MSU Computer Science Department
Senior Portfolio

CSCI 468: Compilers
Spring 2023

Alex Du Bois
Eric Wanner-Garnier

Section 1: Program

See the source.zip file in this directory.

Section 2: Teamwork

Team Member 1 - Development

Team member 1 worked on development of the compiler and wrote the code
implementation of its functionality.

Team Member 2 - Documentation and Testing
Team member 2 created the documentation for CatScript grammar and features and
provided tests for quality assurance.

Section 3: Design pattern

The design pattern used in this project was memoization in the getListType function
in parser/CatscriptType.java, line 37. This design was implemented to avoid
continually creating new CatscriptType objects. Had we just coded it directly, every
time we needed a list type, we would have created another object, and this would be
inefficient use of memory. Using memoization, we can instead store already created
list types in a Map and then access those rather than creating new ones. This means
we will only create a finite number of objects (one for each type) thus saving us
resources.

private static final Map<CatscriptType, CatscriptType> LIST TYPES
= new HashMap<>();
public static CatscriptType getListType (CatscriptType type) {
CatscriptType listType = LIST TYPES.get (type);
if(listType == null) {
listType = new ListType (type):;
LIST TYPES.put (type, listType):;
}
return listType;

Section 4: Technical writing

Introduction
Catscript is a simple scripting langauge. Here is an example:

var x = "foo"

print (x)
The Catscript parser was written using recursive decent, which should become apparent
when reading the expression’s syntax sections.

Features

Catscript types:

int - a 32 bit integer

string - a java-style string

bool - a boolean value

list - a list of value with the type of it’s contents
null - the null type

object - any type of value

Statements
For loop:

General syntax:
'for', '(', IDENTIFIER, 'in', expression ')', '{', { statement }, '}';

Example:
var z = [1,2,3]
var counter = 0
for(x in z) {
print (x)
counter = counter + 1

}

print (" Counter " + counter)

If statement:

General syntax:
'if', '(', expression, ")', '"{', { statement }, '}' ['else', (
if statement | '{', { statement },'}"') 1;

Example:
1f(1>2) {
print ("one greater than 2")
}else(
print ("one is not greater than 2")

}

Print statement:

General syntax:
'print',

'(', expression, ')'

Example:
var X
var zZ

([Tl
NS

print (x+z)

Variable statement:
General syntax:

'var', IDENTIFIER, [':', type expression,] '=', expression;
Example:

var x = 5

var z:int = 4

print (x+z)

Assignment statement:

General syntax:
IDENTIFIER, '=', expression;

Example:
var x = 2*5
var y = X
print (y)

Function declaration statement:
General syntax:

'function', IDENTIFIER, '(', parameter list, ")' + [':' +
type expression], '{', { function body statement }, '}';
Example:
function multiply (numl:int, num2:int) {
var answer = numl*num?2

return answer

}

print (multiply(2,5))

Function call statement:

General syntax:
IDENTIFIER, '(', argument list , ")'

Example:
function multiply(numl:int, num2:int) {
var answer = numl*num?2
return answer

}

print (multiply (2,5))

Expressions
Equality expression:
General syntax:
comparison expression { ("!=" "==")

Example:
print (1 == 2)

comparison expression };

Comparison expression:

General syntax:
additive expression { (">" | ">=" | "<" | "<=")
additive expression };

Example:
print (1 < 2)

Additive expression:
General syntax:

factor expression { ("+" | "-") factor expression };
Example:
print (2+3)

Factor expression:
General syntax:

unary expression { ("/"™ | "*") unary expression };

Example:
print (2*3)

Unary expression:
General syntax:

("not" | "-") unary expression | primary expression;

Example:
print (not true)

Primary expression:

This is the point in the language where we handle parenthesized expressions and this acts
as both a reentry point for the grammar and the end point where our Catscript types are
reached/attained.

General syntax:

IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list literal | function call | " (", expression, ")"
Example:

print (2* (5+2))

Section 5: UML

Catscript Multiplication Sequence Diagram

A

User CatScript Lexer Parser ParseTree
| — | | |
| | | |
| evaluate("s * 3") I | I
I > | |
I lex("5 * 3") | I
| I I
| I I
| tokens | |
I I D] I
I t kI I
I parse(tokens) > |
| | |
I I parseExpression() I
| I I
| I I
| I I
| | parseFactorExpression() |
| | I
| | I
| I - I
I | parselntegerLiteral() |
| I I
| I I
| : I

parseTree
! q------- To--=-=- o)
| | |
| | execute()
| I I
| I s
15

| < } T
I I
I N1 5” I
| I

I

I

— — — — —

This is a sequence diagram demonstrating how multiplication of 5 and 3 works in
Catscript. We can particularly see the recursive descent nature of the Parser as it
repeatedly calls parse functions while creating the parse tree.

Section 6: Design trade-offs

One major trade off in this project was the fact that the parser was made using
recursive descent, rather than generated through software. The reason we used
recursive descent is that it is widely used in industry for developing programming
languages, and clearly communicates the recursive nature of grammars.

The downside to using this method was that it involved much more intensive
coding. Using a parser generator is more common in academic spaces, and would
not require the same amount of programming. Instead, all that would be required is
the grammar of the language. It would also be much faster to develop using a
generator.

Section 7: Software development life cycle model

The model used to develop our project was Test Driven Development. This meant
that we had a suite of tests that needed to pass to ensure proper functionality of our
parser. This model was very helpful - it provided direction of what to implement
and when, and made it easy to tell whether we were on track. The downside to
focusing so heavily on tests meant that in the beginning stages, it was easy to
overlook issues that simply had no tests associated with them. These issues then
needed to be resolved when the project moved to later stages in the compiler.

	Features
	Catscript types:
	Statements
	For loop:
	If statement:
	Print statement:
	Variable statement:
	Assignment statement:
	Function declaration statement:
	Function call statement:

	Expressions
	Equality expression:
	Comparison expression:
	Additive expression:
	Factor expression:
	Unary expression:
	Primary expression:

