Capstone.md

Compilers: Capstone Portfolio
Alex Krings & Nic Ceccanti
CSCl 468: Carson Gross
May 5, 2023

CSCl 468

1/11

5/5/2023

Capstone.md 5/5/2023

Section 1: Program

The goal of the capstone was to learn how to implement a compiler for a progamiming language called
CatScript. Throughout this project | learned how to traverse the grammar of a programming language to
scan tokens, parse the tokens using recursive descent, and then generate Java Bytecode from the parse
tree. This project was developed using Java, and a zip file of the source code has been attached to the
submission alongside this portfolio.

Section 2: Teamwork

The teamwork portion of this project was split into two groups: primary engineer (team member one) and
the documentation/testing engineer (team member two). Team member one spent the majority of the time
on the project and was tasked with building the compiler.

Team member two created intensive test cases and created a CatScript guide to satisfy the requirements
for section 4. Below are the tests generated by team member two which are also located in the following
directory [src/test/java/edu.montana.csci.csci468/capstone/CapstoneTest.java.

@Test
void voidFunctionWithForLoop() {

assertEquals("1\n2\n3\n4\n5\n",

executeProgram("function foo() {" +
"for (x in [1,2,3,4,5]1) {" +
"print(x)" +
“}Fh\n" +
"foo()"

));

@Test
void voidForLoopWithPrintingComparsionExpression() {
assertEquals("false\nfalse\nfalse\ntrue\ntrue\n",
executeProgram("for(x in [1,2,3,4,5]) {" +
"print(x > 3)" +
II}II
155

@Test
void voidPrintMaxFunction() {
assertEquals('"926\n",
executeProgram("var max = 0\n" +
"for (x in [926,2,93,432,564]1) {\n" +
" if(max < x) {\n" +
max = x\n" +
" n\n" +
"I\n" +

2/11

Capstone.md 5/5/2023

"print(max)\n"

The first test created ensured that the for loop iteration was correct and that the iterator value was storing
the correct value.

The second test created help check that a statement with a conditional was able to work with an
iterator value.

The final test was another loop test with an 1 T statement on the inside.

All of these helped better test our software to make sure that it was running correctly.

Section 3: Design pattern

One design pattern that was used for this project was Memoization. This is located in
src/mainfjava/parser/CatScriptType starting at line 39 and ending on line 47. For convenience, the code is
also attached below.

private static final Map<CatscriptType, CatscriptType> LIST_TYPE = new
HashMap<>();
public static CatscriptType getListType(CatscriptType type) {
CatscriptType listType = LIST_TYPE.get(type);
if(listType !'= null){
listType = new ListType(type);
LIST_TYPE.put(type, listType);
b
return new ListType(type);

What the above code does is store the initial type from when it was first called, so it doesn't have to
reinitialize the type. This saves computational time, as you don't have to create and initialize a type every
single time. Which is essentially just cacheing.

Section 4;

Catscript Guide

This document is a guide on how the Catscript language works. This is intended to satisfy section 4 of the
Catscript portfolio.

Introduction

3/11

Capstone.md 5/5/2023

Catscript is a simple scripting language. Here is an example of a function that prints out all the values in a
list:

function foo() {
for (x in [1,2,3,4,5]1) {
print(x)
}

foo() // 12345

Features
Comments

Catscript supports commenting in code. Catscript comments can be specified by using / /. All text after the
will be included in the comment until the end of line.

// This is a comment
print("hello world") // This is also a comment.

Catscript Types
CatScript is statically typed, with a small type system as follows:

e int - a 32 bit integer

¢ string - a java-style string

¢ bool - a boolean value

e list - a list of value with the type 'x'
e null - the null type

e object - any type of value

Catscript has types similar to those of other languages. Integers are 32-bit and are specified using the

keyword. Strings are similar to that of a Java string and are specified using the keyword. String
values are specified by encapsulating the string value in double quotes. Booleans are true and false values,
specified by the keyword. Boolean values in Catscript are specified by using or
keywords. The type is much like that of the Object type in Java. The type can be specified
by using the keyword. Values of any type can be assigned to the type. A variable of type

may not be explicitly declared as but may be assigned implicitly as such,

. The only value that can be assigned to a variable of type null is , ho other variable

types can be assigned to a variable of type . Additionally, the value be implicitly changed the
string value of when printed or concatenated.

Catscript variables are statically typed, meaning after initialization values of a different type from a variable
cannot be assigned to it. There are two exceptions to this rule however, the type can be assigned
the value of any type. Secondly, the value may be assigned to a variable of any type.

