpression, parseFactorExpression, and parse
IntegerLiteral. This returns a parse tree that is then executed to return the correct total.

Section 6: Design trade-offs

The design tradeoff within this project was the decision to implement a handwritten
recursive descent was used instead of a parser generator for developing Catscript parser.
Although using a generator would be easier and take less time, writing the recursive
descent parser by hand makes it easier to read, understand and modify.

Section 7: Software development life cycle model

Test Driven Development was the life cycle development model for this project. The four
checkpoints were broken down into the following: tokenization, parsing, evaluation, and
bytecode generation. Each checkpoint had several tests that needed to pass to create the
complete Catscript compiler. The checkpoints relied on the previous one to work
completely which helped with detection and resolution of any problems that could have
potentially escalated into larger problems later.

