
Capacity Plan Database Capstone Project

Erin Scheunemann, Brendan Verbrugge, Man Ho Yuen

May 1st, 2023

Introduction

Our team worked with Miltech to create a financial management tool to help cut down on

the time it takes their financial team to balance their spending between employees and projects as

well as to eliminate the majority of the human error in their current process. Miltech is a

company that was formed as a partnership between Montana State University and the Office of

the Secretary of Defense and acts as an intermediary between different private companies and the

Department of Defense (DoD), the Department of Homeland Security (DHS), and other

government agencies in order to provide the government with the latest technology quickly and

reliably. They have three different categories of expertise: information research and analysis,

design and prototyping, and manufacturing, process improvement and management. These three

areas allow them to find and help advance technology to meet the government’s needs. How this

works is that the government provides funding for different projects and it is Miltech’s job to get

the project completed in a timely manner while spending out the entirety of the funding.

Managing the spending for different projects is a difficult task. There is a lot of

information that Miltech has to keep track of when managing their spending for different

projects. The first task that they encounter is planning out the amounts they will pay in benefits

and salary total for each pay period up to the last one for each project. These amounts are also

able to fluctuate and change based on their actual spending for the current pay period or based on

the needs of a project for a certain pay period. An important aspect of project spending is

keeping track of salary and benefits. It is important to meet the projected target spending for a

certain pay period but it is also equally as important to make sure employees are being paid their

full wages for a pay period. Miltech needs to keep track of what employees are working on what

projects and what percentage of their time is being spent on their different projects. These

percentages need to add up to 100%. This means that Miltech must balance the amount of time

their employees spend on different projects so that they receive their full wages and Miltech

reaches the target spending for salary and benefits for their different projects.

Their current solution is slow and cumbersome and leaves them prone to human error.

The main reason their process is so slow is that they have to use three disconnected tools:

CatBooks, Excel Spreadsheets, and Banner. CatBooks is an accounting software that MSU

created and that MSU and MSU related businesses use. CatBooks acts as their checkbook and

helps them keep track of their current and future spending for the current fiscal year. They have

two main Excel Spreadsheets that they manage; their initial target spreadsheet and their capacity

plan spreadsheet. Both of these spreadsheets have to be kept up to date with every pay period. In

the case of the Capacity Plan spreadsheet, it has to be remade for every pay period. The initial

target spreadsheet is where they keep track of their planned spending for the allotted salary and

benefits budget for each project until the end project date. For every project this spreadsheet

records its total budget, what they have spent of the total budget so far, and the total amount of

the budget that is set aside for salary and benefits. This is further broken down into what they

have spent on salary and benefits in total, what they have encumbered in total, and their

remaining salary and benefits budget. In the spreadsheet there is also a distinction made for each

category between what the numbers actually are in CatBooks and what they are in the plan. Then

the spreadsheet records the planned amount that needs to be spent in salary and benefits for each

project until the end date for the project. The Capacity Plan spreadsheet is used to determine the

distribution of salary and benefits spent for each employee across the different projects so that

the target amount is spent for that project and pay period and so that employees are paid their full

wages. The spreadsheet records the percentage of each employee’s wages spent on each project.

It is important that the percentages for each employee add up to 100% so that the entirety of that

employee’s wages are accounted for. The salary and benefits payment for each project is

calculated from the total wages spent for each employee in that pay period and the total amount

spent must be close to the bi-weekly target amount from the initial target spreadsheet. Banner is

their bank. They use this to both pay their employees each pay period and to keep track of what

they have spent in pay periods past.

The current solution they have been using leaves a lot to be desired in terms of error

checking and time saved. Navigating these three tools is a slow process and the financial team

must enter data in a time sensitive manner. The capacity plan alone can take upwards of two days

to complete and they need those two days because they have to wait until after employees have

been paid for the last pay period, which does not happen until midway through the current pay

period, and gives them exactly two days to complete the capacity plan for the current pay period.

Cutting down on the time it takes for them to update these plans would give them more free time

to work on more important matters and give them time to double check their work. Another

problem with their current solution is the lack of error checking involved. When the team has to

import multiple spreadsheets from catbooks and place the information onto their initial target

spreadsheet there is nothing checking that they put the right information in the correct spot.

Excel does not check if they are entering information for pay period 22 in the information for

pay period 23 table. Along with this they have to rely on excel functions to double check that all

their values add up correctly. This opens the door for human error to slip in and mess up their

reports. If their data is off or incorrect then that could have disastrous consequences for the

company. For instance, if they think that they have planned out the amount they need to spend in

their salary and benefits budget for a project by the end date for that project and because of an

error in one of their spreadsheets they do not spend out the full budget then that could result in

them not receiving as much money for their next projects. Another consequence could be that

they end up incorrectly entering the amount of salary spent from a specific employee and that

causes a cascade wherein every employee’s pay distributions for that pay period is off. Tiny

errors like these can have big consequences for Miltech and their current solution leaves room

for these errors to take place.

