
CSCI Capstone Portfolio
Partner 1 - (Hayden Xavier)
Partner 2 - (Cole Orelup)

● Section 1: Program -

o The zip file containing the source code for the project is named (located at)
`capstone/portfolio/source.zip`

● Section 2: Teamwork -

o Partner 1 (Hayden Xavier) was responsible for implementing the tokenizer,
parser, eval, and compilation for the Catscript programming language. Partner 2
(Cole Orelup) was responsible for contributing 3 tests to analyze the functionality
of partner 1’s implementation of Catscript features. Both partners were successful
in completing the work necessary to implement their Catscript programming
language and test the functionality of the other’s. Additionally, partners
exchanged documentation documents for section 4 of this capstone portfolio.

Partner Number Rating of Contributions on a Scale of 1-10
1 9
2 9

● Section 3: Design pattern –

o The design pattern that was implemented for Catscript was the memoization
pattern. The memorization pattern involves saving the solutions of commonly
dealt-with problems into a list, array, etc. such that if that problem is faced again,
the runtime of retrieving the answer to that problem is minimized because it can
be simply retrieved from the data structure of saved solutions. In the case of this
project, the memorization pattern was implemented on the static getListType()
method within CatscriptType.java so that instead of returning a new list type
every time, applicable list types that have already been assigned can be retrieved
from a HashMap of saved list types. Below is a screenshot of the implementation.



Section 4: Technical writing. Include
the technical document that
accompanied your capstone project.

Introduction
Catscript is a simple scripting langauge. Here is an example:

var x = "foo"

print(x)

Features

For loops

For loops allow for repeated execution of the body block (statements between { and
}) for a set number of iterations. Abstractly, this is defined as:

for (IDENTIFIER in EXPRESSION) {

// iterate over statements

}

As a practical example:

for (x in [1,2,3]) {

print(x)

}

OUTPUTS: 1, 2, 3

If/Else Statements



If/Else statements are the main logical control flow for Catscript. Depending on whether a
condition is true, the if statement's body is executed or the else statement's body is
executed. Abstractly, the If/Else statement
looks like:

if (EXPRESSION) {

// execute if statement's body

} else {

// execute else statement's body

}

Practically an If/Else statement looks like this:

if (x == 1) {

return 1

} else {

return 0

}

Print statements

Print statements are a form of outputting a value or string to the console.

print("Hello World")

Variables

Variables are a way of storing values in Catscript. Since Catscript is statically
typed, there must be an associated type with the variable. The type can be
inferred using the syntax:

var x = "foo"

Alternatively, the type can be explicitly assigned using : TYPE where TYPE is an of

Catscript's types. var x: string = "bar"



Variables are also assignable from each other depending on what their types are.
Here is an example of a variable y taking on the value from a variable x:

var x = 10

var y = 0

y = x

Functions
Functions enable code to be repeatably called without typing out its body every time you
want to use it. They are denoted by function and are abstractly defined as:

function IDENTIFIER(FUNCTION_PARAMETERS) {

// statements to be executed here

}

Like variables, functions also have implicit and explicit typing. A practical function with
implicit type is shown by:

function multiply(x, y) {

return x * y

}

Explicit typing is shown again by : TYPE

function divide(x, y): int {

return x / y

}

Functions can be called by using its IDENTIFER along with its FUNCTION_PARAMETERS

. Using the divide function as an example, divide can be called like:

divide(10, 2)

Which should evaluate to the value 5

Functions also have return statements that return an expression value from a function.



Lists

Lists are a form of storing a series of data. They are denoted by any number of

expressions wrapped in [] . Following the variable's typing, lists can be inferred or

explicitly typed out.

Implicit Type

var list = [1,2,3]

Explicit Type

var list: list<string> = ["hello", "there"]

Types

CatScript is statically typed, with a small type system as follows:

int - a 32 bit integer
string - a java-style string
bool - a boolean value
list - a list of value with the type 'x'
null - the null type
object - any type of value

Operators

+
-
*
/
==
!=
<=
>=
>
<
not



● Section 5: UML –

● Section 6: Design trade-offs –

o The main design trade-offs when developing the Catscript programming language
was that we decided to use the recursive decent model to create our parser instead
of utilizing a parser generator. The main advantage of recursive descent parsing is
its simplicity and ease of implementation. Recursive descent parsers can be easily
hand-coded using a programming language's standard control structures such as
if-else statements and loops. Additionally, recursive descent parsers can be
efficient for parsing small grammars and simple languages, like we did for
Catscript. However, recursive descent parsing can become inefficient and
complex for larger or ambiguous grammars, and it may require significant manual
effort to handle conflicts and errors in the grammar. Parser generators on the other



hand provide a more automated approach to parsing. Parser generators take a
formal grammar specification and generate a parser automatically, which has
several advantages, including the ability to handle complex and ambiguous
grammars efficiently, and the ability to generate parsers for multiple programming
languages. Additionally, parser generators often provide error recovery
mechanisms and support for generating error messages. However, parser
generators can be less flexible and customizable than hand-coded recursive
descent parsers, and may require significant manual effort to integrate with other
components of a software system.

● Section 7: Software development life cycle model –

o For the development of the Catscript programming language, the development
cycle used was one of test-driven development (TDD). (TDD) is a software
development approach where tests are written before the code is written and has
several benefits, including improved code quality, faster development cycles,
better maintainability, and improved communication between developers and
testers. By defining test cases up front, everyone involved in the development
process has a clear understanding of what the software is supposed to do and how
it should behave. However, TDD requires a new way of thinking about software
development and can be time-consuming, especially for large and complex
projects. Additionally, TDD may lead to an over-reliance on tests and may cause
developers to ignore other important aspects of software development, such as
design, architecture, and usability. In this case, using test driven development was
extremely helpful as nearly every feature of Catscript could be mapped to a test to
ensure full functionality.