4/11

Capstone.md 5/5/2023

var X int =0

var y : bool = true

var z : object = false

var a = null

var b string = "hello world"

Catscript Lists

One of the unique types in Catscript are lists. A list can be of the type of any other type. Lists in Catscript
are immutable. Once declared, they cannot be modified. However, lists of the same type are covariant. A list
can be assigned to another list, if the type of list being assigned is assignable to the type of the list being
assigned to. Nested lists are supported and there are no limits on the dimensionality of list, as long as
values in the lists follow the assignability rules of the type of the list. Lists can have a type explicitly

assigned by using : followed by the keyword . Next, after , the specified type of list surrounded
by <> such as . Alist of type is able to hold values of all different types at the same
time.

x : list<int> = [1,2,3]
y : list<object> = [[1, "foo0"], [null, true]l]
z = [1,[2,3]]

Print Statement

The print statement in Catscript, will print out a specified value to the terminal. The print statement is
specified by using the keyword, followed by parentheses where the desired expression to be printed
is contained. Any valid expression can be put inside parentheses of the print statement. The evaluated value
of the expression within the parentheses will print to the terminal.

print(“Hello World”) // Prints hello world

Variable and Assignment Statement

The variable statement in Catscript assigns some value to a name. This is done by specifying the
keyword, then the name of the variable. Optionally, you can explicitly specify the type of the variable by
placing a : then the Catscript type expression. This will enforce the type of the variable. If the type is not
specified, the Catscript Parser will automatically assign a variable type to it implicitly. Next specify a single
equal sign then the expression or value of the desired value to be assigned to the variable.

var string = “Hello world”
var num : int =1

5/11

Capstone.md 5/5/2023

Comparison Expression

Catscript comparison expressions compare two integer values that evaluate to a boolean value based on
the outcome of the expression. Catscript uses the common symbols for comparisons. greater or equal,
greater, less than or equal, and < less than.

var x =1 >1
var y 1>=1
var z 1 <=1
var a =1<1

Equality Expression

Catscript equality expressions evaluate whether two values of any type are equal or not equal. Catscript
supports the commonly used comparison equals == and comparison not equal symbols. Equality
expressions evaluate to a boolean value.

if(x == 1) {
print("foo") // If x equals 1 print foo

if(x '=1) {
print("fee") // If x does not equal 1 print fee

Additive and Factor Expressions
Catscript supports the basic addition, subtraction, multiplication and division expressions.

For divisional operations, the resulting value will only evaluate to an integer, any decimal place or remainder
will be dropped from the value. For example will print out the value 1. Catscript does not
support floating point values.

var x =1+ 1
var y 1-1
var z 1 x1
vara=1/1
Concatenation
Catscript supports the concatenation of , and types together to produce a string, much

like that of the Java language. By using the + operator between values or variables, their string values will
be concatenated. Concatenation is implicitly specified by checking if one of the values in the expression is
of a type. types will take the string form of its value. For example 1 becomes . The null
value can also be used in concatenation, the value will convert to the string value of

6/11

Capstone.md 5/5/2023

print("a" + 1) // "al"
print(null + "foo") // "nullfoo"

Unary Expressions

Catscript supports two unary expressions. The keyword is the equivalent to the logical NOT operator.
The keyword flips the Boolean value given in the expression. can only be used with Boolean values.
Secondly, the — can be used as a unary operator to specify a negative integer value. The — operator can be
put in front of an value to make an value negative.

if(not x) {
print("foo") // If x is false print

print(-1) // Prints -1

Parentheses

Catscript supports the surrounding of any expression in parentheses. One might surround an expression in
parentheses to give precedence to a specific part of an expression so that it is executed first in its
evaluation. The more nested an expression is in parentheses, the high it's priority in the evaluation,

print((1 + 2) % 3) // Prints 9

For Loop

The for loop in Catscript only supports iterating over lists. The for loop is initiated by using the keyword
followed by a set of parentheses. Inside the parentheses you specify the iterator variable and the list to be
iterated over. The iterator variable and the list to be iterated over is separated by the keyword in. The
iterator variable, in the example x, takes the value from the list that the iterator is currently on. For each
iteration, the code within the curly brackets will be executed until the iterator reaches the end of the list.
The iterator variable is only visible in the scope of the for loop body. For loops can only iterate over lists,
iteration given a conditional statement or counter is not supported.

for (x in [1,2,3]) { // Prints 1 2 3
print(x)
¥

If Statement

To initiate an if statement in Catscript use the 1T keyword, followed by a conditional expression
encapsulated by parentheses. Next, within a set of curly braces, specify code instructions to be executed if

7/11

Capstone.md 5/5/2023

the conditional statement evaluates to true. Next, optionally you can specify an else statement by using the
keyword , followed by code specified within a set of curly braces. The code following the else
statement will execute if the conditional expression evaluates to false. If no is specified and the
conditional expression is false, code specified in the curly braces will be skipped and execution of code will
continue after the if statement body. Catscript if statements only support if and else conventions, else if or
elif style statements are not supported. However, any number of nested statements, including the if-else
statements are supported within if and else statement bodies.

