

Catscript Compiler

 Alexander Fischer
Senior Capstone

5/5/2023

—

CSCI 468

—

Mr. Carson Gross

 Catscript Compiler PAGE 2

Introduction

 This project serves as a
demonstration of a compiler
constructed for Montana State
University's proprietary
programming language, Catscript.
The scope of work involved the
creation and implementation of
solutions pertaining to
Tokenization, Parsing, Evaluation,
and Bytecode. Furthermore, a
Testing Engineer was responsible
for assessing the compiler's
performance through a sequence
of customized unit tests.

 Catscript Compiler PAGE 3

Program:

The entire project source code can be found on GitHub:
https://github.com/alex-fisch/csci-468-spring2023-
private/tree/main/src

Teamwork:

 This project was divided into
two separate roles: Software
Engineering and Software
Testing Engineering. The
software Engineer was
responsible for implementing
working solutions for
Tokenization, Parsing,
Evaluation, and Bytecode. The
Testing Engineer created unit
tests to test the compilers
functionality.

 Alexander Fischer
- Software Engineer
- Est. 150 hours

Devan Eastman-Pittman

- Testing Engineer
- Est. 20 hours

 Catscript Compiler PAGE 4

UML sequence
diagram that
describes the
addition function of
the compiler

 Catscript Compiler PAGE 5

Design Pattern
In the Catscript scripting language, the design pattern used is Memoization. It is used
to essentially optimize the getListType method in the CatscriptType class.
Memoization is a pattern that aims to eliminate redundant operations that would cause
a worse time complexity by remembering the results of a function or process. The
getListType method uses a ConcurrentHashMap called LIST_TYPE_CACHE to
store cached ListType objects. When the method is called with a CatscriptType
input, it will first check the cache for a matching ListType object. If the object is not
found, the method creates a new ListType object and stores it in the cache for future
use. Subsequent calls to the method with the same input will return the cached
ListType object, eliminating the need for further computation and improving
runtime speed. By reducing the creation of duplicate objects, this implementation also
reduces memory cost.

This is located in src/main/java/edu.montana.csci.csci468/parser/CatscriptType.java
at line 35-40

Design Trade-offs
There were two main design considerations for this project. The first one involved
choosing either Recursive Descent or a Parser Generator. The second design trade-off
was about balancing the specificity of the separation of concerns with simplicity.
Recursive Descent was ultimately selected for this project because it closely aligns with
the interpretation of the language's grammar. Because of this the project required
longer and more detailed procedures. While designing the codebase for this project, it
was important to carefully consider the various components of an application that is
being designed. One method used to achieve this is called the separation of concerns,
where certain procedures are tightly coupled within the application itself. This provides
modularity and defined scopes for the components to operate within the application.
For this project, however, simplicity and code location were prioritized over the
separation of concerns. The evaluation and compilation procedures were directly
connected to the parse tree nodes, which is typically unusual because these procedures
have different concerns. However, the main goal with this trade-off was to simplify
components within the codebase.

 Catscript Compiler PAGE 6

Custom Unit Tests
The testing engineer wrote a set of custom unit tests for this project. They are listed below.

Section 4 Documentation:

Catscript Language Documentation:

Catscript is a statically typed language based on java and compiled using a JVM and is
designed for the compiler we worked on.

Variable Types:

Catscript supports the following variable types for use:

● int for integers
● string - a java style string
● bool - for boolean values
● list for initiating a list of values
● null for null values
● object to create an instance of an object

To create an instance with a given type you could type, String string_name = “name”;
or var x = 17;. The first is an explicit type declaration for that variable while the latter is
a non explicit one where the type is inferred based on context clues using the var
keyword.

Arithmetic Operations:

In catscript you can perform all basic arithmetic operations in your code.

To use addition you can use the “+” symbol,

For subtraction the “-” symbol,

For multiplication the “*” symbol,

For division the “/” symbol.

Below are a few examples of Arithmetic operations in catscript:

int my_num;

my_num = 1+1;

System.out.println(my_num); //prints out 2

int my_num;

my_num = 1-1;

System.out.println(my_num); //prints out 0

int my_num;

my_num = 3*2;

System.out.println(my_num); //prints out 6

int my_num;

my_num = 8/2;

System.out.println(my_num); //prints out 4

Comparison And Equality Operations:

To compare two pieces of data we have multiple options in catscript, the less than
operator “<”, the greater than operator “>”, the less than or equal operator “<=”, the
greater than or equal operator “>=”, and finally the equals operator “==”. These are
checked from left to right meaning, is the left hand value “comparison operator here” the
right hand value and this will return a bool of true or false.

System.out.println(1<2); //prints true

System.out.println(2<1); //prints false

System.out.println(2<=2); //prints true

System.out.println(3<=2); //prints false

System.out.println(2>1); //prints true

System.out.println(1>2); //prints false

System.out.println(2>=2); //prints true

System.out.println(1>=2); //prints false

System.out.println(1==1); //prints true

System.out.println(1==2); //prints false

Unary Expressions:

You can use the “not” keyword or “-” symbol. Not can be used for getting the opposite of
a bool type variable while - can be used on integer type values.

int a = 8

intr b = -3 print(x * y) //prints -24 correctly instead of 24

var c = false

System.out.println(not c) //prints true

For Loops:

For loops in catscript are used for iteration over a fixed period, either to continually
execute a set of code or to go through a subscriptable data object.

a=[2,4,8];

for(x in a){

System.out.println(x); // prints 2 4 8

}

While Loop:

While loops are used to continually run a set of code while a certain condition is true, if
false the loop ends. While loops are useful when you have a variable amount of times
you wish to run code. You can complete anything a while loop can do with a for loop and
vice versa.

x=0;

while(x<3){

System.out.println(x); // prints 0 1 2

x++;

}

Print Statement:

print_statement = 'print', '(', expression, ')'

The print statement will bring the expression

Functions:

Primary Expressions:

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false"

| "null"| list_literal | function_call | "(", expression, ")"

Primary expressions are the default configuration for expression parsing in a given

 Catscript Compiler PAGE 7

Software Development Lifecycle
The Catscript Compiler project was made through a series of various development
stages. For each category there was a separate java test suite that needed to pass
successfully. This showed that the software system was functional and achieved its
goals. The different test categories that were used are as follows: Tokenization, Parsing,
Evaluation, and lastly Bytecode. Each test suite had to be completed to allow the next
one to pass. This made the project dependent on everything to move on.

