
Capstone Portfolio

Jacob Clostio

Compilers
Carson Gross

Due Date: 5/5/2023

Section 1:
Source code included in portfolio submission.

Section 2 Teamwork:

When working on this project, I took the role of the developer in charge of writing code to ensure

all of the pieces of the compiler were correct, while my team member took the role of the testing

and documentation engineer. The main focus was getting a functional compiler, so that was by

far the most time consuming part, taking up approximately 90% of the time of the project. The

last 10% was the documentation and testing that my team member did for the project. The tests

that they wrote are included here:

@Test

void ifInsideForLoopWithListAndElse() {

assertEquals("Larry (0) Found\nNot Larry (0)\nNot Larry

(0)\n", executeProgram(

"for(x in [0, 5, 25]) { \n" +

"if(x == 0) { \n" +

"print(\"Larry (0) Found\") \n" +

"} else { \n" +

"print(\"Not Larry (0)\") \n" +

"} \n" +

"} \n"

));

}

@Test

void nestedIfsAndFors() {

assertEquals("16\n35\n30\n25\n20\n42\n36\n30\n24\n49\n42\n35\n28\n",

executeProgram(

"function foo() { \n" +

"if (23 >= 23) { \n" +

"for (x in [4,5,6,7]) { \n" +

"if (x == 4) { \n" +

"print(x*x) \n" +

"} else { \n" +

"for (y in [7,6,5,4]) { \n" +

"print(x*y) \n" +

"} \n" +

"} \n" +

"} \n" +

"} \n" +

"} \n" +

"foo()"

));

}

@Test

void functionReturnWithLists() {

assertEquals("[YOU, PASSED, !]\n", executeProgram(

"function foo(x : int) { \n" +

"if(x == 10) { \n" +

"for(y in [1,2,3]) { \n" +

"return [\"YOU\",\"PASSED\",\"!\"] \n" +

"} \n" +

"} \n" +

"} \n" +

"print(foo(10))"

));

}

Overall, due to the nature of this project, and the learning outcome of each person needing to be

responsible for developing their own working compiler, my team member did well in

documenting the code, as well as providing some more high level tests to ensure that the

compiler was working as intended.

Section 3 Design pattern:
Design pattern. Identify one design pattern that was used in your capstone project and describe

exactly where in the code it is located. Highlight the design pattern in yellow. Explain why you

used the pattern and didn’t just code directly.

In our project we used the Memoization design pattern in CatscriptType.java as follows:

private static final Map<CatscriptType, CatscriptType> LIST_TYPES

= new HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

CatscriptType listType = LIST_TYPES.get(type);

if(listType == null) {

listType = new ListType(type);

LIST_TYPES.put(type, listType);

}

return listType;

}

The Memoization design pattern is used to optimize the performance of functions by caching the

results of function calls and returning the cached value when the same inputs occur again. This

helps to avoid repeated computations and improve the overall efficiency of the program. In our

code, the Memoization pattern was implemented by defining a Hashmap of LIST_TYPES. When

we called getListType(CatscriptType type), we checked to see if the list type was already in our

Hashmap. If it was, we returned it. If not, we created a new type, added it to the map, and then

returned it. This improved the performance of the compiler, as we didn’t have to create a new

listType every time, we were able to cache some of them for use later.

Section 4 Catscript Documentation:

Section 5 UML:

Found below is the UML sequence diagram for a For loop statement (that includes a print

statement), in Catscript. We first evaluate the string “for(x in [1, 2]) {print(x)}” in Catscript.

From there Catscript needs to lex the input and return a list of tokens. These tokens are then

parsed in the parser (parsing the for statement, expressions, and the print statement). A parseTree

is returned to Catscript, which then calls execute(), and the parseTree returns the printed numbers

1 and 2 to the user.

Section 6 Design Trade-offs:

In our project, one of the design trade-offs we faced was whether to write a parser by hand or use

a parser generator tool. While using a parser generator tool (such as lex or yacc) could have

saved us time in development and made it easier to add features to the language, it could have

also increased runtime performance as well as give higher complexity of the codebase.

Therefore, we made the decision to write the parser by hand, despite the increased development

time required. This allowed us to have more control over the parsing process (strictly following

the grammar of Catscript) and the option to optimize the code for better performance. By writing

the parser ourselves, we gained a deeper understanding of the more intuitive recursive descent

style algorithm as well as how the Catscript works and how it can be extended in the future. This

trade-off allowed us to create a more flexible parser for the creation of Catscript.

Section 7 Software Development Life Cycle:

The software development life cycle model that we used for our project was Test-driven

Development. Test-driven Development is a software development approach where tests are

written before the actual code, with the goal of ensuring that the code is correct and reliable. This

allowed us to pass tests for each feature of the language and establish that they worked as

intended before moving on to the next feature. It also provided a clear structure for development

and testing, ensuring that our code was always in a working state. However, one potential

drawback of Test-driven Development was that it required a significant amount of time and

effort upfront to write comprehensive tests for each feature. Furthermore, It may be challenging

to write tests for certain types of features, such as those that involve complex user interactions or

higher level interactions. Overall, Test-driven Development was a nice way of breaking up the

project into smaller chunks that were easily quantifiable, as a checkpoint could subsist of a

certain number of tests that needed to pass; this made the whole project more manageable to

code and develop.

