CSCI 468: Compilers

Spring 2023

Camille Custer

Avery Jacobson

CAPSTONE Documentation

Section 1:

See attached zip “source” file

Section 2:

My team member and | shared the workload of our capstone project at approximately and 80-20
ratio. | developed the code for the entirety of the compiler, and my team member wrote
challenging tests that tested the farthest edge-cases and the Catscript documentation of my
progra. By working together to test our code, | can ensure that the CatScript language functions

as it should. The tests are as follows:

compile(

+

xpressionWorksProperly() {

compile(

Section 3:

We used the memoization design pattern in our Catscript compiler. Memoization is a
programming language design that creates a “cache” data structure to store the results of
function calls. If a function is called again and the results have already been cached, the cached
result is returned instead of recomputing the same result. An instance of the memoization
design pattern in our code can be found in CatscriptType.java in the getListType() Method. This
checks if the list is already stored in the “LIST_TYPES” HashMap. If it is not, it will then store it in
the map. If it is, it will reference the list object in the map.

Here is an example of the code:

criptType, Ca

pe getListType(

Section 4:

Catscript Introduction
Catscript is a statically typed functional programming language. It is a simple scripting
language, here is an example:

var x = "foo"

print (x)

Catscript Type System
The Catscript type system consists of 6 different types:

int- a 32 bit integer
- Catscript example:
int position = 0;
string - a java-style string enclosed by quotes
- Catscript example:
String name = “Carson”;
bool - a boolean value either true or false

- Catscript example:

bool isAtEnd = false;
null - the null type
- Catscript example:
int position = 0;

object - any type of value
- Catscript example:
Object arg = args[i];

List Literal

- List literals begin with a left bracket “[* and are followed by an expression. The
expression is followed by 0 or more expressions of the same type. A list can
contain lists.

- Catscript example:

[“cat”]
[s, 8, 7, 6]
List<Object> args = new ArrayList<>();

- In Catscript, lists can be iterated through as follows:

// lists List<Integer>
var 1lst = [1, 2, 3];

// iteration
for(i in 1lst) {
print(i);

Statements

For loops
- In Catscript, for loops are identified with the starting word “for”. Any code inside

the following parentheses is the condition for the loop. The code inside the curly
braces is what is to be iterated over.
- Catscript example:
for (Statement arg : arguments) {
//code to be executed

If Statements

- If statements are identified with the starting word “if’. Any code inside the
parentheses is the condition to be checked. If the condition is true, the code
inside the curly braces will be executed. If it is not true, either the statement will
break or the “else” expression will be executed if it exists.

- Catscript example:

1if(x > 10) {
print (x)

Print Statement
- Print statements are identified with the word “print”. Anything inside the
parentheses is outputted.

- Catscript example:
print (“This is an example”);

Var Statement
- Var statements are used to assign values to variables. The value following the
keyword “var” is used as the identifier for the var statement. The right-hand side
of the equal sign is the assigned value to the identifier.
- Catscript example:
var x = 100;

Function Call Statement
- Function call statements are used to call functions using the identifier for that
function. Function calls can take parameters but they are not required.
- Catscript example:
foo ()
foo (x)
foo(x, y, 2)

Return Statement
- ldentified with the word “return”. If there is nothing following the word, the
function will break and will go to where it was called. If there is something
following the return, then that value is returned to the function where it was
called.
- Catscript example:
return true;
return;
return x;

Expressions

Equality Expression
- Equality expressions consist of a comparison expression followed by either “=="
or“1=" and then another comparison expression. This will return either “true” or

“false”
- Catscript example:
1 ==1 //true
1 !'=1 //false

Comparison Expression

- Comparison expressions in Catscript are used to compare the left-hand and
right-hand sides of the expression. Using operators “<”, “>" “>="_“<="_this
expression will either return “true” or “false”.

- Catscript example:

1 > 2 //false
1 <= 10 // true
Additive Expression

- ldentified by the operators “+” and “-”, additive expressions are used to add or
subtract two values together or concatenate two string values. String values can
not be concatenated with the “-” operator.

- Catscript example:

a=5+5//a=10

x =10 -5 //x =5

String name = “Cat” + “script” //name = Catscript
Factor Expression

- ldentified by operators “*” and “/”, factor expressions are used to multiply or
divide the left-hand and right-hand sides of the expression.

- Catscript example:

int x = 4 * 3 //x
int y=x/2//y
Unary Expression

- Unary expressions are identified with a minus sign
are used to negate values of type boolean or integer.

- Catscript example:

not true //false

sk

12
6

and the word “not”. They

-(-8) //positive 8

Primary Expression
- A primary expression can be any one of the following:
- Identifier, string, integer, boolean, null, list literal, function call, or parenthesized
expression

- Catscript example:
(2 4+ 2)
false
null
7

Section 5:

The following sequence Diagram shows the process of the CatScript Parser when compiling
(3*5). You can see how the Parser tokenizes, lexes, parses, and compiles the statement.

Catscript Factor Sequence Diagram

User CatScript Lexer Parser ParseTree
! — | I I
evaluate ("3* 5") o	
=	
	I
A1	
parse(tokens) o	
T Ll	
: : parseExpression() :	
	parseFactorExpression()
: : parselntegerLiteral() :	
Tre	

parseTree
I - ------- r--—---- T
I

: : execute()
| [| g
I I ||.1 5|l
| ‘- ------ T~~~ —- 2 il
| nqgn

15
R —

Section 6:

The Catscript language relies on Recursive Descent Parsing. Recursive Descent parsers are fairly
easy to implement and debug. This method of parsing works well for Catscript, but often run
slowly compared to other parser generators when paired with large or complex grammars. We
could of implemented a parser generator instead which would greatly improve parsing
performance, but in turn are rather complex to implement and leave the developer with less
control over the parsing process.

Section 7:

The software development lifecycle model that we used is the Test Driven Development model.
This method is a Linear sequential model that is broken down into tests that make up stages.
Each test within the stage is completed before moving onto the next stage. In our Catscript

Parser these stages were as follows: Tokenization, Expression Parsing, Statement Parsing,
Evaluation testing, and Compilation.

These stages were verified using testing functions that ensured our algorithm worked properly.
This model helped my team as we were unable to move forward without completely polishing
the aspects of the compiler that would become dependent as we advanced onwards. This
hindered our progress as well, since we may of not been able to directly take what we learned

from lecture and put it into our code, as we were still working on tests that were weeks behind
what was being covered in lecture.

