Capstone Report

CSCI-468 COMPILERS

Spring 2023

Jake Rivers & Kate Stallbaumer
Montana State University



Program

The source code of this program can be found at https://github.com/Kstall23/csci-468-

PRSSLENNP, ¥a Vo ¥o TSI SUpIoripuy ) N [N Y SSRSDRTRpY [y S SVl s I S S
SPLIIELZULZL=PLIVALL/ UVIVD/IHASLCL/ CAPSLULIC/ PULUOVIIVU/ SV ULLC. 21D,

Teamwork

The project was divided into five distinct sections, with each section accompanied by a set
of tests that aligned with the work completed during that specific time frame. Partner 1,
Kate Stallbaumer, completed the first four sections independently, using a test-driven
development style. However, for the fifth section, Partner 1 and Partner 2, Jake Rivers,
collaborated by exchanging new tests that they had developed for any of the content
created in the previous sections. Additionally, both partners collaborated on creating the
project's documentation. Partner 1 primarily handled documenting the contents and
structure of the Catscript Language, while Partner 2 reviewed and made relevant changes.
Overall, Partner 1 completed about 95% of the project work, while Partner 2
completed about 5% for this report.

Design Pattern

The major design pattern that was implemented in this project was
the memoization pattern. This pattern was used in the CatscriptType.java file (lines
35-46) as a way to prevent redundant initializations of the various list types that
can be used when running the compiler. For example, if a list comprised of
integers is created, that list type can be stored into the hash map and be quickly
retrieved when it is referenced in another location. This speeds wup the
processing time of retrieving this type reference. The code snippet implementing
this design pattern can be seen here:

static HashMap<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

ListType listType = cache.get(type); if
(listType == null) {
listType = new ListType(type);
cache.put(type, listType);
}

return listType;


https://github.com/RoryDMcLean/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip
https://github.com/RoryDMcLean/csci-468-spring2022-private/blob/master/capstone/portfolio/source.zip
katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight

katestallbaumer
Highlight


Technical Writing

1 Catscript Guide

1.1 Introduction

Catscript is a small, statically typed scripting language that has comparable syntax to
languages like Java and C, although Catscript is much simpler and has fewer features
than those full programming languages. Catscript can either be evaluated directly using
Java and the Catscript Server or it can be compiled using the Catscript Compiler
program and then executed on the Java Virtual Machine (JVM).

1.2 Features

The parts of any Catscript program can be categorized as part of either an expression or a
statement. Expressions ultimately evaluate to a value while statements perform an action

in the Catscript runtime environment.
1.2.1 Statements

For loops

For loops in Catscript iterate over defined lists and perform a set of operations per
iteration. The operations performed are known as the “body” of the for loop. Operations
may contain more types of statements such as print- statements and if-statements with
no issue Example:

for(xin [1, 2, 3]) {

print(x)

Output:

If Statements

If statements in Catscript are able to have conditional statements that restrict access
to a portion of code unless the conditional statement is met.
Example with conditional met:

if(1 < 2) {

print("One is less than two")



Example with conditional not met:

if(1>2){

print("One is greater than two")

Print Statements

Print statements in Catscript evaluate an expression and print its value. This can be
done with expressions that evaluate to either Strings Literals or Integer Literals.
Example:

print("Hello World")
Output:

Hello World

Variable Statements

Variable Statements in Catscript used to assign values to variable names. Any
combination of valid expressions that evaluate to a value of a single type is assignable to a
variable. Types in Catscript can either be stated explicitly after the variable name with a
semi colon and a type name or they can be implicitly defined.

Examples:

Var x = “Look Mom, I'm a Catscript Variable string value”
Vary=1

Or:

Var x : int = 1

Assignment Statements

Assignment statements in Catscript are closely related to variable statements. The
assignment statement is used to connect a variable name with a value via an equals sign.
It is only possible for variables to be assigned or re-assigned to the same type that they
initially defined as, whether they were implicitly or explicitly defined. For example an
Integer variable cannot be assigned to a String value.

Example:
Varx=1
x=3
print(x)
Output:
3



Function Definition Statements

Catscript utilizes Function Definition Statements to declare functions that can be
called from other parts of the program. These functions can have parameters, which can
be explicitly or implicitly defined just like variable statements, and must include a body.
The body can consist of any type and number of statements. Additionally, functions can
contain return statements, which signal the end of the function. When declaring
functions that include return statements, it is necessary to specify the return type after the
function's name and parameters.
Examples:

foo(a, b, ¢) {

print(a)
print(b)
print(c)

Or:
foo(a: string, b: string, c: string) {

print(a+b + ¢)

Or:

foo(a: int, b: int, ¢: int) : int {

returna*b*c

Return Statements

In Catscript, Return Statements enable the passing of values from the inner scope of
functions to the outer scope where the functions were invoked. These statements
terminate the function they belong to, and may contain expressions within them.
Examples:

return x
Or:

return 1 + 1
1.2.2 Expressions

Primary Expressions



Catscript has eight kinds of primary expressions. These are broken into two categories.
Literals: Integer Literal, String Literal, Boolean Literal, List Literal, Null Literal,
Other: Identifier, Function Call, and Parenthesized Expressions.
Most of the primary expressions are literal expressions that correspond to the primitive
types found in the Catscript type system.