Our solution was to build a web-app tool that cuts down on the time this process takes

along with reducing the amount of human error introduced. A main component of reducing their

time will be with importing data from a CSV file and having the web-app check their imputed

data for errors or inconsistencies. Originally they had to take the CSV file that they downloaded

from CatBooks and copy and paste specific chunks to get the right data into their own excel files.

In our web app they will be able to import the CSV files that they get from CatBooks and our

web app will parse them and put the data into the database for them. Then they will be able to

view and update this data from the different views we will provide them. With their original

solution, if they wanted to view the data differently, or to only view specific pieces of the data,

they would have had to create their own new excel spreadsheets which takes time away from

their already busy days. With our web app they will be able to access a multitude of different

views of the data instantly. The different views will also allow them to check their own work

more easily. The final thing our web app has to offer over their original solution is more accurate

and faster error checking. With their original solution a lot of the error checking was done either

by hand or with excel functions. Our web app automatically checks their different imputed data

against the data in the database to prevent inconsistencies in the data. Our overall objective is to

ensure that our solution is able to help them reduce the amount of time that the process takes and

how much error is introduced into the process.

Background:

The database our team has created for Miltech is tailor-made to fit their very specific

needs. As such, there isn’t any research available to the public that could better inform or provide

more background to the reader as to the nature of this project. That being said, there are a few

terms/tools used in our solution that are worth explaining in more detail. The first is the software

bundle known as the LAMP stack. As the foundation of our database, it is important to

understand exactly what the LAMP stack is. The LAMP stack is a bundle of four open-source

software components that combine to provide a means to create interactive web-apps capable of

communicating with custom-made databases. Each letter in the LAMP stack stands for one of

these four components: Linux, Apache, MySQL and PHP/Python. Linux serves as the operating

system that supports the other three components. Apache stores website files and gives LAMP

stack web apps a means to communicate with web browsers via HTTP. MySQL is a relational

database management system, allowing not only for the creation of an underlying database used

by the LAMP stack, but for the manipulation and querying of that database in whichever way the

developer of the LAMP stack web app wishes. Finally, the PHP/Python layer of the LAMP stack

gives a means to customize the UI of a web app as well as allowing a web app to run dynamic

processes.

The terms “pay period” and “pay number” are used many times in this document, often

somewhat interchangeably. The difference between them is minor but important. A “pay period”

is a two week period in between salary distribution for Miltech employees. The last Friday of a

pay period is when all the employees are paid, and new actuals are generated, although the exact

numbers for these actuals is not clear until the day before the next pay day for the next pay

period. Actuals are the money that Miltech has already spent, and it is very important

information to keep track of as it directly influences the quantity of money remaining in their

active grants, and thus is a deciding factor in the employee pay percentages that must be

calculated on a bi-weekly basis. The Miltech finance team always has to think two weeks ahead,

as they won’t receive the actuals for the previous pay period until the current pay period is

almost over. One of the reasons this database is so important to the finance team is that it will

allow them to take the last pay period’s actuals and very quickly see if those actuals conflict with

their projections/current planned pay percentages. If there is a conflict, the database will help the

team update the pay percentages much faster. By contrast, the term “pay number” refers to a

simple numerical identifier for each pay period during the year. The year begins with pay number

1, and ends with pay number 26. The pay numbers give the Miltech finance team a convenient

way of keeping track of where they are in the year, and provides an identifier for pay periods so

that previous pay periods can easily be referenced.

Work Schedule:

During the first semester of this capstone, our team met consistently two to three times a

week (including weekly meetings with Miltech) to produce a formal project proposal that would

lay the groundwork for the production of an end product capable of meeting the needs of our

client company Miltech. Each member of our team had various responsibilities concerning the

production of the proposal. Erin handled most of the UML diagrams, the introduction, proposal,

design pattern and design tradeoff components of the proposal. Man Ho worked on some of the

UML diagrams and performance requirements as well as the functional and non-functional

requirements components of the proposal. Brendan focused on the work schedule, background,

UI and expected results components of the proposal. Below is a gantt chart detailing our progress

on this portfolio over the course of the semester.

For the first few weeks of the semester, we focused on selecting our Capstone project and

learned the very basics of what our project was going to be. From there we started with the

introduction and proposal statement. After producing a draft of these, we shifted our attention to

the E/R and UML diagrams. Once we had created most of our diagrams, we moved on to

planning out our software development life cycle (SDLC) as well as thinking about our

functional/nonfunctional requirements. This in turn led to thinking about our components, which

led to the creation of our component diagram. From here we were able to identify a design

pattern that would work well with our plan, and we updated the relevant UML diagrams to

include this pattern. Finally, we spent the last few weeks before the presentation of this portfolio

working on our planned work schedule for the second semester, as well as filling in anything else

that was missing.

Each member of our team had a different responsibility when it came to writing the code

for our project during the second semester. Man Ho focused on development of the frontend,

including the web app and the GUI, Brendan focused on development of the backend (the

database itself) and Erin assisted with both frontend and backend as needed. Our team met two to

three times a week including a weekly meeting with the Miltech team in which we discussed our

progress as we moved forward with development. The other meetings were group meetings in

which we discussed as a team the progress we were making, potential issues that had arisen

during the coding process, solutions to these and any other issues and in general, our current

strategy to ensure development of a satisfactory end-product. We developed the database using a

SDLC known as the iterative model. This means that we focused on creating “low functionality”

prototypes of various database components that we could present to the Miltech team during our

weekly meetings. (Tutorials Point) For example, one prototype might involve an operational

“create” function for new projects and employees, but not much else. Another prototype example

might be a prototype in which the “import” function is operational but not much else. The

purpose of these prototypes was to give the Miltech team something tangible to interact with as

we moved forward with development of the project, so that we could get feedback from the

prospective users of the database step by step during development without having to walk these

prospective users through the code itself in extreme detail. We were able to incorporate this

feedback into new, increasingly robust prototypes over the course of development, and

eventually were able to hook these prototypes together into our eventual end-product. Each

prototype created over the course of this process was considered to be a development

“milestone,” or a tangible measurement of our progress made towards delivery of a satisfactory

end-product. Below is pictured the Gantt Chart we followed during the development process.

The first two weeks of development were focused on the construction of the database

“skeleton,” or the basic underlying structure of the database itself. The next two weeks focused

on CRUD functionality, or create, read, update and delete functionality. The next two weeks

focused on the import functionality - making sure that the database was capable of reading csv

files exported from Catbooks and properly populating the database with relevant information.

After import, the next two weeks focused on implementing export functionality. After this, focus

shifted to the web app. Two weeks were devoted to the development of basic functionality of the

web app - making sure that all the buttons and displays were working as intended. After this, a

week was devoted to implementing user access stratification, or separating what features of the

web app users could access based on their security clearance. A week was then spent on

implementing user confirmation - whenever a user makes an input that will cause a change in the

database, an extra confirmation step was implemented to help minimize human error. Next, a

week was spent on implementing extra security features to ensure the PII contained in the

database remained secure. The last two weeks before presentation and submission of this project

were spent on refining all features of the database and web app, as well as working on stretch

goals such as entry logging.

Proposal statement:

Our team has created a LAMP stack based web-application to better solve Milech’s

current financial management problem. For our LAMP stack we choose to specifically be

working with Python and using the Django web-programming framework. Our team decided to

work with Django because it follows the MVT, or Model-View-Template, structure.

(DjangoProject) This was beneficial to our team because the backbone of our solution is the

web-app’s Database. This database contains all the financial information needed to create the

reports displayed on the web-app. The MVT structure of Django has allowed us to create a

web-app that will let us do CRUD operations on the database easily and efficiently. Our web-app

allows them to create multiple different views, or reports, of the data from the database. These

views may be new, such as displaying employee information, or be analogous to their current

reports, like the capacity plan. On these different pages the user is able to update the information

on the page by modifying the different cells of the report and then committing the changes. The

user is also able to export these reports to CSV files for archival and comparison purposes. A big

part of our web-app that has sped up their current process is the ability for employees to upload

CSV files to automatically update the database. Previously, employees would have had to

download the reports from CatBooks and manually copy and paste the information from the CSV

into specific places in either the initial target plan or capacity plan spreadsheet. But with the

web-app they simply have to upload the report and the web-app will parse the file and update the

information in the database accordingly which then allows them to view the information in

different ways through the front-end. Another way our web-app helps them to better solve their

problem is helping them with verification of information. In their original solution they have to

rely on excel functions and visual checking to make sure that their information adds up to the

correct amount. Our web-app does the verification for them and lets them know when values are

not adding up correctly or if they try to enter incompatible data into the system.

E/R Diagram:

This is our E/R diagram which is a graphical representation of our database. Our database

is the backbone of our web-app. There are three tables that directly correspond to Miltech’s

current solution: Employee-Project-PayNo, Project-PayNo, and Employee-PayNo.

Employee-Project-PayNo contains the information that corresponds to the capacity plan so it

holds the percentage of an employee’s wages that were spent on a project for a specific pay

period. Project-PayNo corresponds to the initial capacity plan and contains what was planned to

be spent on a project for a certain pay period and what was actually spent for that pay period.

Employee-PayNo corresponds to what an employee’s salary is for a specific pay period. There

are four tables corresponding to different elements of Miltech’s financial system: Employee,

Project, Team, and PayNo. These tables all contain the information pertaining to their subjects.

The last three tables, Project-Employees, Project-Teams, and Team-Employees are there to act as

connectors between the different tables. Another thing to note is that we are storing our financial

information using the Integer type. Thus us because we are choosing to store the information in

terms of US cents and not USD. We choose to store the information this way so that we could

maintain as much precision as possible which we would not have gotten if we stored the data in

USD using the Decimal or Floating Point type.

Functional and non functional requirements

For this software, there are six main functional requirements. Update database with user

change is the first main functional requirement. Only users with elevated privileges can change

the data in the software and all the changes should be read and updated to the database. This

should make sure the database is updated with user input. If not, the web-app may need to make

up new rows to store that new data. The second functional requirement is appending data/rows to

the data tables in the database. In the data table, there is an initial number of rows from when the

data table was created. This function allows users to add up more data/rows to data tables, so it

gives users some flexibility to add new data to the database. This function helps not limit users in

data input and the ways to express data tables. A third functional requirement is the ability for

users to archive data in the database, we have to make sure the data have archived into the

database when users are making changes or inputting data. Otherwise all users input will not

store or archive in the database. Confirming every change is one of the important functions.

