F5

Project Proposal

GraphQL in Enterprise Architecture

Updated May 1st, 2023

Colin Schutte
Gregory Hill
Riley Williams

F5 Mentors:
Maxwell Wynter
Rajesh Narayanan

Page 1

TABLE OF CONTENTS

INTRODUCGTION..t s s s s s s s s s s s s e nanns 3
BACKGROUND.......cieiiiiiicr s s s s s s s s s s s s s s s nr e n s arananas 4
WORK SCHEDULE.........ciiiiiiiiiirr s s s s s s s s s s e e e e nnns 12
PROPOSAL STATEMENT ... e e 15
4.1. Functional Requirements...........coiiiiiiiiii e 15
4.2. Non-functional Requirements............coooiiiiiiiiiii e, 17
4.3. Performance Requirements...........ccoiiiiiiiiiiii i 17
4.4. Interface Requirements..........oooiiiiiiiii 18
4.5. Development Standard. ..o 18
4.6. Architectural Design DOCUMENtS.........ccoviuiiiiiiii e 19
4.7. Design TradeoffS.c.oiiiiii 25
EXPECTED RESULTS..... ..o s s s s s s 27
QUALIFICATIONS. ... s s s e s s s e e s s r s s s s nass 28
REFERENCES........ o 31
APPENDIX... o s s a e 32

Page 2

1. INTRODUCTION

The ability to defend against bots is an important and key issue threatening many
companies today, as it has become a persistent and dangerous threat to the security of
many companies’ servers and services. According to www.signalsciences.com, bot
attacks include any automated web request with a fraudulent goal involved and can
have a negative impact on everything from websites, applications, and APlIs to the
end-users. Over time, these bot attacks have transformed from small spamming
operations into complex, multinational criminal infrastructures (1). This is becoming
ever more important as Al technologies are becoming exponentially better.

TMS is a test management suite offered by F5 that provides a customer with the ability
to test endpoints or clients of their own systems and see if they are human or bots. In
this project, we will be working with a group of mentors from F5 to evolve their product
in a positive way through the migration of databases and the integration of a GraphQL
API.

The overarching goal of this project has been to investigate GraphQL architectures vs.
RESTful architectures. The TMS system that we are working in has a 3-tiered
architecture where the Ul communicates with a REST API in order to retrieve the data
from the tabular database. This architecture is traditional and very popular but has some
issues that we want to solve through an exploration of GraphQl and the evolution of the
system to a GraphQL architecture.

In order to reach this goal, we will need to migrate data from the current database used
by the TMS stack to a graph database and then create and integrate a GraphQL API
that will query this graph database. The reasons as to why this needs to happen start
with the problems faced while using their current database. To begin, they face a “JSON
blob problem” which stems from the tabular nature of the database. In the tabular SQL
database used, there is data stored as JSON(JavaScript Object Notation) objects which
are extremely expensive to parse and handle due to them being in the form of trees and
graphical in nature. These objects store important data gathered from the issuing of
tests for consumers and can be used by F5 and their consumers to improve their
products and security. Using JSON is a popular and efficient format to transfer data
between servers and web applications and is heavily used throughout the web space
today, so there is great importance in keeping these blobs in their proper format and
using them to their full potential. Migrating these JSON blobs to a directed graph
database will allow for more efficient, less expensive parsing, sending, and receiving,
and allows this data to have the directed relationships of which it was intended.

Page 3

An example of one of these JSON objects is one that stores a test and the data about
the test such as its test version. Right now, TMS doesn’t store this data so that it can be
used effectively. If a user wanted to see the transformations of a test from version to
version, they wouldn’t be able to as it is stored in a JSON object. If we were to move
this data to a graph database, we could store each test and quickly query for different
versions of tests and see the modifications.

Along with solving this issue with JSON objects, migrating this data to a graph database
will also solve problems that developers face when trying to add functionality to this
system. Due to the nature of this data being graphical, it makes it easier for developers
when trying to add functionality. An example of an added functionality could be the
ability of uploading whole programs. Programs are also graphical in nature and F5 plans
on taking advantage of this with the ability to parse these programs to improve their
services. This functionality could be used to parse programs such as the policies that F5
uses as tests and instead of having to parse these programs in the tabular database,
they will already be parsed and ready to be queried.

To conclude, integration of a graph database to TMS would not only solve the JSON
blob problem, but also allow the F5 team to add functionality to this system in a way that
would not be possible if the data were still in the current tabular format. It has become
ever so important to make improvements on a system that provides clients with defense
against bot attacks, and the migration to a graph database will ensure this.

2. BACKGROUND

Our project includes many different aspects, and because of this a wide variety of
background knowledge is required. Our project is best understood from the beginning
and working forward. That is, starting with JSON objects and working forward to the
overall structure of the project, using GraphQL and Neo4j to create and handle a graph
database.

Javascript Object Notation (JSON)

An understanding of JSON objects and how to model them will be crucial at the
beginning of the project when generating our GraphQL schema. JSON is an open
standard file format used to contain and transfer human readable data using key-value
pairs. An example of a simple JSON object that stores information about a pet cat would
look like this:

Page 4

This JSON object contains simple key-value pairs and shows that the values can be of
any type, including another JSON object. The first key-value pair has the key “name”
and is followed by a colon and then the value “Baloo” to represent the name of a pet
cat. In this case, the value of the key is stored as a String. The second key-value pair,
representing the cat's age, has the key “age” and is followed by the value 10 illustrating
that the type of value to be stored is an int. The last key-value pair has the key “owner”
followed by the value of another JSON object, which contains simple information about
the owner.

The object above illustrates the human readability of the JSON format. It is easy to
discern the characteristics and meaning of the cat object.

A more exact standard of JSON can be found at ECMA-404 (2).

JSON — GraphQL Schema

Once an understanding of JSON objects has been obtained, it is important to be able to
abstract the objects to a schema, or a representational model, of the JSON object. That
is, given a specific case of a JSON object, create a model that could be used to
represent any JSON object of a similar type. This abstraction will be used for other tools
which will be explained further on. From our cat example above, instead of a concrete
JSON object representing a specific cat named Baloo we would create an abstraction
that would be able to model any pet cat. A schema that models a pet cat would look
like:

type Cat {

Page 5

name: String!
age: Int
species: String
owner: []!

type Owner {
name: String!
age: Int

The schema has many similarities to the example JSON object. Instead of concrete
values like we saw in the JSON object, the schema contains the type of value expected
for that key. An important difference from the JSON example is that we need a
representation of Owner as well as Cat. Without the definition type for Owner, the owner
field in cat wouldn’t have a valid data type.

Another important feature of schemas is the ability to make fields required, or
non-nullable, when creating types. An example can be seen in both the Cat and Owner
types for the name field, where the return type is String!. The exclamation point at the
end of String means that the name field can not be empty, there must be a string there.
Another more in depth example is the owner field in Cat. Here the return type is
[Owner!]!, which represents a non-null list of non-null Owner elements.

Below is an illuminating example of how this works with a String array:

exampleField: [

exampleFieldl: null Valid

exampleField2: [] Valid
exampleField3: [a, null, c]Invalid
exampleField4: [a, b, c] Valid

Above examples 1, 2, and 4 are all valid forms of exampleField as they fulfill the
requirements of having no null elements in the string array. It might seem like example 1
wouldn’t be a valid example, but because the array is allowed to be null it doesn’t
invalidate the required type for the field.

exampleField: []!

Page 6

exampleFieldl: null Invalid
exampleField2: [] Valid

exampleField3: [a, null, c]Valid
exampleField4: [a, b, c] Valid

In this example 2, 3, and 4 are all valid types. Example 1 is not valid because
exampleField must have a non-null list as a return type, even if it doesn’t require the
elements of the list to exist.

If we now consider the owner field of the example Cat type we can see that only
examples 2 and 4 would fulfill the requirements because the list is not null, and the
elements in the list are not null.

In contrast the age field of cat can return null because it does not have an “I” after Int.
This is to represent a situation where the cat's age is unknown. A more comprehensive
schema might include an Age type in addition to Cat and Owner to accurately represent
an unknown age.

GraphQL Schema — Neo4j Node (GraphQL OGM and typeORM)

Now that we have schemas to work with, we can begin to use them along with GraphQL
and typeORM to take data from the relational database and store it as nodes in the
graph database. TypeORM is an open source ORM (object-relational mapping) made
for typescript projects that we used to pull data from a SQL database and map itto a
desired object. We started by creating these objects for all of the entities in the MySQL
database where we also add all of the entity-relationships as well. We then use the
typeORM API to pull the data from the database where we will then map it to a node
that will be inserted into the graph database. To do this, we will use the OGM that is
generated by GraphQL based off of the schemas we made. An OGM is an object-graph
mapper that we use to map the data we pull from the MySQL database to the nodes
that will be inserted into the graph database. For our graph database we will be using
Neo4j, an enterprise-strength graph database (5). There are two major parts of a Neo4j
graph database, nodes, and relationships.

In Neo4j graph databases nodes are entities that can have labels and properties. Labels
are tags that can be applied to nodes to help represent the node's role in the graph

Page 7

domain. Node properties are very similar to fields in a schema in that they are key value
pairs that store information about the node.

In Neo4j, relationships represent the edges of the graph. These relationships always
have a start node, an end node, a direction, and a type. Like nodes, relationships can
also have zero, one, or many properties.

If we consider the pet cat example from above, an intuitive graph can be gleaned from
the schema. The Cat and Owner types would be the nodes, each holding properties that
relate cleanly from the schema. The Cat node would have the properties name, age,
and species. The Owner node would have the properties name and age. Ownership
would be the relationship connecting the Cat and Owner nodes.

There are a few different options we could choose when implementing the relationship
between cat and owner. First, it could point from Owner to Cat and be named OWNES.
Second, it could be reversed, pointing from Cat to Owner, and be named OWNEDBY.
Finally, because Neo4j's implementation allows nodes to have any number of
relationships without sacrificing performance, we could choose to incorporate both
previous implementations and have two relationships model ownership. Our small
example graph would look like this:

Age 10

Species Main Coon Mix

Neo4j provides a more indepth graph database example. It models the relationships
around movies.