if (x>2) {
print(“foo”) // If x is greater than 2 print foo
} else {
print(“fee”) // If x is less than or equal to 2 print fee

b
if(x == -1) {

print("faa") // if x equals -1 print "faa"
b

Function Calls and Definitions

Catscript functions allow for defining and invoking of subprograms. To define a function, first use the

key word followed by a function name. Follow this with a set of parentheses, within these
parentheses specify the arguments of the subprogram. Each of the arguments will be specified by a
variable name followed by an optional type expression. The specified type and its associated identifier will
be separated by a :, similar to that of the variable statement. Each of the arguments will be separated by a

. Functions can have none to many arguments. A return type is specified by a : after the set of

parentheses surrounding the arguments, then the type expression. To return a value from a function a
return type must be specified. If the function is void, or does not return any value, do not specify a return
type. If the function has a return type specified the function must have a return statement. Additionally, if
there are possible changes in control flow of a function, every single branch of the control flow must end on
a return statement. For example if there is an if-else statement, and there is a return statement in the if
statement body, there must also be a return statement in the else body or another return statement after
the if-else statement. A return statement can be specified by using the keyword followed by some
expression, but only if a return type is specified. Void function do not need to use return statements. In a
void function, a function with no specified return type, can optionally be terminated by using the return
statement with no associated value or expression. Additionally, if the function is void then return statements
are not required in all branches of the control flow. Return statements in void functions can be used in some
branches of the control and not others. There is no requirement for all branches have to have return
statements in all possible branches in void functions.

The function call invokes the code in the function definition. The function call is the name of the function

followed by a set of parentheses. Any input arguments needed for the functions are specified in the same
sequential order as the function definition, separated by , within the parentheses. You must have an input
parameter for each argument specified in the function definition and correct variable type if it is specified.

8/11

Capstone.md 5/5/2023

function foo() {
print(“hello world”)
}

foo() // Prints hello world
function helloWorld(x, y) : string { // Concatenates the variables x and vy

and returns the value
return x + vy

}
function add(a, b) : int {
if (a < 0) {
return 0
} else {

return a + b
}
}

print(add(-1, 5)) // Prints 0

var x = helloWorld('"hello ", s)
print(x) // Prints hello world

// This function will not do anything
function foo() {

var x = 3

if(x == 2) {
return

}

print("foo")

Section 5: UML

Below is a sequence diagram of a high-level overview of a compiler.

| would like to note that in order to conserve some vertical space, | grouped the parser elements into the
main groupings. In reality, they would all be on their own.

9/11

Capstone.md

avaluata [

forwin [1, 2. 0. 3K

|

|

|

| i{x 1= G
| prirt{x)
|

|

|

¥
¥

e

lex ("
forxin [1, 2,0, 3K
iffx =0}
prirtixy

}
¥

5/5/2023

Catscript For Loop Sequence Diagram

-

tokensifor =, in [, 1,2, 3,].
L =0,)4 pont,)

L J

persaStatement]). parseForStatameant]). parseExprassiond), parsePrimary Exprassian).
parsaListLiteral(), parsaExpression(), parsePrimaryExpression(), parselmegerLiteral()

persaStatement]). parseliStatemant(), parseExpression(), ParsaEqualitySxpression()

persaStatemnent|). parsePrintStatement{), parseExprassion(). parsePrimaryExprassion().
parsaintegarLiteral

| FarsaeTres | | BytaCode |

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
M |
|

|

auacUte()

Y

..'.}: ________________ =
parse(tokens) : -
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arseTres |
oo PR R T
|
|
T
|
|
|
|
|
|
|
|
|
e |======-

compila{)

Section 6: Design trade-offs

The biggest design trade off for this project was that we created a parser by hand, rather than using a

parser generator. There are numerous pros for doing and creating the parser by hand. The biggest one

being | was able to learn more about compilers and parsers by doing it this way. Another pro for creating the

parser by hand is being able to debug it. After looking at what an auto-generated parser and tokenizer

looked like our tokenizer was far smaller and easier to read. The auto generated parser was smaller, but still

unreadable.

The cons of handwriting the parser is that it takes a lot longer. The auto generated one creates it very fast

and accurate. And if you like the

that.

, then the auto generated ones are more geared for

Section 7: Software development life cycle model

10/11

Capstone.md 5/5/2023

The life cycle model that was used to complete this project was Test Driven Development (TDD). This

model is where there are software requirements which are then used to create tests before the project has

been fully developed. At the start of the project, there was a test suite given. Within that suite there were

sub-folders of tests that accompanied aspects of a compiler, such as tests for the
, and the

1 1

TDD helped our project immensely for a couple of different reasons. The first one being, it gave us a great
cornerstone to kick off from and start building our compiler. Another reason TDD was helpful was we could
see what our final result was supposed to look like. That helped with debugging and seeing what we were

doing wrong.

11/11