Because when a user makes a change in software, we have to make sure the user knows they are

making changes to the data. If a user doesn't know that they have elected to change the data, it

could cause a serious problem. Most data is connected to each other, one small change could

make other data change also. And confirming change could prevent users accidentally changing

data, that could help users know they have changed the data. The last two functional

requirements are importing CSV files. We are looking for a function that could allow users to

upload a CSV file and create/update the database by the CSV file. This function allows users to

not need to manually input data, users can import CSV files to automatic input data.

Non functional requirements

For users they have different user levels to managers and employees. Managers can input

data, import data and change data, but regular employees only can view data on the software. In

the login system, we require user login with their ID. Because the database stores what level of

access a user has, it makes sure that that employee only has access to the features they have

permission to use. It makes sure regular employees can’t input data or change data, so regular

employees can not input or change data accidentally. The user's ID is an important place for

system safety. Because all the payment for contract and employee payment is stored in this

software, we have to prevent regular employees from changing the payment. Also for the

software we have to make sure we have enough memory to store all the data. Because Miltech

will store all the data including employee information and payment etc, there will be a lot of data

that needs to be stored.

Use Case Diagram:

Performance requirements

For the performance requirements, the data workload should not be too long. Because in

the software users always need to read or input data, users should not have to wait for a long time

to get the data. We have to make sure the user will not wait more than ten seconds to get the data

they need. Otherwise, every time users have to wait when the system reads data or when users

input data. It could happen multiple times in a minute, so it is important to make sure data

workload can’t be too long. Another performance requirement is that data should be easy to read.

For example, when users take the data form the database, the way that system shows the data

should be easy to read. It could increase the speed of users finding the data that they want.

Miltech has a great amount of data on the data table. So we are going to use the list to show the

data and try to not show too much data in the same page. Make sure to only show the data

simple, not too complex. That could help the user easily read and easily find out the data he

wants. And keeping data simple could help programmers to easily find out the problem when the

system goes wrong.

Software Interfaces:

Component Diagram

There are three major components that have to communicate with each other: the

database, the back-end, and the front-end. These three major components are made up of smaller

components that communicate with each other in order to connect the major three together. The

database component is composed of just the MySQL component. MySQL is a part of our LAMP

stack and is where we plan to host our database. The back-end is composed of a few premade

python interfaces combined with our created classes. This is the portion of the web-app where all

our logic will be stored and is the component that connects the front-end to the database. This

allows the user to read from the database or make modifications to the database via the front-end.

The front-end contains the components that allow the user to interact with our web-app. Namely

the HTML templates, Urls.py, and the HTTP python module that allows us to make use of HTTP

protocols.

The back-end of our web application is where our logic is stored. It contains the classes

we made and their required python libraries. Import, as discussed previously, allows the user to

update to or read from the database via the use of CSV files. In order to write or read files python

requires the use of the files I/O module. These classes also require Pandas which is a python

package that makes data manipulation and analysis from data frames easier. The reason that we

are using Pandas here is because it has excellent formatting capabilities for both reading from

and writing to excel or CSV files. This will help the web-app to decipher the files that the user

gives us. The model classes component represents all of our model classes for the database; each

corresponding to one table in the database. Each class will implement the Django Models

interface. This interface provides us the skeleton of our model classes for the CRUD operations

that will be needed. Views.py and Forms.py work together to create the pages on the front-end.

Forms in the forms.py file are predefined by us to display forms on the front end that allow us to

modify model objects in the back-end. They are displayed by the view functions in the views.py

file, which render HTML templates to create a dynamic and unique web-page for the user.

Software Interface Requirements:

These interfaces have to interact in certain ways for our web-app to be functional. The

model classes component shall write, read, update and delete from the database stored in MySQL

through the use of the Python DataBase API and the Models interface provided by Django. The

Import class shall read from files, in our case mainly CSV files, using the Files I/O module

provided by Python. The import class shall read from incoming files using the Pandas Library

provided by Python. The HTML templates shall send HTTP requests and posts using the HTTP

Module provided by Python. All of these ways of communication via the different components

must be working in order for our web-app to be functional.

User Interface:

Our user interface was designed with the help of Miltech. The UI prioritizes functionality

over appearance - it is designed to be intuitive to our prospective user base without being

visually cluttered. The objective is that anyone who understands Miltech’s financial system

would be able to make use of this web app with relatively minimal training. Below are numerous

images of our UI followed by brief descriptions of the features on each screen, as well as an

explanation of how UI features differ depending on user access level.

Login and Dashboard:

This first screen displays what a user would first see when accessing our web app. It is a simple
login screen that will use the Miltech employee’s netID and netID password as the login
parameters. When the user logs in, the database does an automatic background check to
determine the access level of the user.

This dashboard acts as a main menu, or “central hub” for our web app from which all other
features of our web app can be accessed. Here the user can access whichever feature of the web
app they desire to utilize.

Employee Pay Information:

This screen allows a user to view all the relevant information for a certain employee in the
database. It is important to note that this feature will change depending on the user’s access level.

Low level employees can only see information for themselves, Operations Managers can see
information for their team members and Finance Admins can see information for everyone.

This screen allows a user to update information for an employee. Only Finance Admins are able
to edit monetary values like current salary and latest salary mod. Any user should be able to
update their contact info (phone # and email) and profile picture if desired.
Index Targets Per Team:

This screen allows a user to create a visualization of actuals and targets for the various indexes
managed by a certain team, for a certain range of pay numbers, given the team name, starting pay
number and ending pay number.

This is an example of a visualization created by the above screen. A low level access user would
only be able to look at this table, but an Operations Manager or Finance Admin would be able to
make edits to the targets if they desired to do so.
Index Distributions Per Team:

This screen allows the user to produce a visualization of employee pay percentages for a certain
pay number from a certain team.

This is an example of a visualization created by the above screen. A low level access user would
only be able to look at this table, but an Operations Manager or Finance Admin would be able to
make edits to the targets if they desired to do so.
Sal/Ben and Total Remaining:

This screen allows the user to produce a visualization of the remaining salary and benefits budget
for the indexes from a certain team or from just one index of choice. Alternatively, the user can

choose to create a visualization of the remaining salary and benefits budget for all indices across
all teams.

This is an example of a visualization created by the above screen. This table is static and doesn’t
get updated manually by the user.
Distribution Across Paynos -1 Employee:

This screen allows the user to create a visualization of employee pay percentages for a single
employee for a given range of pay numbers.

This is an example of a visualization created by the above screen. A low level access user would
only be able to look at this table, but an Operations Manager or Finance Admin would be able to
make edits to the pay percentages if they desired to do so.
Distribution Across Paynos -1 Index:

This screen allows the user to create a visualization of employee pay percentages for a single
index for a given range of pay numbers.

This is an example of a visualization created by the above screen. A low level access user would
only be able to look at this table, but an Operations Manager or Finance Admin would be able to
make edits to the pay percentages if they desired to do so.
All encumbrances -1 Payno:

This screen allows the user to create a visualization of encumbrances for the indexes from a
certain team or from just one index of choice. Alternatively, the user can choose to create a
visualization of encumbrances for all indices across all teams.

This is an example of a visualization created by the above screen. This table is static and doesn’t
get updated manually by the user. A low level access user would only be able to look at this
table, but an Operations Manager or Finance Admin would be able to make edits to the
encumbrances if they desired to do so
Epaf Queries:

This screen allows the user to create a visualization of updated pay percentages since the
previous pay number for the indexes from a certain team or from just one index of choice.

Alternatively, the user can choose to create a visualization of updated pay percentages since the
previous pay number for all indices across all teams.

This is an example of a visualization created by the above screen. This table is static and doesn’t
get updated manually by the user.
Benefits Update Form:

This screen allows the user to create a visualization of the employee benefits for a particular
employee, or the employee benefits for all employees given a particular pay number.

This is an example of a visualization created by the above screen. A low level access user or an
Operations Manager would only be able to look at this table, but a Finance Admin would be able
to make edits to the benefits if they desired to do so.
Import Reports:

This screen allows the user to import various reports into the database. A low level user would
not be able to access this feature.

This is an extra confirmation screen after selecting a file to import. A window pops up showing a
preview of the data in the selected file, giving the user a second chance to make sure that the data
they selected to import is correct.

Security:

Because our team is dealing with sensitive information, security is an important part of

our web-app. We are using the SHA3-256 hashing algorithm to store the user’s password to keep

them secure. This is one of the current recommended hash algorithms by the US government.

(CSD) We are also using a 16 byte salt appended to the beginning of the user’s plaintext

password to maintain uniqueness between passwords when stored as hashes. The salt is stored in

the database along with the hash of both the salt and the plaintext password but the plaintext

password by itself is not stored.

Class Diagrams:

These classes implement the django model interface provided by python. They will all

have CRUD functionality that will be used by the front end to update the database as necessary

when users input changes.

The forms classes inherit from either the Django models.Form interface or the Django

forms.Form interface. These are used to create the forms that are displayed on the front end

allowing us to update model objects or select what to view on the pages.

Help and Views are collections of functions. The functions in help are used within the functions

in views. The functions in views help to create the pages that are seen on the front end. These

functions allow us to get the data to fill in the cells on the front end using the information filled

in by the user in the initial form field before they access a specific view. The functions in views

also check the permissions of the user before they are allowed to view or change anything on the

front end.

This class uses the different model classes from the first class diagram. A more detailed

explanation as to why is provided in the section labeled “Design Pattern”.

Design Pattern:

Our team decided to make use of the Decorator Pattern when designing the import class

for our back-end. This class is used to import different reports from xlsx files and to update the

database accordingly. The Import class was the main reason we decided to use this design

pattern. The Import class has to use the functions from the different model classes to be able to

update the database with information from the xlsx file provided but import functions cannot be

added to the individual model classes because the xlsx file might contain information needed in

multiple tables in the database. So, we had to create an import class that uses the model class

objects rather than the other way around. We decided to have the Import class contain objects of

all the model classes that were initialized in the constructor for Import and used by the different

functions as needed. This simplifies the implementation of the Import functionalities in the

front-end because instead of having to initialize multiple of the different model classes explicitly

we just initialize Import and then call a singular function to initialize the different model classes

for us and then we can use them within our different functions making the front-end

implementation cleaner.

Design Tradeoffs:

Initially our team was planning on using PHP to build the back-end of our web-app. We

considered PHP because of our LAMP stack design. One of our team members already had

experience building multiple LAMP stack web-apps using PHP as the back-end. However, the

other members of the team had not used PHP before. We still wanted to use a LAMP stack so our

team decided to switch our design to be using Python as our back-end using the Django

framework. All of our team members have previous experience using Python. As well as Python,

and specifically Django, would provide us with more security moving forward. (DjangoProject)

We needed our web-app to be as secure as possible because we are dealing with sensitive

financial and personal information from the government. Python was the better choice in this

case.

Our choice of using Python in our web stack also led to another design tradeoff. While

considering PHP for our final design we were planning on building our own ORM tool within

PHP since PHP does not have one already baked in. This would have given us more direct access

to the SQL and by definition more direct access to the underlying database. However when we

switched to considering Python we saw that Django had a built in ORM tool in the form of the

models library from Python. Models is a lightweight framework for mapping Python objects to

tables in a database. We decided to make the switch out of convenience. Even though it will give

us less direct access to the database, this will cut down on our development time allowing us to

do more with our web-app.

Another design tradeoff we made was when we were designing the Import and Export

classes. There were three choices we could have made: having the export and importing

functions be a part of the model classes and not separated, having one class for both import and

export, and having two classes one for import and one for export. We decided to go with the third

option. The first one wouldn’t have worked because both import and export would have required

the use of multiple model classes and therefore it wouldn’t have made sense to contain the

different functions to a singular model class. For instance, when importing a report from

CatBooks, the information contained pertains to both EmployeeProjectPayNo, and

EmployeePayNo so it would have been difficult to implement that in a single class without it

getting lost. The second option would have violated the Single Responsibility Principle in OOP

because it would have had two responsibilities: importing and exporting. The third option made

the most sense to our team. It allowed us to import and export efficiently without having to

worry about what report belonged to which model object and it would separate the

responsibilities cleanly between the two classes.

Expected Results:

Our expected results for this project was the successful production of a LAMP stack web

app capable of enabling a measurable decrease in bi-weekly budgeting time for the Miltech

finance management team. We did have two stretch goals for this project. The first stretch goal

was to implement an entry logging feature. Whenever a user would make a change to the

database, the entry logger would track this change. A history of recent changes made to the

database could be viewed by accessing a particular screen from the dashboard. Ideally, the user

would be able to revert the database to a previous version by accessing this history. The idea is

that if a mistake is made, a user can undo the mistake by reverting to an older version of the

database before the erroneous edit was made. Additionally, this feature would help Miltech

understand who was making changes to the database and when. The second stretch goal was to

implement simultaneous editing functionality. This would allow multiple users to make edits to

the same table in the database at the same time without causing issues in the database. This

feature could be very useful, as the different Operations Managers and Finance Admins often

work together on budgeting issues and are accessing and updating things at the same or similar

times.

File - C:\Users\yywwc\PycharmProjects\miltech\main\admin.py

1 from django.contrib import admin
2 from .models import*
3 from django.contrib import admin
~ from django.contrib.auth.admin import UserAdmin
5 from .forms import EmployeeCreationForm, EmployeeChangeForm
6 from .models import Employee
7
8
9 class EmployeeAdmin(UserAdmin):

10 add_form = EmployeeCreationForm
11 form= EmployeeChangeForm
12 model= Employee
13 list_display = ("GID", "role",)
1~ list_filter = ("GID", "role",)
15 fieldsets = (
16 (None, {"fields": ("GID", "password")}),
17 ("Permissions", {"fields": ("role", "groups", "

user_permissions")}),
18)
19 add_fieldsets = (
20 (None, {
21 "classes": ("wide",),
22 "fields": (
23
2~
25)}
26) I

27)

"GID", "password1", "password2", "role",
"groups", "user _permissions"

28 search_fields = ("GID",)
29 ordering= ("GID",)
30
31
32 admin.site.register(Employee, EmployeeAdmin)
33 admin.site.register(Project)
3~ admin.site.register(Project_Employee)
35 admin.site.register(Team)
36 admin.site.register(Team_Employee)
37 admin.site.register(Project_Team)
38 admin.site.register(PayNo)
39 admin.site.register(Employee_PayNo)
~0 admin.site.register(Project_PayNo)
~1 admin.site.register(Employee_Project_PayNo)
~2

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

1 from django import forms
2 from django.contrib.auth.forms import UserCreationForm,

UserChangeForm
3 from django.core.validators import FileExtensionValidator
~ from .models import*
5
6
7 class EmployeeCreationForm(UserCreationForm):
8 Netid = forms.CharField(max_length=50, required=True)
9 FirstName = forms.CharField(max_length=50, required=True)

10 LastName = forms.CharField(max_length=50, required=True)
11 PhoneNum = forms.CharField(max_length=50, required=True)
12 Email= forms.EmailField(required=True)
13 Title= forms.CharField(max_length=50, required=True)
1~ PositionNum = forms.CharField(max_length=50, required=True)
15 Zorg = forms.CharField(max_length=50, required=True)
16 StartDate = forms.DateField(required=True,)
17 CurrentSalary = forms.IntegerField(required=True)
18 LastSalMod = forms.IntegerField(required=True)
19 SalModDate = forms.DateField(required=True)
20 CellphoneAllowance = forms.IntegerField(required=True)
21 Benefits= forms.IntegerField(required=True)
22 BiweeklySalary = forms.IntegerField(required=True)
23 BiweeklyBenefits = forms.IntegerField(required=True)
2~ TeamPool = forms.CharField(max_length=50, required=True)
25 LOA= forms.CharField(max_length=50, required=True)
26 FTE = forms.CharField(max_length=50, required=True)
27
28 class Meta:
29 model= Employee
30 fields= ('GID', 'Netld', 'FirstName', 'LastName', '

PhoneNum', 'Email',
31 'Title', 'PositionNum', 'Zorg', 'StartDate',

'CurrentSalary',
32 'LastSalMod', 'SalModDate', '

CellphoneAllowance', 'Benefits',
33 'BiweeklySalary', 'BiweeklyBenefits', '

TeamPool', 'LOA', 'FTE',
3~ 'passwordl', 'password2')
35
36
37 class EmployeeChangeForm(UserChangeForm):
38 class Meta:
39 model= Employee
~0 fields= ('GID', 'Netld', 'FirstName', 'LastName', '

PhoneNum', 'Email',
~1 'Title', 'PositionNum', 'Zorg', 'StartDate',

'CurrentSalary',

Page 1 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

~2 'LastSalMod', 'SalModDate', '
CellphoneAllowance', 'Benefits',

~3 'BiweeklySalary', 'BiweeklyBenefits', '
TeamPool', 'LOA', 'FTE')

~~

~5 class ProjectForm(forms.ModelForm):
~6 IndexNo = models.CharField(max_length=50)
~7 Title= models.CharField(max_length=50)
~8 Operationslead = models.CharField(max_length=50)
~9 StartDate = models.DateField()
50 EndDate = models.DateField()
51 TotalGrantFunds = models.IntegerField()
52 SalaryBenefitBudget = models.IntegerField()
53 Note= models.CharField(max_length=200)
5~ class Meta:
55 model= Project
56 fields= ('IndexNo', 'Title', 'OperationsLead','StartDate

', 'EndDate',
57 'TotalGrantFunds', 'SalaryBenefitBudget', 'Note

I)

58
59 class TeamForm(forms.ModelForm):
60 Teamld = forms.CharField(max_length=50)
61 Name= forms.CharField(max_length=50)
62 Lead= forms.CharField(max_length=50)
63 class Meta:
6~
65
66

model= Team
fields= ('Teamld','Name', 'Lead')

67 class PaynoForm(forms.ModelForm):
68 Year= forms.CharField(max_length=~)
69 Start= forms.DateField(required=True)
70 End= forms.DateField(required=True)
71 Date= forms.DateField(required=True)
72 class Meta:
73 model= PayNo
7~ fields= ('Year', 'Start', 'End', 'Date')
75 class TeamSelectionForm(forms.Form):
76 all_teams = Team.objects.all().order_by('Teamld')
77 team_choices = []
78 fort in all_teams:
79 team_choices.append((t.Teamld,t.Name))
80 team= forms.ChoiceField(choices=team_choices, required=

True)
81 class ProjectSelectionForm(forms.Form):
82 all_projects = Project.objects.all().order_by('IndexNo').

exclude(Note="Subaccount")
83 project_choices = []

Page 2 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

8~ for pin all_projects:
85 project_choices.append((p.IndexNo, p.IndexNo))
86 project= forms.ChoiceField(choices=project_choices,

required=True)
87
88
89 class EmployeeSelectionForm(forms.Form):
90 all_employees = Employee.objects.all().order_by('FirstName

'LastName')
91 employee_choices = []
92 fore in all_employees:
93 employee_choices.append((e.GID, e.FirstName + 11 11 + e.

LastName))
9~ employee= forms.ChoiceField(choices=employee_choices,

required=True)
95
96 class IndexTarTeamSelectionForm(forms.Form):
97 all_teams = Team.objects.all().order_by('Name')
98 team_choices = [('all', 'Get All Indexes')]
99 fort in all_teams:

100 team_choices.append((t.Teamid, t.Name))
101 team= forms.ChoiceField(choices=team_choices, required=

True)
102 all_PayNo = PayNo.objects.all().order_by('Start')
103 payno_choices = []
10~ for pin all_PayNo:
105 payno_choices.append((p.Year, p.Year + 11 (11 + str(p.