Page 8

Here is an example of an actor node and the fields it contains:

Page 9

N neo4j@bolt:/localhost:7687/neodj - Neodj Browser

File Edit View Window Help Developer

g@) Database Information neosj$

Use database

neodj) neo4j$ MATCH (n) RETURN n LIMIT 25

Node labels Egi Node properties ©
2

<id> 1

Relationship types born 1964

name Keanu Reeves

Property keys

born name rating released

roles summary tagline title

Connected as

Username: neodj
B - dmi 24

Followed by the ACTED _IN relationship with associated properties:

N neo4j@bolt//localhost:7687/neo4j - Neodj Browser

File Edit View Window Help Developer

g@) Database Information

Use database

neo4j$ MATCH (n) RETURN n LIMIT 25

Node labels Relationship properties © .

<id> 8
Relationship types roles [Neo]

Property keys

born name rating released

roles summary tagline title

Connected as

Usemame: neo4j
Roles: admi

Page 10

And finally, a Movie node with associated properties:

N neo4j@bolt:/localhost:7687/neodj - Neodj Browser - O X

File Edit View Window Help Developer

@ Database Information neo4j$

Use database

neodj neo4j$ MATCH (n) RETURN n LIMIT 25

Node labels Node properties ©

o & @ —
. X <id>]
Relationship types released 2003
tagline Free your mind
title The Matrix Reloaded

©
o
o
o

Property keys

born name rating released

roles summary tagline title

Connected as

Usemame: neo4j
Roloc._admin PLURIIC

Although Neo4j has its own robust query language, our project will utilize GraphQL.
GraphQL is a query language for both APIs and also a server side runtime. GraphQL
will be utilized to complete all CRUD operations required for a graph database.
GraphQL does this with two operations, Query and Mutate.

Query handles the Read operations of CRUD by allowing the user to write queries that
return data in a JSON format. A query for our pet cat example would look like:

query GetCat($
{
name
age
species

{

name

Here, query lets GraphQL know the type of operation while GetCat specifies what type
of query is being asked for. The query is using GetCat which asks for a name to identify

Page 11

which cat node we would like returned. Then in the Cat block we ask GraphQL to return
the specific name, age, species, and owner fields for a cat with the name Baloo.
Additionally, in the owner field we ask GraphQL to return information about the owner,
their name. This very simple example shows the basics of GraphQL queries, but there
are much more powerful tools to use as well. They can be found on the GraphQL
website (3).

Mutations are similar to queries in execution. They have required fields, and return
fields based on the user's request. However mutations are different in a very important
way, they allow users to change data. This allows mutations to handle the Creat,
Update, and Delete operations of CRUD. A Simple mutation for our pet cat example
would look like:

mutation CreateCat($: 1, % : Int, $
$: Owner!) {

createCat(: $name, : $age, : $species,
$owner) {

name
age
species
Owner

Like the query call before, this call starts with mutation to denote what type of operation
it will be. That is followed by the name of the mutation, which lists all the parameters
passed in along with the types required for them. This is passed to createCat which
uses the parameters to create a new cat. createCat also returns the new cat's name,
age, species, and owner as defined in the mutation call. In addition to scalars like in the
example above, you can also pass a mutation as an input object type. This is a special
object that can be passed as an argument.

Another important difference between queries and mutations is how they execute.
Queries are done in parallel, while mutations run in series to avoid possible race
conditions.

Here is a concrete example of GraphQL connecting to a simple RestAPI with both a
query and a mutation:

Documentation Operation N v G v Response v = [

Root > Query query Query { 500 1
cards { "data": {

Query & 3 FEI) "cards": [
price I
set "name": "Lig

3. WORK SCHEDULE

Our work schedule began with the start of the spring semester. We did two week sprints
to meet our milestone goals. Each two week sprint was split into week-long segments.
The first week of each sprint had a planning day, and then coding and working on the
milestone. The second week was dedicated to reviewing progress and fixing bugs. We
met each morning of the week with our technical mentor, Max, to discuss all we did the
day before and what our plan was for the next day.

Below is a timeline for our initial four milestones. Unfortunately, due to the fact that we
were working on an internal system and it was the first time F5 has done a project like
this with students, we weren’t able to get access to the system until we received

company laptops and were onboarded as interns. This finally happened on May 12th.

Sprint 1 - Schemas

Implementation

translations for
JSON data to be
used in data
migration

Section Task Name Start Date End Date
Full Sprint Create schemas March 12th, 2023 March 26th, 2023
Planning/ Write schema March 12th, 2023 March 19th, 2023

Debug/Review

Review and critique
JSON schema

March 19th, 2023

March 26th, 2023

The first sprint was focused on writing all the schema required for the data migration
from the current relational database to the graph database. We split up the schema
generation evenly between us three, with each person writing 10+ schemas and

reviewing the ones written by the others.

Page 13

Sprint 2 - Data Migration

Implementation

extract JSON data
from relational

database and insert

into graph database

Section Task Name Start Date End Date

Full Sprint Implement Data March 26th, 2023 April 21st, 2023
Migration

Planning/ Write program to March 26th, 2023 April 4th, 2023

Debug/Review

Review data
migration program
and fix bugs

April 4th, 2023

April 21st, 2023

The second sprint involved writing different functions that would preprocess the data we
pulled out of the neo4j database, add a MD5 fingerprint hash to the data, as well as
doing the same for any child nodes that these nodes had. We split up the writing of
these functions evenly between the three of us. Due to not having access to the
database until April 21st, we weren’t able to test any of these functions until this past

week.

Sprint 3/4 - Updating Backend/Frontend Logic
Section Task Name Start Date End Date
Full Sprint Update TMS to April 21st, 2023 May 21st, 2023

point to the graph
database
Planning/ Update code in April 21st, 2023 May 12th, 2023
Implementation TMS to use new
GraphQL service
Debug/Review Review TMS May 12th, 2023 May 21st, 2023
changes and debug

As a result of losing a month due to onboarding, we have not been able to complete all
of the goals that we have wanted to in the time that we have had. We plan on working
until the end of May so that we can finish this project in its entirety and then present it to
F5 at their tech day in May.

Page 14

The third and fourth sprints are extended as the majority of the testing and debugging
will take place in this sprint. In the third sprint, will be updating the logic for existing
services to integrate with the new graph database. In the fourth sprint, we will focus on
updating the backend and updating the front end, however some overlap is expected in
these sprints.

Because the nature of diving into a new code base comes with required learning and
familiarizing, we expect this sprint to require the most effort. As this is a relatively novel
experience, when compared to college projects which are mostly ground up
development, it should also prove to be excellent practice for real world development.

4. PROPOSAL STATEMENT

The crux of this project focuses on migration of both data and policies using GraphQL to
make querying and mutating data easier, faster, and more reliable. Initially, we will be
migrating JSON data from a relational database to a graphical Neo4j database using a
migration script. Then, we will be modifying both the front end and back end of TMS to
use a GraphQL API to manage data in both databases. This includes the migration of
specified policies to function within the GraphQL API. Both of these steps will be split
into four sprints.

The first step will be split into two separate sprints, the first covering writing schemas to
be utilized by GraphQL to migrate JSON objects. The second sprint will be writing a
migration script utilizing GraphQL to complete the migration of data from the TMS
database to the Neo4j database.

The second step will also be split into two sprints, the first sprint will cover updating
backend logic to first point TMS to the graphical database, then slowly migrate code in
TMS to utilize GraphQL as an API gateway to both servers. The second sprint will
update the frontend logic to now point to the GraphQL API allowing calls to be made
directly to the GraphQL service, while some will still have to continue through to TMS.

These changes should improve the functionality of TMS in a few important ways. TMS’s
performance at runtime should be vastly improved because the relational database will
no longer house duplicate data. Additionally, the JSON data that was stored in a
relational database will now be stored in a more natural and efficient format in the Neo4j

Page 15

graph database. Furthermore, utilizing a GraphQL API allows for user friendly database
management. Queries are written in a format very similar to JSON which means they
are easily understandable for the developer.

4.1. Functional Requirements

Functional Type of

Requirement Source Functional Requirement Description

1. Migration of | JSON Data e GraphQL schemas shall be defined for each JSON
Data and blob from the TMS connected database

Code Base
e JSON blobs from the TMS connected database shall

be parsed into the Neo4j database based on the
defined schemas using a migration script

Policies e GraphQL schemas shall be defined for policies
defining types, functionality, and data accessed as
needed

e Policies shall be uploaded to the Neo4j databases as

needed
2. Data JSON Data ¢ When data is transferred, the data shall be confirmed
Preservation correct through ability to compare the data from the

Neo4j database to the TMS connected database to
prevent data loss

3. Query JSON Data ¢ The GraphQL API shall allow data to be queried from
the Neo4j database

Policies e The GraphQL API shall allow specific policies to be
queried from the Neo4j database

e When policies are queried they shall be distinguished
by the logic performed and what data is used

4. Mutation JSON Data | The GraphQL API shall allow mutation of data from
the Neo4j database including a recording of version
history of such changes

e The GraphQL API mutation shall only affect the node
of the graph that has been edited

Policies e The GraphQL API shall allow mutation of policies
including a recording of version history of such

Page 16

changes

e When making mutations the GraphQL API shall only
change the node of the policy being changed

e The GraphQL API shall allow policies to be directly
uploaded to the Neo4j database

5. Source Policies e The GraphQL API shall allow policies to be directly
Code downloaded as source code

4.2. Non-functional Requirements

Non-Functio
nal Functional Requirement Description
Requirement

1. Caching e How much memory to be cached and how often to clear the
cache shall be defined

e Caching limits shall be defined as the point when the memory
used starts to hinder the operating system

2. RAM e A certain amount of RAM shall be required to satisfy caching
requirements

3. CPU e A minimum CPU of the system shall be required to reasonably
handle service computation in a timely manner

4. Storage e A minimum amount of disk space shall be required to satisfy the
GraphQL API and Neo4j database

e If a larger memory capacity is required than is common on most
systems (8 - 16 GBs) a solid state drive shall be required to
satisfy caching requirements

Page 17

4.3. Performance Requirements

The GraphQL API, TMS API, and the Neo4j database are intended to be running at all
times, with specified downtime for upgrades and maintenance if needed.

Most developers will be using the Mac operating system, but others may use Windows.
These differences shall not affect the performance of the services. The GraphQL API, in
both cases, must supply near immediate feedback for data and policy queries and must
nearly immediately and sequentially supply mutations for approval from an
administrator.

