Montana State University

Capstone Portfolio

James Marsh, Jaclyn Saunders
CSCI 476 - Compilers

Professor Gross

Section One: Program
The source listing of the program I wrote for this course is attached as a zip file in the
portfolio directory as source.zip.

Grammar

Attached below is the grammar for Catscript. Catscript is a small, scripting programming
language. It uses recursive descent all throughout the language. There are a few major
components including types, expressions, statements, and more within this language.

catscript_program = { program_statement };

statement
function_declaration;

int_ nent
iable_statement

-' . IDENTIFIER,
n, 1 "=", expr

function_call_statement = function_call;

= IDENTIFIER, "="

function_bo atement = statement
return_statement;

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ":"

return_statemen

expression = equality expression;

equalit (pr on = comparison_gxpression { ==") comparison_

comparison_ex sion = additiw
additive expression = factor_expression { (-") factor_expression };
On = unary ien { ("/" "£") umary_expressiom };
ssion = { "mot™ | "-") unary_expression | primary_expression;

,ion = IDENTIFIER | S G GER | "true” | "false™ | "null™|
list_literal fun | € "(", expression, ")"

list literal - '[", & ien, { ",", expression }
function_call = IDENTIFIER, '(°, argument_ list , "}°
argument_list = [expression , { °," , expression }]

type_expr on = "imt" "string" "bool* ‘object’ | *list* [, "<

Section Two: Teamwork

Although we did most of the project individually, there were some key teamwork aspects
that added to the overall project and portfolio. Both team member one and team member
two contributed the same amount of time on the teamwork sections of the project which
amounted to about 10% of the time it took to complete the whole project. These sections
included the technical writing document in section four, and three unit tests within the src
zip file. We individually wrote our own tokenizers and parsers which allowed us to really
understand the compiler process from start to finish. This took about 85% of the time it
took to complete the whole project. The last 5% of time included writing this portfolio.

Section Three: Design Pattern

£ usages
private static final Map<CatscriptType, CatscriptType> LIST_TYPES = new HashMap<>();
4 usages
public static CatscriptType getlistType(CatscriptType type) {
CatscriptType listType = LIST_TYPES.get(type);
if (listType == null) {
1istType = new ListType(type);
LIST_TYPES.put(type, listType);
T

return listType;

One design pattern that was used in my capstone project was memoization. This is located
in CatscriptType.java in the getListType method. I used this method as an optimization
technique in order to speed up the process of identifying Catscript types. The method
works by storing each new type in a hashmap. When getListType is called, the hashmap is
searched first in case the type is already pre existing. If so, it will just return that type out of
the hashmap. If not, a new type is created and added to the hashmap.

Section Four: Technical Writing
Attached PDF of technical writing piece from my partner...

Catscript Guide

Introduction

Catscript is a simple scripting language. Here is an example:

var X = "Hello world!"
print(x)

This will output:

Hello world!

Types

CatScript is statically typed. Variables can be create with the var keyword and assigned a
specific type:

int - a 32 bit integer

var x : int = 10

string - a java-style string

var myString : string = "Hello world!"
bool - a boolean value

var X : bool = true
var y : bool = false

object - any type of value

var x : object = 10
var y : object = "Hello world!"
var z : object = true

list - a list of values of the same type

var x : list<int> = [1,2,3]

var y : list<string> = ["Dog", "Cat", "Bird"]
var z : list<bool> = [true, false]

var a : list<object> = [x, y, Zz]

null - the null type

var x = null

If a type is not specified, the type will be automatically assigned. In this example, x has type
int:

var x = 10
Features

Print Statements

Catscript can print all objects to output:

var x : int = 10

var y : string = "Hello world!"
var z : bool = true

var a : list<int> = [1,2,3]

var b = null

print(x)
print(y)
print(z)
print(a)
print(b)

Output:

10

Hello world!
true

[1,2,3]

null

Comments

Catscript allows users to include non-code comments that are ignored when the script is
run. Everything to the right of the double slashes is ignored

var x = 10 // Example comment
print(x) // Comments do not affect the code

Output:
10

For loops

Catscript can iterate through list variables:

var x : list = [1,2,3]
for (num in list) {
print(num)

}

Output:

1
2
3

Catscript can also iterate through list literals:

for (num in [1,2,3]) {

print(num)
}
Output:
1
2
3

If Statements

Catscript can perform conditional operations using if statements:

var x = false

if (x == true) {
print("fizz")

}

print("buzz")

Output:

buzz

Catscript can also branch using else statements:

var x = false

if (x == true) {
print("fizz")

} else {
print("buzz")

}

print("buzz")

Output:

buzz
buzz

Comparisons

Catscript can check expressions for equality:

var x = 10
var y = 12
print(x == vy) // false
print(x !=vy) // true

Catscript can also compare expressions:

var x = 10
var y = 12
var z = 10

var a = 12

print(x < y) // true
print(x > y) // false
print(x <= z) // true
print(y <= a) // true

Functions

Catscript can be used to create reusable functions:

function hello() {
print("This function is printing!")

}

print("Function Test:")
hello()

Output:

Function Test:
This function is printing!

Functions can return values of any CatScript type. The type is specified when the function is
created, and returned with the return keyword:

function foo() : int {
return 1
}

print("Function Test:")
print(foo())

Output:

Function Test:
1

Functions can also take in parameters. The parameter names are specified when the
function is created, but the type is optional.

function add(y : int, z : int) : int {
return y + z

}
print(foo(5, 6))

Output:
11

Section Five: UML

This is a UML sequence diagram on how CatScript works. It first starts off with user input in
the Catscript language, which then goes through a lexer to get back tokens which then
parses and executes the expressions and/or statements and gives the result back to the
user.

Catscript UML Diagram

user Catscript lexer parser parse tree
| L | | |
| | | |
| evaluate("var x=1") | | [
| P | !
: lex("var x=1") : :
| | [
| I',"Ilarll I'XII ||:II ||1I' II{EOFbII | |
| D u !
1
: parse("var' "x" "=" "1" "<EOF=") :
>

	parseExpression()
	[
	[
	parseVarStatement()
	[
: parseTree I |

O R) — |
| | [
| program.verify() |
[| > |
| L] |
I € ------- return verfication ||
| | |
: execute VariableStatement!

T 1

| | ; |
| PP J_ovarx=1____ Lo
|
| var x =1
H_
|
|
1

Section Six: Design Trade-Offs

One of the design trade-offs | made was writing the entire parser by hand versus using a
parser generator. I chose to do this in order to understand the parser better and use the
recursive descent algorithm. Usually time efficiency is more important, but in this case,
really understanding the code was more important to me than having a generator do it for
me.

Section Seven: Software Development Life Cycle Model

For this project, | used Test Driven Development (TDD) for the life cycle model. The tests
were written first, and then the code was built around those tests. Ultimately, this allowed
me to get the exact result and output that [wanted while building code around a certain
goal. This type of life cycle model really helped me with the development of the software
because it was an easy way to checkpoint my progress throughout the project. It really only
hindered me when I couldn’t get the output just right, but constant debugging and changing
of the code allowed me to achieve my desired end result.