Identifier Expressions are expressions that represent a keyword defined by the user:
X
foo
myVar

Integer Literal Expressions are expressions that represent integer numbers:
42
-144

String Literal Expressions are expressions that represent strings of characters:
"Hello World"
"This is a string in Catscript!"

Boolean Literal Expressions are expressions that represent the True and False

symbols:

true

false

Expressions that signify a collection of Integer, String, Boolean, and List Literal
Expressions are known as List Literal Expressions:

(1, 2, 3]
["Hello", "World"]

Null Literal Expressions are expressions that represent the null symbol. Null
Literal Expressions are used when there is no value represented for a variable:

null

Expressions that contain information about what data to transmit to a function’s
parameters are called Function Call Expressions. Function Call Expressions signal the
execution of a function during runtime.

foo(1, 2, 3)

Parenthesized Expressions are expressions that contain any type of expression inside two
parentheses. The parentheses do not affect the contained expressions in any way:

("Hello" + "World")
(12 < 24)



Unary Expressions

Unary Expressions pertain to expressions that affect only one expression. The two
symbols that can be used in a unary expression are the negative symbol and the not
symbol (i.e., the I” symbol), which can exclusively be applied to Integer Literals and
Boolean Literals, respectively.

Examples:

-1
not True

Equality Expressions

Expressions that utilize a double equal or bang equal symbol to separate two
expressions are referred to as Equality Expressions. The double equal symbol asserts that
both sides are identical (have the same value), whereas the bang equal symbol asserts that
both sides are distinct (have different values). These expressions may contain any
expression type.
Examples:

True == True
True != False

Comparison Expressions

Expressions that use a less than, greater than, less than or equal to, or greater than or
equal to symbol to separate two expressions are known as Comparison Expressions.
These expressions only accept Integer Literals as the separated expressions.
Examples:

1 <2
2>1
X <=y
Y>=X

Additive Expressions

Expressions that use an addition or subtraction symbol (plus or minus, respectively) to
separate two expressions are called Additive Expressions. These expressions accept
Integer Literals, String Literals, or Parenthesized expressions that contain Integer or
String Literals as the separated expressions. String Literals are exclusively capable of
being added together, they cannot be subtracted. Examples:

lVaH + Vle
12 - 11



Factor Expressions

Factor Expressions refer to expressions that employ a multiplication or division symbol
(asterisk or slash, respectively) to separate the two expressions. These expressions
exclusively accept Integer Literals or Parenthesized Expressions that contain Integer
Literals. Examples:

8§ *2
15/ 3

UML

The following UML diagram shows the overall structure of the Catscript
Language. It shows that all of the expressions and statements extend the abstract classes
expression and statement respectively. Additionally, both of the abstract classes extend
the abstract class, parseElement, meaning that both expressions and statements are able
to be parsed by the Catscript compiler.

@ FunctionCallStatement

~\

= e— © ' CatscriptProgran
«

© % PrintStatement \
@ Ifskatement

@ FunctionDefinitionStatement

© % Variablestatement

© . SyntaxErrorStatement

@« StringlLiteRalExpression @ ListliteralExpressio

o Trpaisserst A s,u/s,

Y%

© ' EqualityExpression




Design Trade-offs

The primary decision point in this project's design was whether to implement a compiler
utilizing recursive descent or parser generation techniques. Ultimately, the decision was
made to use recursive descent, although either approach could have achieved the project's
goal. Recursive descent was chosen because of the nature of the two methods.

With recursive descent, the programmer manually codes the various types of expressions
and statements in a language and links them together to make the language coherent in its
application and usage. In contrast, parser generation abstracts the concept of recursive
descent by creating a parser to parse the rules of a language, creating a compiler with little
effort required from the programmer. While parser generation is often a simpler method
to create a compiler, it can be more difficult to understand and debug. Therefore, for this
project, it made sense to implement a recursive descent compiler.

Software Development Life Cycle Model

Test driven development was the software development life cycle model utilized in this
project. This model was well-suited to the project due to its well-defined steps. For each
step, a set of tests was written, which followed along with the clear differences that
appeared within the code itself. The code was divided into major sections, including
tokenization, parsing, evaluation, and bytecode generation of the Catscript language.
Moreover, the sections completed were dependent on their previous counterparts, which
defined the development life cycle not only spatially but also temporally. By dividing the
project into clear sections, the goals were defined more precisely, enabling an efficiently
executed development cycle.



	Catscript Guide
	Introduction
	Features
	Statements
	Expressions