Limiting the necessary memory requirements for running services locally will be a main
factor in the building process. Fast response times are necessary to prevent a
hindrance on the developer waiting for processes to complete, so a balance between
hardware requirements and its effect on performance will be measured using the Neo4j
database along with the GraphQL API.

4.4. Interface requirements

This project is based on interface implementation as we are evolving the interface
architecture of the current TMS system. This interface is going to have to not only find
and return specific data from the respective database, but also respond to commands
for adding, updating, and deleting data from the database. The GQL Gateway API
plays a huge part in this system and the ability for it to execute requests as it is the part
that decides where to find the data and possibly decide which database to call on if
more databases are added to the system.

Neodj

Field1:int
Field2:int
Field 3.1: UUID
Field 3.2: String

Fieldd.Str

Page 18

4.5. Development standards

This project will use Test-driven development supplemented with static linting and code

reviews as development standards.
The test-driven development cycle has five major steps:

1. Add a new test for a new or existing feature

1.1. This new test should pass if the feature’s requirements are met. This is
advantageous as it makes us focus on the requirements of a feature

before we even begin coding.

2. Run all the tests that have been written, including the new test.

2.1. The new test should fail, which demonstrates the need for new code to be
written. Although this might seem like a waste of a run, it is also a good

check to make sure the test framework is working as intended.

3. Write simple code to pass the new test.

3.1. Messy code, and even hard coded solutions are acceptable in this step.

4. Run all the tests again checking that they all pass.

4.1. If any tests fail at this step code will be revised until all the tests pass. This

step is done to make sure new code does not break any previously

working features.

5. Refactor the code where required, testing after each new change.

5.1. If hard coded data still exists in this step it should be removed or replaced.

As in step 4 testing after each change is important to check that no

existing functionality has been broken.

This cycle then repeats any time new functionality is added. To keep debugging to a
minimum, tests should be small and written often. This way if something breaks it will be

much easier to identify at what point the code was changed to cause the failure.

To supplement this development style we will be using standard coding practices like

standard naming conventions and linting. Because our project will be written in
TypeScript we will be following the rules provided by F5 using ESLint. Naming
conventions will also follow F5’s desired guidelines.

Page 19

4.6. Architectural Design Documents
4.6.1 Use Case Diagram

The simple Use Case Diagram below represents a very high level view of the TMS
system but more importantly represents how data is collected and then used by F5
developers to improve these tests. It also shows the importance to improve access to
this collected data which is done by the use of a graph database and GraphQL API.

™S

Issue tests on
endpoints using their
software

Determine if endpoint
is a bot or not
1
<<include>>
|

collect and

T store data from
Access tests

Testing Suite

|
) |
Client |
|
|
<<include>> —/
)

Find data
about tests

Update tests (policies) 1 Q

F5 Developer

Create new tests

Page 20

4.6.2 Sequence Diagram

The sequence diagram below shows the function of the GQL Gateway and the
interaction between it and the various APIs used to retrieve data from the databases.
The GQL gateway receives an HTML request and then decides which API to send the
request to.

™S Ul GOQL GATEWAY TMS REST API TMS GQL API Site Analysis AP!

Sends a AP! GET to fetch the info

Selects a company Decide which API to

1
\
\
\
\
| send request to
\
\
\
\
\

I

Sends GET request to

1
\
\
\
) \
\
\
\
i \
retrieve company metadata ‘

- |

Returns data

\

Selects a test

I

\

\

\

\

\

\

\

\

\

\

| \

| | |

> | | |

Sends API Post to fetch test | N ‘

| Decide which API to ‘

\ «’ Sendrequestto | ‘

\ \
\
\
\

Sends POST with params to retr‘eve test metadata in graph database |

-

- | returns data ‘
returns data ‘
\

Sends API Post to fetch data.; ‘ X X
] Decide which API to |

Site Analysis Selection

send request to |

Sends POST with params to retrieve site Analysis data ‘from graph database

4.6.3 Old ERD

This first ER (Entity Relationship) diagram below is the ER diagram for the current
tabular database used in the TMS stack. The entities in this database that we plan on
changing and migrating the JSON data out of are highlighted in blue. Note the fields
where the type is JSON. Those are going to be replaced with Ids that we will use in a
GraphQL query to return the JSON objects that were stored in those positions.

Page 21

customer

orcaCustomer

n o
~ A

zZ zZz 2 zZ2 Z 2z 2z zZ 2z zZ Z2

oEid
eid
eidOverride
taaS
createdOn
updatedBy
updatedOn
updatedBy
peid
seleniumimage
noteUrl
proxy
ssdpTableName

VARCHAR(50)
VARCHAR(50)
VARCHAR(200)
VARCHAR(200)
DATETIME
VARCHAR(200)
DATETIME
VARCHAR(200)
VARCHAR(200)
VARCHAR(200)

VARCHAR(200)
VARCHAR(200)
VARCHAR(200)

PK] eid VARCHAR(50)
N cluster VARCHAR(200)
N customer VARCHAR(200)
N taaS BOOLEAN
N proxy VARCHAR(50)
N | ssdpTableName | VARCHAR(200)
test
PK testld VARCHAR(50)
FK eid VARCHAR(50)
N beh MEDIUMTEXT
N net MEDIUMTEXT
N ti MEDIUMTEXT
N merged MEDIUMTEXT
N browsers VARCHAR(500)
N cluster VARCHAR(2000)
N cname VARCHAR(50)
N firmware VARCHAR(20)
N policyMode VARCHAR(50)
N | pegasusGUrl VARCHAR(50)
N testType VARCHAR(50)
N counter INTEGER
N testName VARCHAR(40)
N createdOn DATETIME
N peid VARCHAR(50)
N pcVersion VARCHAR(50)
N pcUrl VARCHAR(200)
N config MEDIUMTEXT
N proxy VARCHAR(50)
N | ssdpTableName | VARCHAR(200)
status
PK testld VARCHAR(50)
N logs VARCHAR(5000)
N message VARCHAR(10000;
N result VARCHAR(5000)
N status VARCHAR(200)
N testName VARCHAR(40)
N createdOn DATETIME
N customerName | VARCHAR(50)
N integration_result | MEDIUMTEXT
N functional_result | MEDIUMTEXT

TN

Page 22

4.6.4 New ERD

On the new ERD below, the blue entities still represent the data that is contained in the
tabular database, however, the new yellow entities are going to be what is contained in
the new graph database. Note that ids are used in place of the JSON data in the blue
entities so that we have a gateway to enter the graph data by using these ids in GQL
queries. Also note that the entirety of the siteAnalysis entity is being migrated into a
graph database as this is being transformed into a separate microservice queried by the
GQL gateway API. The graph database is directional so directions have been added to
the relationships in which there are directions. All of these directed relationships are
HAS and directed toward the entity that “HAS” an instance of the other entity.

Page 23

endpoint
endpointd
SAEndpoind
name
requestMaicher
flowd abel
platform
pratacol
url
methad
body
eun
queryParams

headers

scripthame

VARCHAR(S0)
VARCHAR(S0)
VAREHAR(100)
VARCHAR(200)
VARGHAR(200)
VARGHAR(100)
VARCHAR(100)
VARGHAR(200)
VARGHAR(200)
VARCHAR(500)
VARCHAR(200)
VARCHAR(200)

0
VARCHAR(200)
VARCHAR(100)

sieAnalysis

data expectation
A5 DIRECTION OUT- PK datald VARCHAR(S0) PK expectationid VARCHAR(S0)
PO endpoint endpoint |1 uieta VARCHAR(200)
N expactatian expectation | HAS DIRFCTION OUT |-y name VARGHAR(100)
N ype VARCHAR(200)

R

VARCHAR(S0)

o
VARCHAR(200)

dnsSpool

integrationTests

l
l N ‘ = VARCHAR(Z00) J
VARCHAR(S0))
N ids [] VARGHAR(100)
FK oid [VARCHAR(s0) HAS
K. eid VARCHAR(S0) BIRECTION-OUT I
9 | e || mmmE functionalViobileTests
N versian BIGINT HAS DIRECTION OUT- N Sdkversion VARCHAR(100)
N sy BIGINT HAS DIRECTION OUT—— {1 N version VARCHAR(100)
N | createdon | DATETIME N ids [1 VARCHAR(50)
N createdBy | VARCHAR(S0) N updateUriKey VARCHAR(200)
N updatedon DATETIME testConfig N deviceConfigs [] mobileDeviceConfiguraton
N | updetedzy | varcHARGD) E tesiConfigid VARCHAR(50) HAS DIRECTION BUT
isTesisuteUsed BOOLEAN
dnsSpaot dnsSpool furctionalTests
FK | integrationTests integrationTests - N D e e
FK | functionalMobileTests | functionalMabileTests | L TS [ONERETSED
FK | funciionalTests functionalfTests HAS DIRECTION OUT N ids [VARCHAR(50)
FK | functionaWebTests | functionaWebTests
S— functionallebTests
VARCHAR(100)
N] FunetionaiwebBrowserCanfiguratios
] VARCHAR(S0)
aiifacts
PK | arifacisid VARCHAR(S0)
r N wl VARCHAR(200)
N | createdon VARCHAR(1000) testReporExplanation
J N name VARCHAR(100)
N scenario VARCHAR(200)
N o5 browser VARCHAR(200)
N field VARGHAR(200)
N operation VARCHAR(200)
N | expectedvalue VARCHAR(200)
5 N actalvalue VARCHAR(Z00)
+
- C HAS DIRECTION OUT.
messages
{ PR VARCHAR(S0)
o | T v [EE
N text VARCHAR(1000) Has DIRECTION OUT | N (Eapes Iukopid VARCHAR(50)
N | tmestamp VARCHAR(200) J - H assertionld VARCHAR(50)
{ N resuftCode i
— N massages messages
\) [t e
- - 3 +
datald | VARCHAR(SD) N
endpointid | VARCHAR(SD)
expectationld | VARCHAR(S0)
name VARCHAR(100)
el | HAS DIRECTION OUT
path VARCHAR(200) Y)
| ErEE HAS DIRECTION OUT
HAS DIRECTION OUT
HAS DIRECTION QUT O
IntegrationReport
PK_ | integrationReporlid VARCHAR(S0)
o Foogratonid VARCHAR(S0) HAS DIRECTION OUT
N resulCode INT
=S ol - . F has DRECTION our
P [e eaegesid RCHAR(S0)) " . | functionalWebReport
M vty VARGHAR(200) N | expectationsouce VARCHAR(200) HAS DIRECTION OUT T S
N ext VARCHAR(1000) N T VARCHAR(100)
N | tmestamp VARCHAR(200) N | functionalWebTestid VARCHAR(50)
N restitCode T HAS DIRECTION 0UT
N resuts results
N messages messages
(iobGonfig N | expectationsource VARCHAR(200)
joBCanfigls | VARCHAR(S0}
artfiacts ‘ N name | VARCHAR(100)
PK | artifactsld VARCHAR(S0) N | creaiedBy | VARCHAR(100) E:
N un VARCHAR(200) N | jobMeta | VARCHAR(200) Prm—— E
N sreatedon VARGHAR{1000) PR | functionalReportld VARCHAR(S0) mobileReport
N testame. 'VARCHAR(L00) EK molleFtapork) RCHAR(SO)
N | functionalTestd VARCHAR(S0) N funcionalMobileReparD VARCHAR(S0)
N resuiCode INT N fesultCode INT
N results results N resuits resutts
N messages messages N messages messages
N | expectationSource 'VARCHAR(200)

Page 24

4.6.5 API Gateway Pattern

This system will implement the API gateway pattern using a GraphQL API as the
gateway to the Neo4dj database. The advantage of having a GraphQL API is that it has
the ability, as seen in the sequence diagram on page 21, to decide where to send the
request from the Client. We have decided to move all data to a single database, but
this GraphQL API allows for more databases or APIs to be added and queried in a
single query, which speeds up the runtime compared to REST.

I I £

GraphQL as
APl Gateway
A
o - -

@ { REST } @ { REST } @ { REST } @

Propduct Fayman] (21 hsEnbCny

-

(6)
4.7. Design Tradeoffs

Before progress was to be made, the choice arose on how to structure and implement
the new database along with a GraphQL API. There were three possible evolutions of
the system, each with their benefits and drawbacks. The first option was to modify the
current API to interact with either the original or GraphQL API, where the GraphQL API
alone would handle connection to the Neo4j database. The second option was to only
migrate certain portions of data to the Neo4j database and have a GraphQL API that
would connect to either the old or new database depending on where the data lives.
The third option was to have a complete transition to only utilize a GraphQL API and
Neo4j database, including migration of all data over to the Neo4j database.

Page 25

Possible Evolutions

® T © ® [v

Ul
GO
Gateway -
API Y Graphal
I 2 Gray
REST AP 7 Graphal /
| I\ neoyj neodj
1 My >) -
R . ER Ol Field 3.1: Field1:int
M a1 :Neoq) ol uuID Field2:int
(W] + : _
ER Old Field 3.1: Field1 Field 3.2: .
uuID Field 2 String Field 3.1: UUID
Field1 + Field 3.2: Field 3.2: String
I YN
i Stri . .
Field 2 ring .
- _ID / Field4:Str
Field3:

D

The first option would be the least amount of work necessary, but much of the policies
and data would not benefit from the improvements that GraphQL and Neo4j bring. The
second option would bring about all the features from GraphQL and Neo4j, but more
logic would have to be added in order for the GraphQL API to know which database the
required data lives in. The third option, the one that was decided upon, brought about
the most work, but made the most sense to implement. It was decided to be most
beneficial to have all data migrated over to Neo4j since we were doing any data
migration in the first place, thus it made the most sense to also transfer all API
functionality to be handled by the GraphQL API. This will allow future functionality of the
system to access all features and benefits of a GraphQL API paired with a Neo4j
database, but will be at the cost of being more prone to mistakes or errors that would
break functionality, increased workload of migration and API integration, and increased
workload of policy transitions.

Another decision that brought about benefits and pitfalls was how to implement the
preprocessing functions. These functions are designed to traverse the database and
create the tree-like structure to be used in the Neo4j database for each type. A separate
function was needed for each designated type in the Schema in order to create the
necessary structure, which would have amounted to 57 functions to be hand coded.
This would have been an easy yet tedious task, as each function follows a very similar
format by which a fingerprint is created and the structure is formed, but any time
changes were made to the original schema, changes to these functions were required
as well. Instead, it was decided that we could utilize the typescript factory method to

Page 26

automatically generate these functions, diverting the tedious repetition of function
creation to the utilization of typescript. This was a drawback as further research and
implementation was required, but overall a benefit as the tedious nature of this section
was avoided along with being possible to run the function multiple times any time
changes are required to the original schema.

5. RESULTS

As we are still planning on working on this project for another month, we expect the
completion of the project to result in improvements for both users and developers.

By the end of the project we expect to have migrated data from the current relational
database to a new graph database with GraphQL utilizing the schemas we will be
writing. As a result, 22 new “entities” will be exposed which are actually just nodes in
the neo4j database. This can be seen in the old and new ER diagrams on pages 22
and 24. A majority of the data in the database will now be exposed and no longer
hidden as JSON blobs. In addition, we will have updated the frontend and backend
logic of the current project to use a GraphQL API as a gateway to the services.

Due to the efficiency improvements of navigating the JSON data to a graph database,
runtime will be improved. Improved runtime will translate to a better user experience, as
responsiveness on the front end will be improved as well. Also the user will benefit from
better turnaround time from developers due to the user friendly nature of the new
technology.

Developers should see improvements in database management, usability, database
scaling, and performance. Developers will benefit greatly from the ease of use of
GraphQL to manage both the new graph database and the current relational database.
Further, because of the graph database, scaling the project in the future will be much
easier. Also, like above, developers will notice an increase in performance making
testing and maintenance much more responsive and much faster.

Page 27

6. QUALIFICATIONS

Colin Schutte

Computer Science Student

| am currently a
Senior in the
Computer Science
and Spanish
programs at
Montana State

University

Personal

Aside from being a
student at MSU, |
am an avid fly fisher,
hunter and snow-
boarder

**Github and References
Available on Request

One thing that sets me apart from the crowd is my ability to learn very
quickly and be able to apply what | have learned at the same pace.
Before coming to college, | had never written a single program. | went
through some initial struggles and had to work hard, but now would
say | am quite proficient and am about to graduate school witha 3.8

GPA.
Technical Experience
Chaparral High

Programming Langauges

School (2015-2019) e
| graduated from - -C
Chaprral High 5chool in - HTML/CSS
2019 with a 3.92 GPA. | - JavaScript/Type5cript
played football all 4
years and was selected Databases
as Senior Captain by my =it
-Queries
teammates and 0oL
coaches. ~GraphQL

Metwork Programming
-ORM

-CRUD Applications
-Socket Programming
-RESTFUL APIs

-051 Model and Protocols

Montana 5\{3 te
Univeristy (2019 -)
|l accepeted a
competitive WUE
scholarship and decided
to come to M5U in 2019,
| am pursuing a BA in
Computer Science with
a minor in Spanish.

Interests

As a result of my studies, my primary interests in the field of
Computer Science are security and data. As we move further
and further into the digital age, | look forward to learning
about how these two fields coexist as they become more
important and there becomes a higher need for more securi-
ty as more data becomes available.

Software Design

-Various Types of UML Diagrams
-ERD Diagrams

-Various Software Design Patterns

Er
colinshoot:
Phone Number:

720-771-8237

ymail.com

Page 28

Gregory Hill

Bozeman, MT | (406) 670-6864 | gregoryhill.mt@gmail.com

Objective

Computer Science student seeking a professional role, internship, and/or co-op to grow my skills.

Education
Bachelor of Science | August 2019 — May 2023 | Montana State University, Bozeman, MT
* GPA: 3.81, Computer Science Major, Honors Baccalaureate, Physics Minor

Relevant Projects

Senior Capstone Project (current) | CSCI 482R Interdisciplinary Project Instruction | Client: F5
« Research/develop a proof-of-concept/demo that integrates GraphQL with existing F5 products

+ Reduce the impact of API sprawl

« Implement database-like queries for APls

Machine Learning Projects (current) | CSCI 447 Machine Learning

« Four projects over the semester implementing learning models and algorithms

« Partner-based projects ranging from implementing linear models to neural networks

Compiler Project | CSCI 486 Compilers

« Completed implementation of a small compiler

« Utilized Java to implement parsing, transpiling, and bytecode generation

Robotics Project | CSCI 455 Embedded Systems

« Created a virtual board game played by the robot

« Implemented Python code to control the movement of the robot and the robot’s arm, a GUI interface for
interaction, and text-to-speech for player decisions

Experience

Lawn Service | May 2021 — August 2022 | Advantage Landcare, Bozeman MT

« Complete a set number of accounts as a team in a timely manner

« Ensure all lawns comply with the company and client's standards

Pool maintenance Specialist | June 2017 — August 2020 | Five Star Pool and Spa, Billings, MT
« Maintain the chemical balance of pool water

« Ensure all pool equipment functions properly

« Assist in the repair of pool equipment, installation of vinyl liners, and construction of pools
Sales Associate | June 2016 — June 2017 | Office Depot, Billings, MT

« Assist customers in choosing appropriate merchandise, especially for electronic products
« Cashier

Honors
« President’s List (Fall 2019 and 2020) » Dean’s List (Spring 2020, Spring 2021, and Spring 2022)
« Computer Science Scholarship Endowment (2020 — 2021) « Paxton Family Computer Science

Undergraduate Student Success Scholarship (2021 — 2022) « Montana University System Scholarship (2019)
* Montana Chapter NECA Scholarship (2019, 2020) « Home Builders Association of Billings Scholars (2019)

« Billings Society of Petroleum Engineers Scholarship (2019)

Page 29

Riley
Williams

Skills

Education

Experience

Awards &

Achievements

Riley Williams 406-531-6219

33158S.27th riley.b.williamsO5@gmail.com
Bozeman, MT 59718

Experience with multiple coding languages, Java being the primary. | have experience
successfully learning and applying new languages and have experience working with
others to accomplish tasks on time.

Montana State University / Computer Science Department, expected
graduation - Spring 2023
2015- 2021-Present, Bozeman MT

GPA - 3.71in Computer Science classes

Excel in Computer Systems, Data Structures and Algorithms, and
Concepts/Programming Languages classes to pursue a Bachelor degree in Computer
Science. Have completed requirements to obtain a Minor in Mathematics.

e ProficientinJava and familiar with Python

e Completed and presented group projects ontime

e Complete assignments and projects to meet required deadlines

Florence Carlton High School / High School Diploma
2004 - 2008, Florence MT

Graduated with honors. Took and enjoyed advanced Math classes as electives.

