Makayla Broyles
CSCl 468
Spring 2023
Team: Cameron Wilcox

Program Specifications

catscript_program { program_statement };

statement |
function_declaration;

program_statement

statement = for_statement |
if statement |
print_statement |
variable statement |
assignment_statement |
function_call statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
{', { statement }, '}';

if statement = 'if', '(', expression, ')', '{',
{ statement },
'}' ['else', (if statement | '{', { statement }, '}') 1;

print_statement = 'print', '(', expression, ')’

variable statement = 'var', IDENTIFIER,

] T

[':", type expression,] '=', expression;

function_call statement = function call;

assignment_statement = IDENTIFIER, '=', expression;

"function', IDENTIFIER, '(', parameter_list, ')' +
[":" + type_expression], '{', { function body state

function_declaration

ment }, '}';

function_body statement = statement |
return_statement;

parameter list = [parameter, {',' parameter }];
parameter = IDENTIFIER [, ':', type_expression];
return_statement = 'return’' [, expression];
expression = equality expression;

equality expression = comparison_expression { ("!=" "==") comparison_expres
sion };

comparison_expression = additive expression { (">" | ">=" | "<" | "<=") addi
tive_expression };

additive expression = factor_expression { ("+" |) factor_expression };

factor_expression = unary expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null
| list literal | function_call | "(", expression, ")"

list literal = '[', expression, { ',', expression } ']’;

function_call = IDENTIFIER, '(', argument list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type

_expression, '>']

Teamwork

For our team we had a main developer for each project and a
quality/business analyst. To do this, both of us completed the project as a
developer we than swapped tests and documentation. This verified that we both
learned the material but also worked collaboratively. Occasionally, we also met
up to help debug each other’s code if one of us was needing some help.

Design Pattern

The design pattern we used is Memoization which is a type of caching. It
allows for a function to only run once and stores the result in memory. Therefore,
when it is run again, it returns the cached result instead of running the logic.

CatscriptType getListType (CatscriptType type) {
CatscriptType listType = .get (type)
listType ==) {
1

istType = ListType (type)
.put (type, listType)

listType

Technical Documentation

Catscript Guide

Introduction

Catscript is a simple scripting language written for CSCI 468 (Compilers). Here is an example:

var x = "foo"
print(x)
function bar(y,z):int {

return y+z

}

Features

For Loops

A for loop is used to iterate over a block of code a set number of iterations, typically iterating
over a list of items. In Catscript, for loops require a list of objects to iterate over. Here is an

example:

for (x in [1, 2, 3]) {

print(x)
}

Print Statement

A print statement is used to send output to the terminal. Here is an example:

print("Hello World!")

If Statement

An if statement is used to branch depending on certain criteria. It may be followed by an else if
there is code that needs to be executed if the boolean logic is not true. Here is an example of

both:

var x
if(x 1= 1) {
print("not 1")

} else {
print("is 1")
}

Functions
Functions are used to extract blocks of code that may have a special significance. You may need
to give it inputs, in which case parameters may need to be defined. A function may be written to

do a special computation. If that is the case a return statement may be used as the last

statement in a function to return the value. Here is an example of two functions, one which has

no parameters and returns nothing, and one which computes the square of a number:

function print_hello() {
print("hello")

}

function square(x) : int {
return x*x

}

Types and Operators

Types
The Catscript language supports six different types:
e int-a32bitinteger
® string - a java-style string
® bool - a boolean value
e list - a list of value with the type ‘x’

e null - the null type

object - any type value

These can be seen in the examples below:

an_integer =
a_string = "hello"
a_bool = true
a_list = [1, 2, 3]

another_list<bool> = [true, false, true]
null type
any_type : object = "some_type"

As shown in the last variable declaration, you can declare a variable type explicitly. In this

example, lists are declared

Operators

The Catscript language supports many different types of operations on these types. These

include:
e !=(notequals)
e == (equals equals)

® > (greater than)

e < (lessthan)

e >=(greater than or equal to)

e <= (less than or equal to)

e + (addition and string concatenation)
® - (subtraction and negative)

e /(division)

e * (multiplication)

e not (not operator)

UML Diagram

Catscript Multiplication Sequence Diagram

e —————— — — — — — — — — — — — — — —

e e —— — — — — — — — — — —— — — —

ParseTree

e — e — e — — — — — — —

- - & 3 o
—) 1 |
£ i ¢ i L
2 1
.W M £ " 1
- m m ' "
3 I - Tm.[_:":!
o ’ o al"
; H "
P -——-3-— - —
. § "
- _
=X 1
: v —
(2] M d
3 7
e :
e :
M m
s b J_ -] v ._
=2

Design Trade-offs

The main design trade off when writing the Catscript parser was using recursive decent
instead of a parser creator. Parser creators are normally encouraged when learning how to
create a parser but using recursive decent allows you to learn to program the parser correctly.
Parser creators create code that is hard to understand and debug which is not always the best if
you are still learning. Using recursive decent allowed me to continue to improve my
programming skills and really understand how a complier works.

Software Development Life Cycle

For my capstone project | used test driven development. This is where all requirements
are translated into tests and as you develop you continue to run the tests against the classes
until they all pass. This model made development simple since there was only one main
developer. This development life cycle is one of my favorites because it really enforces the true
requirements as you develop.