Rooks Games and More / Assistant Manager
Jul 2018 - PRESENT, Bozeman MT

Responsible for ensuring Rooks Games and More runs efficiently, and creating positive
experiences for all customers.

e Responsible for opening and closing processes and procedures
e Complete customer transactions efficiently and in a timely manner
e Interface with customers to ensure a variety of needs are met

University Catering / Student Manager
2010-2013 and 2015-2019, Bozeman MT

Supervised and directed staff to ensure guests had an excellent experience at events.
e Managed and efficiently resolved problems

e Supervised and directed staff
e Effectively managed staff at events with hundreds of guests

Achieved the rank of Eagle Scout in the Boy Scouts of America; 2008

Page 30

References

(1) “What Are Bot Attacks? Bot Mitigation for Web Apps & Apis.” Signal Sciences,
Fastly, https://www.signalsciences.com/glossary/bot-attack-protection/.
(2) “ECMA-404.” Ecma International, 4 Feb. 2021,

https://www.ecma-international.org/publications-and-standards/standards/ecma

-404/.

(3) “Queries and Mutations.” GraphQL, https://graphql.org/learn/queries/.

(4) Microsoft Contributors. “The Api Gateway Pattern versus the Direct
Client-to-Microservice Communication.” The API Gateway Pattern versus the
Direct Client-to-Microservice Communication | Microsoft Learn, 21 Sept. 2022,
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-mi
croservice-container-applications/direct-client-to-microservice-communication-v
ersus-the-api-gateway-pattern.

(5) “The Leader in Graph Databases.” Neo4j Graph Data Platform, 17 Nov. 2022,

https://neo4j.com/.

(6) Ng'ethe, Joe. “Wrapping a REST API in GraphQL.” Medium, TwigaTech, 7 June
2018,

https://medium.com/twigatech/wrapping-a-rest-api-in-graphql-4e26c6582282.

Page 31

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://neo4j.com/

Appendix - Source Code

File Structure

e Tms-graph
o .idea
o .next
o Apollo
m Client.ts
m schema.ts
m typedefs
e Config.ts
e Customer.ts
e |Index.ts
e Report.ts
e Neo4jDirectives.ts
e Test.ts
o Components
o Dev.sql
o Node_modules
o Pages
o Public
o Styles
o typeORM

m Datasources

m Entity

Mysql.datasource.ts
neodj.datasource.ts

customer.ts
integrationTest.ts
labels.ts
mobileBaseConfig.ts
orcaCustomer.ts
orcaTest.ts
scheduledTest.ts
siteAnalysis.ts
status.ts

test.ts
testSuite.ts

m Migrations

dataMigration
testMigration

Page 32

o Types
m apiTypes
m Index.ts
o Util
m Bootstrap
e generatePreprocessingFunctions.ts
e generateTypes
e preprocessorCodegen
e utils.ts
m tms_asg_codegen
e preprocessorFunctions.ts
e visitor.ts
m neodj.ts
m tsconfig.json
.env.local
.gitignore
docker-compose.yaml
next.config.js
next-env.d.ts
package.json
README.md
tsconfig.json
Yarn.lock
yarn-error.log

0 O O O O 0O 0O 0 O O

Source Code

apollo/typedefs/
config.ts

@relationship

@relationship

@relationship

Page 33

@relationship
@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

customer.ts

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

report.ts

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

@relationship

typeORM/datasources
mysgql.datasource.ts

{
{
{
{
{
{
{
{
{
{
{

DataSource }
Customer }
Integrationtest }
Labels }
Mobilebaseconfig }
Orcacustomer }
Orcatest }
Siteanalysis }
Status }

Test }

Testsuite }

DataSource ({

[Customer, Integrationtest, Orcacustomer, Labels
Mobilebaseconfig, Orcatest, Siteanalysis, Status, Test, Testsuite]

neodj.datasource.ts

{ Driver }
Neo4jDataSource ({

Driver

0 {

.connect ()
connect () {
.driver(

.basic(

getDriver () ({

close () {
.close()

typeORM/entity
customer.ts

{ Entity, PrimaryColumn, Column }

@Entity ()
Customer {

@PrimaryColumn ()
@Column ()

@Column ()

@Column ()

integrationTest.ts

{
Entity
PrimaryGeneratedColumn
PrimaryColumn
Column
ManyToOne, OneToOne, JoinColumn

{ Orcacustomer }
{DateTime}

@Entity ()
Integrationtest {
@PrimaryColumn ()

@OneToOne (() => Orcacustomer, (orcaCustomer) => orcaCustomer.
Orcacustomer

@QOneToOne (() => Orcacustomer, (orcaCustomer) => orcaCustomer.
Orcacustomer

@Column (
@Column ()
@Column ()
@PrimaryColumn (
@Column (
@Column().

@Column (

@Column ()

labels.ts

{Entity, PrimaryGeneratedColumn, PrimaryColumn, Column, OneToMany
Generated, ManyToOne, OneToOne, JoinColumn}
{Orcacustomer}

@Entity ()
Labels {

@PrimaryColumn ()

@Column ()

@Column (
@Column (
@Column (

@Column (

mobileBaseConfig.ts

{Entity, PrimaryGeneratedColumn, Column, PrimaryColumn, ManyToOne
OneToOne}

{ Orcacustomer }

{DateTime}

{ Message }

@Entity ()

Mobilebaseconfig {
@PrimaryColumn ()

@OneToOne (() => Orcacustomer, (orcaCustomer) => orcaCustomer.)
@Column ()
@Column ()
QColumn ({ :

: DateTime
@Column ()
@QColumn ({ :

DateTime

QColumn ({ :
DateTime

@QColumn ({

QColumn ({

QColumn ({
@Column ()
@Column ()

QColumn ({

@Column ()

@Coluﬁn({
@Column()-
@Colum;()
aCoLumn
@Column(.)
@PrimaryCc:)lumn ({
@Columnk)
@Column(;

@Column ()

orcaCustomer.ts

{
Entity
PrimaryGeneratedColumn
PrimaryColumn
Column
ManyToOne

@Entity ()
Orcacustomer {

@PrimaryColumn ()

@Column ()

@Column ()
@Col?mn()
@Col?mn()
@Column (
@Column ()
@Column (

@Column ()

@Column ()

@Column ()

orcaTest.ts

{Column, PrimaryColumn, Entity, ManyToOne}
{Orcacustomer}
{DateTime}

@Entity ()

Orcatest {
@PrimaryColumn ()

@Column ()

@Column ()
@Column ()
@Column ({ 5

: DateTime
@Column ()
@Column ({

: DateTime
@Column ({ :
: DateTime
QColumn ({
@QColumn ({
QColumn ({
@Column ()

@Column ()

@Column ()

@Column ()

QColumn ({

@Column ()

@Column ()

@Columﬁ({
@Column(;
@Primarycélumn({
@Column ()
@Column(;
@Column ({
@Column ({
@Column ()
@Col;mn()
@Column ({
@Column ()
@Column ()

QColumn ({

scheduledTest.ts

{
Entity
PrimaryGeneratedColumn
PrimaryColumn
Column
ManyToOne

{DateTime}

@Entity ()

ScheduledTest {
@PrimaryColumn ()

@ManyToOne (() => Orcacustomer, (eid) => orcaCustomer.
@Column ()
@Column ()
@Column ()
@Column ()
DateTime
@Column ()
@Column ()

DateTime

@Column ()

@Column ()

@Column ()

@Column ()

@Column ()

@Column ()

@Coluﬁn()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()

: DateTime

@Column ()
: DateTime

@Column ()
@Column ()
: DateTime

@Column ()

@Column ()

@Column ()

siteAnalysis.ts

{ Entity, PrimaryGeneratedColumn, PrimaryColumn, Column, ManyToOne
Generated }

{DateTime}

{Orcacustomer}

@Entity ()
Siteanalysis {

@PrimaryColumn ({

@Column ()

@Column ()

@QColumn (

QColumn ({
QColumn ({

@Column (

@Column (

@Column ()
@Column (

@Column ()

status.ts

{ Entity, PrimaryGeneratedColumn, PrimaryColumn, Column, OneToMany
Generated }
{DateTime}

@Entity ()
Status {

@PrimaryColumn ({

@Column ()

@Column ()
@Column ()

@QColumn ({

@Column ()
@QColumn (
@Column ()

@Column ()

@Column ()

test.ts

{
Entity
PrimaryGeneratedColumn
PrimaryColumn
Column
ManyToOne
OneToOne
JoinColumn

{DateTime}

{Status}

{Customer}
@Entity ()

Test {
@PrimaryColumn ()

@Column ()
@Column ()
@Column ()

@Column ()

@Column ()

@Column ()

@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@Column ()
@PrimaryColumn ()
@Column ()
@Column (
@Column ()

@Column ()

@Column ()

@Column ()

testSuite.ts

{Entity, Column, PrimaryColumn, ManyToOne}
{Orcacustomer}
{DateTime}
@Entity ()
Testsuite{
@PrimaryColumn ()

@Column ()

@Column ()
QColumn ({
QColumn ({

@Column ()

QColumn ({

@PrimaryColumn ({

QColumn ({
: DateTime
@Column ()

QColumn ({

: DateTime
@Column ()

typeORM/migrations
data_migration.ts

process
{Context}
{ }

{ Customer }
{ NodeMap }
{ preprocessCustomer }

{ Mobilebaseconfig }
{Artifact, JobMeta, Message}

driver = .driver(

.basic(

getContext = () : Promise<Context>=>{
session = driver.session()
updateFingerprintCacheSession = driver.session()
.init ()
.initialize()

.log(
{

session
updateFingerprintCacheSession
process.

.model (
.model (

printPreprocessedMobileBaseConfig () {
context = getContext ()
mobileBaseConfigRepo =

.getRepository (Mobilebaseconfigqg)

mobileBaseConfig = mobileBaseConfigRepo.findOneBy ({

jobMeta: JobMeta= ({

mobileBaseConfig.

artifact: Artifact[] = .parse (mobileBaseConfig.)
Omit<Artifact | | >[]) .map ((artifacts):
Artifact => {

..artifacts

})
messages: Message[] = .parse (mobileBaseConfig.)
Omit<Message | | >[]) .map ((message) :Message=>{

. .message

mobileBaseConfigNode: NodeMap [

mobileBaseConfig.
mobileBaseConfig.
mobileBaseConfig.

mobileBaseConfig.
mobileBaseConfig.
mobileBaseConfig.

mobileBaseConfig.
mobileBaseConfig.

mobileBaseConfig.
mobileBaseConfig.
mobileBaseConfig.
mobileBaseConfig.

mobileBaseConfig.
mobileBaseConfig.
mobileBaseConfig.

mobileBaseConfig.
messages
artifact
Number (mobileBaseConfig.
mobileBaseConfig.
mobileBaseConfig.

mobileBaseConfigTest = preprocessCustomer (context
mobileBaseConfigNode)
.log (mobileBaseConfigTest)

printPreprocessedMobileBaseConfig() .catch ((error) => .error (error))

Itypes/
index.ts

{ OGM }
{ Session }

{
OrcaCustomer, OrcaTestConfig
ArtifactCreateInput, AssertionCreateInput
BrowserSmokeTestsCreateInput
ConfigMappingCreateInput
CustomerCreatelInput
DnsSpoofCreateInput
EncodedTestCreateInput
EndpointCreateInput
EndpointMetaCreateInput, ExpectationCreatelInput
FirmwareVOCreateInput
FirmwareVlCreateInput
FunctionalMobileReportCreateInput
FunctionalMobileTestV1CreateInput
FunctionalMobileTestV2CreateInput
FunctionalReportCreatelInput
FunctionalTestV1CreateInput
FunctionalTestV2CreateInput
FunctionalWebBrowserConfigurationCreateInput
FunctionalWebReportCreateInput
FunctionalWebTestCreatelInput
GenericTestCreateInput
HeaderMapCreateInput
HeaderMapEntriesCreateInput
InfraConfigCreatelInput
IntegrationReportCreateInput
IntegrationResultCreateInput
IntegrationTestV1lCreateInput
IntegrationTestV2CreatelInput
JobMetaCreateInput
LabelCreateInput
MessageCreatelInput
MobileBaseConfigCreateInput
MobileConfigCreateInput

ExplanationCreateInput

MobileDeviceConfigurationCreateInput, MobileResultCreateInput

ModelMap
OrcaCustomerCreatelInput
OrcaCustomerLiteCreateInput
OrcaTestConfigCreateInput
OrcaTestCreatelInput
PolicyVOCreateInput
PolicyV1lCreateInput
ReportCreateInput, Scalars
ScheduledTestCreateInput
SiteAnalysisEndpointCreateInput
SlackNotifConfigCreateInput

SlackNotifConfigMapCreateInput
StatusCreateInput
SupportedSdkVersionCreateInput
TestCreatelnput
TestDetailCreateInput
TestReportExplanationCreatelInput
TestStatusCreatelnput
TestSuiteCreatelInput
WebRegressionTestCreateInput
FunctionalWebBrowserConfiguration
MobileDeviceConfiguration
MobileBaseConfig

MobileConfig
SupportedSdkVersion
SlackNotifConfig

TestDetail

DnsSpoof

Artifact

Endpoint

SiteAnalysisEndpoint
HeaderMapEntries

HeaderMap

SlackNotifConfigMap
OrcaCustomerLite

PolicyVO0

PolicyVl

EndpointMeta

OrcaTest

ScheduledTest

Test

ConfigMapping

WebRegressionTest
TestStatus
FirmwareV0

FirmwareVl
BrowserSmokeTests
InfraConfig

TestSuite

EncodedTest

JobMeta

Status

Label
FunctionalWebTest
FunctionalMobileTestV1
FunctionalMobileTestV2
FunctionalTestVl
FunctionalTestV2
GenericTest
IntegrationTestV1

IntegrationTestV2
Report
FunctionalMobileReport
FunctionalReport
FunctionalWebReport
IntegrationReport
TestReportExplanation
Message
IntegrationResult
MobileResult
Expectation
Assertion

Explanation

Customer

{ Fingerprint FingerprintDigest }

Context = {

OGM

?: Session

?: Pick<ModelMap
I

NodeMap = {
Customer
OrcaTestConfig

FunctionalWebBrowserConfiguration
MobileDeviceConfiguration
MobileBaseConfig
MobileConfig
SupportedSdkVersion
SlackNotifConfig
TestDetail
DnsSpoof

Artifact
Endpoint
SiteAnalysisEndpoint
HeaderMapEntries
HeaderMap
OrcaCustomer
SlackNotifConfigMap
OrcaCustomerLite
PolicyVO0
PolicyVl
EndpointMeta
OrcaTest
ScheduledTest

ConfigMapping
WebRegressionTest
TestStatus
FirmwareV0
FirmwareVl
BrowserSmokeTests
InfraConfig
TestSuite
EncodedTest
JobMeta
Status
Label
FunctionalWebTest
FunctionalMobileTestV1
FunctionalMobileTestV2
FunctionalTestV1l
FunctionalTestV2
GenericTest
IntegrationTestV1
IntegrationTestV2

FunctionalMobileReport
FunctionalReport

FunctionalWebReport
IntegrationReport
TestReportExplanation
Message
IntegrationResult
MobileResult
Expectation
Assertion
Explanation

NonUnionNodes = Omit<NodeMap
I
Preprocessor = {
[NonUnionNodes ${ : (context:
Context, node: NodeMap []) => Promise<NodeMap [
}

PreprocessorKey = Preprocessor

CreateInput = {

OrcaTestConfigCreateInput

FunctionalWebBrowserConfigurationCreateInput
MobileDeviceConfigurationCreateInput
MobileBaseConfigCreateInput
MobileConfigCreateInput
SupportedSdkVersionCreateInput
SlackNotifConfigCreateInput
TestDetailCreateInput
DnsSpoofCreatelInput
ArtifactCreateInput
EndpointCreateInput
SiteAnalysisEndpointCreatelInput
HeaderMapEntriesCreateInput
HeaderMapCreateInput
OrcaCustomerCreateInput
SlackNotifConfigMapCreateInput
OrcaCustomerliteCreatelInput
CustomerCreateInput
PolicyVOCreateInput
PolicyV1CreateInput
EndpointMetaCreateInput
OrcaTestCreatelInput
ScheduledTestCreatelInput
TestCreatelInput
ConfigMappingCreateInput
WebRegressionTestCreateInput
TestStatusCreatelInput
FirmwareVOCreateInput
FirmwareVlCreateInput
BrowserSmokeTestsCreateInput
InfraConfigCreateInput
TestSuiteCreateInput
EncodedTestCreateInput
JobMetaCreateInput
StatusCreateInput
LabelCreateInput
FunctionalWebTestCreatelInput
FunctionalMobileTestV1CreateInput
FunctionalMobileTestV2CreateInput

FunctionalTestV1CreateInput
FunctionalTestV2CreateInput
GenericTestCreateInput
IntegrationTestV1lCreateInput
IntegrationTestV2CreateInput
ReportCreatelInput
FunctionalMobileReportCreatelInput
FunctionalReportCreatelInput
FunctionalWebReportCreateInput
IntegrationReportCreateInput
TestReportExplanationCreatelInput
MessageCreatelInput
IntegrationResultCreateInput
MobileResultCreatelInput
ExpectationCreateInput
AssertionCreateInput
ExplanationCreatelInput

AsgCreateNode={
CreateInput ${ : (context:

node : NodeMap [])=>Promise<CreateInput| 1>

AsgCreateNodeKey = AsgCreateNode
Fingerprint<T> = Omit<{
1

>

FingerprintCacheMap =
Map<FingerprintDigest|[] ,FingerprintDigest|[

VisitorReturnType = Scalars]|

Platform

Protocol

OrcaService =

TestType =

util/bootstrap/
generatePreprocessingFunctions.ts

*Based of of code written by Maxwell at F5, but we changed it to generate our
own functions for our own needs*

{ generate, OGM }

*

w5 ts

{ Kind }

{ createPreprocessorFunction }

{
getGraphQLNodes
getName
printTypescriptNode

writeFile

createFunctionNodes= (ogmGeneratedCode:) :ts.VariableStatement[]=>{
sourceFile = ts.createSourceFile (

ogmGeneratedCode
ts.ScriptTarget.

ts.ScriptKind.

gglNodes = getGraphQLNodes ()
variableStatements: ts.VariableStatement[] = []
sourceFile. forEachChild ((node) => {

(

node && (
ts.isTypeAliasDeclaration (node) ||
ts.isEnumDeclaration (node) ||
ts.isClassDeclaration (node) ||
ts.isInterfaceDeclaration (node))

gglNode = gglNodes.find((gglNode)=>gqglNode.
&& gglNode. '= Kind.)
(gglNode && ts.isTypeAliasDeclaration (node)) {
(node. .) {
ts.SyntaxKind. :
typeliteralNode = node. ts.TypeliteralNode
(gglNode. ==) {
preprocessorFunction =
createPreprocessorFunction (typelLiteralNode, gglNode, gglNodes)

variableStatements.push (preprocessorFunction)

ts.SyntaxKind.
intersectionTypeNode = node.
ts.IntersectionTypeNode
intersectionTypeNode. . forEach (member=>{
(member. == ts.SyntaxKind.
typeliteralNode = member
ts.TypeliteralNode
preprocessorFunction =
createPreprocessorFunction (typeliteralNode, gglNode, gglNodes)
variableStatements.push (preprocessorFunction)

9]

variableStatements

renderCode= (functionVariableStatements:
ts.VariableStatement[]) : =>{
content =
functionNames: [1 =I[1
functionVariableStatements. forEach (functionVariableStatement=>{
(ts.isVariableStatement (functionVariableStatement)) {

content="${content}\n${printTypescriptNode (functionVariableStatement) }

functionNames.push (getName (functionVariableStatement))

header

footer

${functionNames. join (
content = “${header}\n${content}\n${footer}
content

ogmGeneratedCode = (generate ({
ogm

outputDirectory = path. join (
functionVariableStatements: ts.VariableStatement[] =
createFunctionNodes (ogmGeneratedCode)
generatedPreprocessingFunctionsText =
renderCode (functionVariableStatements)

newFilePath = path. join (outputDirectory
writeFile (newFilePath, generatedPreprocessingFunctionsText)

main () .then ()

generateTypes.ts
*Based of of code written by Maxwell at F5, but we changed it to generate our
own functions for our own needs*

{ generate, OGM}

*

*

{ Kind }

{
GraphQLNode
getGraphQLNodes
getName
printTypescriptNode
writeFile

NodeTypeGroups = Map< [ts.TypeAliasDeclaration |
ts.EnumDeclaration | ts.ClassDeclaration | ts.InterfaceDeclaration]>
FileGroups = Map< >

getGroupName = (graphglNodes:GraphQLNode[], typescriptNodeName:
=> {
groupName =
graphglNodes. forEach ((graphglNode) =>{

(typescriptNodeName. toUpperCase () . includes (graphglNode. . toUpperCase ())) {
groupName = graphglNode.

})

groupName

addNodeToGroup (node: ts.Node, groupName: nodeTypeGroups:
odeTypeGroups) => {
(
ts.isTypeAliasDeclaration (node) ||
ts.isEnumDeclaration (node) ||
ts.isClassDeclaration (node) ||
ts.isInterfaceDeclaration (node)

thisNodeTypeGroup = nodeTypeGroups.get (groupName)
(thisNodeTypeGroup) {

(!thisNodeTypeGroup. some ((existingNode) =>getName (existingNode)

== getName (node))) {
nodeTypeGroups .get (groupName) . push (node)

{

nodeTypeGroups.set (groupName, [node])

buildFileGroups = (ogmGeneratedCode:) :NodeTypeGroups => ({
sourceFile = ts.createSourceFile (

ogmGeneratedCode
ts.ScriptTarget.

ts.ScriptKind.

allGraphglNodes = getGraphQLNodes (
nodeTypeGroups: NodeTypeGroups =
sourceFile. forEachChild ((node) => {
(
node && (
ts.isTypeAliasDeclaration (node) ||
ts.isEnumDeclaration (node) ||
ts.isClassDeclaration (node) ||
ts.isInterfaceDeclaration (node))

groupName = getGroupName (allGraphglNodes, node.
addNodeToGroup (node, groupName, nodeTypeGroups)

nodeTypeGroups

renderCode = (nodeTypeGroups: NodeTypeGroups): FileGroups =>{
indexFileContent =
fileGroups: FileGroups = ()
.from (nodeTypeGroups .keys ()) . forEach ((groupName) =>{
typeExports: [1 = []
exports: [1 = []
newFileContent =
thisGroupNodes = nodeTypeGroups.get (groupName)
thisGroupNodes. forEach (node => {
newFileContent = “${newFileContent}\n${printTypescriptNode (node) }
(ts.isTypeAliasDeclaration (node) ||
ts.isInterfaceDeclaration(node)) {
typeExports.push (node.
{

exports.push (node.

h

fileGroups.set (groupName, newFileContent)
(typeExports. > 0) {
indexFileContent = "${indexFileContent}
S {typeExports. join ()} $ {groupName}
}
(exports. > 0){
indexFileContent = "${indexFileContent}
$ {exports.join ()} $ {groupName}
}
}

fileGroups.set(indexFileContent)
fileGroups

collectExports = (nodeTypeGroups: NodeTypeGroups): Map<
=>{
exportsMap: Map< > = ()
.from (nodeTypeGroups .keys ()) . forEach ((groupName) => {
thisGroupNodes = nodeTypeGroups.get (groupName)
thisGroupNodes. forEach (node =>{

(
ts.isTypeAliasDeclaration (node) ||
ts.isEnumDeclaration (node) ||
ts.isClassDeclaration (node) ||
ts.isInterfaceDeclaration (node)

exportsMap. set (getName (node) , groupName)

exportsMap

addImports = (fileGroups: FileGroups, nodeTypeGroups: NodeTypeGroups) :

FileGroups => {
exportsMap = collectExports (nodeTypeGroups)
fileGroupsWithDependenciesImported: FileGroups =
visit = (node: ts.Node, dependencies:Map<

typeName: | =
(ts.isTypeReferenceNode (node)) {
typeReferenceNode = node ts.TypeReferenceNode
typeReferenceNodeIdentifier = typeReferenceNode.
ts.Identifier
typeName = typeReferenceNodeIdentifier.
(ts.isExpressionWithTypeArguments (node)) {

expressionWithTypeArguments = node
ts.ExpressionWithTypeArguments
expression = expressionWithTypeArguments.
ts.Expression
typeName = expression.getText ()

(typeName) {
exported = exportsMap.get (typeName)
(exported) ({
existingDependency = dependencies.get (exported)
(existingDependency) ({
(!'existingDependency.includes (typeName)) {
existingDependency.push (typeName)

{

dependencies. set (exported, [typeName])

ts.forEachChild (node, (node) =>visit(node, dependencies))

.from(fileGroups.keys()) .filter (fileGroup=>fileGroup !==
) . forEach ((fileGroup)=>{
thisFileGroup = fileGroups.get (fileGroup)
sourceFile = ts.createSourceFile (

thisFileGroup
ts.ScriptTarget.

dependencies = < [1>()
ts.forEachChild (sourceFile, (node)=>visit(node, dependencies))
(dependencies. > 0) {
importStatements =
.from (dependencies.keys ()) .filter (depFilePath=>depFilePath !=
fileGroup) .map (depFilePath=>{

$ {dependencies.get (depFilePath) . join ()} ${depFilePath}
}) . join()
graphglImportStatement =

newContent = graphglImportStatement + +
importStatements + + thisFileGroup
fileGroupsWithDependenciesImported.set (fileGroup, newContent)

h
fileGroupsWithDependenciesImported. set (fileGroups.get (

fileGroupsWithDependenciesImported

ogmGeneratedCode = (generate ({
ogm

outputDir = path. join (
nodeTypeGroups = buildFileGroups (ogmGeneratedCode)
fileGroups = addImports (renderCode (nodeTypeGroups) , nodeTypeGroups)
.from(fileGroups.keys ()) . forEach ((fileGroup)=>{
filePath = path.join (outputDir ${fileGroup}
fileContent = fileGroups.get (fileGroup)
writeFile (filePath, fileContent)
)

main () . then ()

preprocessorCodeGen.ts

*Based off of code written by Max at F5, but we changed it to generate our own
functions for our own needs*

* ts

{Identifier, SyntaxKind, TypeNode, TypeReferenceNode}

{GraphQLNode}
{Kind}

createPreprocessorFunction = (node: ts.TypelLiteralNode, gglNode:
GraphQLNode, gglNodes: GraphQLNode[]) => {
nodeName = gqglNode.

functionName = ts. .createIdentifier (${nodeName})

contextParameter = ts. .createParameterDeclaration (

.createldentifier(

.createTypeReferenceNode (ts. .createIdentifier (

nodeParameter = ts. .createParameterDeclaration (

.createldentifier (
.createIndexedAccessTypeNode (

.createTypeReferenceNode (
.createldentifier(

.createliteralTypeNode (
.createStringlLiteral (nodeName)

parameters = [contextParameter, nodeParameter]

nodePropertyVariableStatement =
createNodePropertyVariableStatements (node, gglNodes)

fingerprintInputVariableStatement =
createFingerprintInputVariableStatement (node, gglNode, gglNodes)

letBindings = [...nodePropertyVariableStatement
fingerprintInputVariableStatement]

returnStatement = createReturnStatement (node, gglNode,gglNodes)

functionBody = ts. .createBlock (
ts. .createVariableStatement (
.createVariableDeclarationList (
.createVariableDeclaration (

.createlIdentifier (

.createCallExpression (
.createPropertyAccessExpression (
.createIdentifier ()
.createIdentifier (

.createStringLiteral (

1
ts.NodeFlags.

)
...letBindings
ts. .createExpressionStatement (
ts. .createCallExpression (
.createPropertyAccessExpression (
.createldentifier (
.createIdentifier (

.createCallExpression (
.createPropertyAccessExpression (
.createIdentifier ()
.createIdentifier (

.createldentifier (

)

returnStatement

.createVariableStatement (

.createModifier (ts.SyntaxKind.

.createVariableDeclarationList (

.createVariableDeclaration (
functionName

ts. .createIndexedAccessTypeNode (
.createTypeReferenceNode (
.createldentifier (

)
ts. .createliteralTypeNode (

.createStringLiteral (${nodeName} ')

.createArrowFunction (

.createModifier (ts.SyntaxKind.

]

parameters

.createToken (ts.SyntaxKind.
functionBody

1
ts.NodeFlags.

createNodePropertyVariableStatements = (node: ts.TypelLiteralNode
gglNodes: GraphQLNode[]): ts.Statement[] => {

node. .map (member => {

(member. == ts.SyntaxKind.) {
propertySignature = member ts.PropertySignature
propertySignatureName = propertySignature. Identifier
propertyType = getPropertyType (propertySignature, gglNodes)
isArray = propertylsArray (propertySignature)

(propertyType && isArray) ({

createVariableStatementForArrayProperty (propertySignatureName.
propertyType)
(propertyType && !isArray) ({
createTypeVariableStatement (propertySignatureName.

}) .filter (member => member !==

getPropertyType = (node: ts.Node, gqglNodes: GraphQLNode[]) :

(!'ts.isPropertySignature (node) && !ts.isTypeReferenceNode (node)) ({

propertySignatureType: TypeNode =
ts.isTypeReferenceNode (node) ?node:node.
(propertySignatureType.) |

ts.SyntaxKind.

ts.SyntaxKind. :
propertyTypeReferenceNode = propertySignatureType
ts.TypeReferenceNode
(propertyTypeReferenceNode. &&

propertyTypeReferenceNode. . > 0) {

nextTypeReference =
propertyTypeReferenceNode. [O] TypeReferenceNode

(nextTypeReference) {

getPropertyType (nextTypeReference, gglNodes)

propertyTypeReferenceNodeName =
propertyTypeReferenceNode. Identifier
gglNodeType = propertyTypeReferenceNodeName.
(gglNodes. some ((gglNode) => gglNode. === gqlNodeType &&
!'= Kind.)) |
gglNodeType

propertylsArray = (node: ts.PropertySignature | ts.TypeReferenceNode) :
=> {
propertyTypeReferenceNode: TypeNode =
ts.isTypeReferenceNode (node) ?node: node.
(!'propertyTypeReferenceNode) {

(ts.isTypeReferenceNode (propertyTypeReferenceNode)) {
propertySignatureTypeName = propertyTypeReferenceNode.
Identifier
(propertySignatureTypeName.

(propertyTypeReferenceNode. &&
propertyTypeReferenceNode. > 0) {

nextTypeReference = propertyTypeReferenceNode.

TypeReferenceNode
propertylIsArray (nextTypeReference)

createTypeVariableStatement = (attributeName:
ts.VariableStatement => {
ts. .createVariableStatement (

.createVariableDeclarationList (
.createVariableDeclaration (

.createldentifier(${attributeName})

.createAwaitExpression (
.createCallExpression (
ts. .createIdentifier (

.createldentifier ()
.createPropertyAccessExpression (
ts. .createldentifier ()

.createldentifier(${attributeName} ')

)

1
ts.NodeFlags.

createVariableStatementForArrayProperty = (attributeName:

attributeType:) : ts.VariableStatement => {
propertyAccessExpression = ts. .createPropertyAccessExpression (
ts. .createIdentifier ()

ts. .createldentifier (${attributeName} ')

awaitedExpression = ts. .createAwaitExpression (
ts. .createCallExpression (
ts. .createPropertyAccessExpression (
.createIdentifier ()
.createldentifier (

.createCallChain (
.createPropertyAccessExpression (
propertyAccessExpression
ts. .createIdentifier (

ts. .createArrowFunction (
.createModifier (ts.SyntaxKind.)1

[ts. .createParameterDeclaration (
${attributeName})]

.createToken (ts.SyntaxKind.)
ts. .createAwaitExpression (
ts. .createCallExpression (

.createlIdentifier (

.createIndexedAccessTypeNode (
.createTypeReferenceNode (

.createIdentifier (

)
ts. .createliteralTypeNode (

.createStringLiteral (attributeType)
)

ts. .createIdentifier (

.createldentifier (S{attributeName})

existentialCheck = ts. .createConditionalExpression (
propertyAccessExpression
ts. .createToken (ts.SyntaxKind.
awaitedExpression
tsh .createToken (ts.SyntaxKind.
ts. .createArrayliteralExpression ([]

.createVariableStatement (

.createVariableDeclarationList (

.createVariableDeclaration (
.createldentifier(${attributeName} ')

existentialCheck

1
ts.NodeFlags.

createFingerprintInputVariableStatement = (node: ts.TypelLiteralNode
gglNode: GraphQLNode, gqlNodes: GraphQLNode[]): ts.VariableStatement => ({
nodeName = gqglNode.
typeReference = ts. .createTypeReferenceNode (
ts. .createldentifier ()
[
.createIndexedAccessTypeNode (
.createTypeReferenceNode (
.createIdentifier (

.createliteralTypeNode (
.createStringlLiteral (nodeName)

.createVariableStatement (

.createVariableDeclarationList (

.createVariableDeclaration (
ts. .createlIdentifier (

typeReference

ts. .createObjectlLiteralExpression (
createFingerprintInputProperties (node, gglNodes)

1
ts.NodeFlags.

createFingerprintInputProperties = (node: ts.TypeliteralNode, gglNodes:
GraphQLNode[]) : ts.PropertyAssignment[] => {

node. .map (member => {

(member. == ts.SyntaxKind.) {
propertySignature = member ts.PropertySignature
propertySignatureName = propertySignature. Identifier
nodePropertyType = getPropertyType (propertySignature

gglNodes)
isArray = propertylsArray (propertySignature)
(propertySignatureName. == &&
[propertySignatureName. ==) |
(nodePropertyType && isArray) ({
ts. .createPropertyAssignment (

.createlIdentifier(${propertySignatureName. })
createMapSortJoinExpression (propertySignatureName)

(nodePropertyType && !isArray) ({
ts. .createPropertyAssignment (

.createldentifier(${propertySignatureName. })
ts. .createPropertyAccessChain (

.createlIdentifier(${propertySignatureName.

.createToken (ts.SyntaxKind.)
ts. .createIdentifier (

ts. .createPropertyAssignment (

.createlIdentifier(${propertySignatureName. })
ts. .createPropertyAccessExpression (
ts. .createIdentifier ()

.createlIdentifier (${propertySignatureName.

)

}) .filter (member => member !==

createReturnStatement = (node: ts.TypeliteralNode, gglNode: GraphQLNode
gglNodes: GraphQLNode[]): ts.ReturnStatement => {
nodeName = gglNode.

propertyAssignments = node. .map (member => ({

(member. == ts.SyntaxKind.) |
propertySignature = member ts.PropertySignature
propertySignatureName = propertySignature. Identifier
nodePropertyType = getPropertyType (propertySignature

] .includes (propertySignatureName.)) |
(nodePropertyType) {
ts. .createPropertyAssignment (

.createlIdentifier (${propertySignatureName.

.createldentifier(${propertySignatureName.

)

ts. .createPropertyAssignment (

.createlIdentifier (${propertySignatureName. })
ts. .createPropertyAccessExpression (
ts. .createIdentifier ()

.createldentifier(${propertySignatureName.

)

}) .filter (member => member !'==

ts. .createReturnStatement (
ts. .createObjectLiteralExpression (

.createPropertyAssignment (
.createIdentifier ()
.createStringLiteral (${nodeName} ")

.createPropertyAssignment (
.createIdentifier (
.createCallExpression (

.createPropertyAccessExpression (
.createIdentifier (
.createldentifier (

.createStringLiteral (

. . .propertyAssignments

createMapSortJoinExpression = (propertySignatureName: ts.Identifier):

ts.CallExpression => {
ts. .createCallExpression (
ts. .createPropertyAccessExpression (
ts. .createCallExpression (
.createPropertyAccessExpression (
.createCallExpression (
(ESH .createPropertyAccessExpression (

.createlIdentifier(${propertySignatureName.
ts. .createIdentifier (

.createArrowFunction (

.createParameterDeclaration (

.createlIdentifier (${propertySignatureName.

.createToken (ts.SyntaxKind.)
ts. .createPropertyAccessExpression (

.createlIdentifier (${propertySignatureName.
.createldentifier (

.createIdentifier (

.createldentifier (

Utils.ts
*Based of of code written by Maxwell at F5, but we changed it to generate our

own functions for our own needs*

{ Kind }
e ts
{ DocumentNode, isTypeDefinitionNode }

fs
{ Identifier, TypeNode, TypeReferenceNode }

GraphQLNode =

Kind

getGraphQLNodes = (typeDefs: DocumentNode[]): GraphQLNode[] => {

graphGLNodes: GraphQLNode[] = []
doc typeDefs) {

definitions = doc.
def definitions) {

(isTypeDefinitionNode (def)) {
graphQLNode: GraphQLNode = ({
: def.
def.

}
graphGLNodes . push (graphQLNode)

graphGLNodes

ts.Node) : => {
ts.NewLineKind.
node

printTypescriptNode = (node:
printer = ts.createPrinter ({
printer.printNode (ts.EmitHint.

ts.createSourceFile (ts.ScriptTarget.))

}

writeFile = (filePath: content:
fs.writeFileSync(filePath, content)

getName = (node: ts.TypeAliasDeclaration | ts.EnumDeclaration |
.ClassDeclaration | ts.InterfaceDeclaration |
.VariableStatement) : =>{

(ts.isVariableStatement (node)) {

variableStatement = node ts.VariableStatement

variableDeclarationlList = variableStatement.
.VariableDeclarationlList

variableDeclaration = variableDeclarationList.
.VariableDeclaration

name = variableDeclaration. Identifier

name.

node.

generateASTCompliantTypeliteral=(node:
.TypeLiteralNode,h ggqlNodes:GraphQLNode[]) : ts.TypeLiteralNode=>{
typeliteralMembers = node. .map (member=>{
(member. == ts.SyntaxKind.) {
propertySignature = member ts.PropertySignature
propertySignatureName = propertySignature.

.Identifier

(propertySignatureName. ===
ts. .updatePropertySignature (
propertySignature
propertySignature.
ts. .createldentifier(ts.Identifier

propertySignature.

(propertySignatureName.

(propertySignatureName. .endsWith (
[propertySignatureName. .endsWith ()) {

(propertySignature. &&
ts.isTypeReferenceNode (propertySignature.

typeNode = propertySignature. type

renameTypeReference = (typeNode) => {
typeName = (typeNode ts.Identifier).
(gglNodes . some ((dexGraphQLNode) =>dexGraphQLNode.
typeName && dexGraphQLNode. '= Kind.)) |
ts. .createldentifier (${typeName}

ts.Identifier

typeNode

processGenericType = (typeNode) => {
(ts.isTypeReferenceNode (typeNode)) {
(typeNode. &&
> 0) {
ts. .createTypeReferenceNode (
typeNode.
typeNode. .map (processGenericType)
ts.TypeReferenceNode

.createTypeReferenceNode (renameTypeReference (typeNode.
) ts.TypeReferenceNode
}

{
typeNode

newType = processGenericType (typeNode)
ts. .updatePropertySignature (
propertySignature
propertySignature.
propertySignature.
propertySignature.
newType

member
}) .filter (member => member !==
(typeliteralMembers. >0) {
ts. .createTypeliteralNode (typeliteralMembers)
ts.TypeliteralNode
} {

Error (

util/tms_asg_codegen/
visitor.ts

*Based of of code written by Maxwell at F5, but we changed it to generate our
own functions for our own needs*

{ }
{NodeMap, PreprocessorKey, NonUnionNodes}
{Context}

preProcessVisitor= < NodeMap [NodeMap] > (
context:Context, astNode:) : Promise< >=>{
(astNode==) {

preprocessorKey: PreprocessorKey= ${astNode?.
NonUnionNodes}
.hasOwnProperty (preprocessorKey)) {
astNode = [preprocessorKey] (context,astNode)
astNode

Error (${astNode?.

lutil/
neodj.ts

{ Driver }
driver: Driver
defaultOptions = {

.env.NEO4J URI
.env.NEO4J_USER

.env.NEO4J PASSWORD

getDriver () {
{ uri, username, password } = defaultOptions
(!driver) {
driver = .driver (uri . .basic(username, password))

Page 95

}

[tms-graph/
package.json (scripts)