Start)+ 11 , 11 + str(p.End) + 11) 11))

106 start= forms.ChoiceField(choices=payno_choices, required=
True)

107 end= forms.ChoiceField(choices=payno_choices, required=
True)

108
109 class IndexDisTeamSelectionForm(forms.Form):
110 all_teams = Team.objects.all().order_by('Name')
111 team_choices = [('all', 'Get All Indexes')]
112 fort in all_teams:
113 team_choices.append((t.Teamid, t.Name))
11~ team= forms.ChoiceField(choices=team_choices, required=

True)
115 all_PayNo = PayNo.objects.all().order_by('Start')
116 payno_choices = []
117 for pin all_PayNo:
118 if p.Year[:2] != 11 27 11 :

119 payno_choices.append((p.Year, p.Year + 11 (11 + str(p
.Start)+ 11 , 11 + str(p.End) + 11) 11))

120 payno = forms.ChoiceField(choices=payno_choices, required=
True)

Page 3 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

121
122 class SalBenTotalSelectionForm(forms.Form):
123 selection= forms.ChoiceField(choices=[('i','index'),('t',

'team'),('a', 'all')], required=True)
12~ all_teams = Team.objects.all().order_by('Name')
125 team_choices = [('none','No Team Selected')]
126 fort in all_teams:
127 team_choices.append((t.Teamid, t.Name))
128 team= forms.ChoiceField(choices=team_choices)
129 all_projects = Project.objects.all().order_by('IndexNo')
130 project_choices = [('none', 'No Project Selected')]
131 for pin all_projects:
132 project_choices.append((p.IndexNo, p.IndexNo))
133 project= forms.ChoiceField(choices=project_choices)
13~
135 class AllEncumSelectionForm(forms.Form):
136 selection= forms.ChoiceField(choices=[('i','index'),('t',

'team'),('a', 'all')], required=True)
137 all_teams = Team.objects.all().order_by('Name')
138 team_choices = [('none','No Team Selected')]
139 fort in all_teams:
1~0 team_choices.append((t.Teamid, t.Name))
1~1 team= forms.ChoiceField(choices=team_choices)
1~2 all_projects = Project.objects.all().order_by('IndexNo')
1~3 project_choices = [('none', 'No Project Selected')]
1~~ for pin all_projects:
1~5 project_choices.append((p.IndexNo, p.IndexNo))
1~6 project= forms.ChoiceField(choices=project_choices)
1~7 all_PayNo = PayNo.objects.all().order_by('Start')
1~8 payno_choices = []
1~9 for pin all_PayNo:
150 if p.Year[:2] != "27":
151 payno_choices.append((p.Year, p.Year + "(" + str(p

.Start)+", "+ str(p.End) + ")"))
152 payno = forms.ChoiceField(choices=payno_choices, required=

True)
153
15~ class EPAFQueriesSelectionForm(forms.Form):
155 selection = forms. ChoiceField (choices= [('i', 'index'), ('t

'team'), ('e', 'employee'), ('a', 'all')], required=True)
156 all_teams = Team.objects.all().order_by('Name')
157 team_choices = [('none','No Team Selected')]
158 fort in all_teams:
159 team_choices.append((t.Teamid, t.Name))
160 team= forms.ChoiceField(choices=team_choices)
161 all_projects = Project.objects.all().order_by('IndexNo')
162 project_choices = [('none', 'No Project Selected')]
163 for pin all_projects:

Page 4 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

16~ project_choices.append((p.IndexNo, p.IndexNo))
165 project= forms.ChoiceField(choices=project_choices)
166 all_employees = Employee.objects.all().order_by('GID')
167 employee_choices = [('none', 'No Employee Selected')]
168 fore in all_employees:
169 employee_choices.append((e.GID, e. __ str __ ()))
170 employee= forms.ChoiceField(choices=employee_choices)
171 all_PayNo = PayNo.objects.all().order_by('Start')
172 payno_choices = []
173 for pin all_PayNo:
17~ if p.Year[:2] != 11 27 11 :

175 payno_choices.append((p.Year, p.Year + 11 (11 + str(p
.Start)+ 11 , 11 + str(p.End) + 11) 11))

176 prior= forms.ChoiceField(choices=payno_choices, required=
True) # maybe have this be automatic based on current date/
selected 'current' payno

177 current= forms.ChoiceField(choices=payno_choices,
required=True)

178 class BenefitsUpdateSelectionForm(forms.Form):
179 selection= forms.ChoiceField(choices=[('p', 'Per Payno'

) , ('i' , 'Per Individual'), ('a' , 'all')], required=True)
180 all_PayNo = PayNo.objects.all().order_by('Start')
181 payno_choices = [('none', 'No Payno Selected')]
182 for pin all_PayNo:
183 if p.Year[:2] != 11 27 11 :

18~ payno_choices.append((p.Year, p.Year + 11 (11 + str(p
.Start)+ 11 , 11 + str(p.End) + 11) 11))

185 payno = forms.ChoiceField(choices=payno_choices, required=
True)

186 all_employees = Employee.objects.all().order_by('FirstName
'LastName')

187 employee_choices = [('none','No Employee Selected')]
188 fore in all_employees:
189 employee_choices.append((e.GID, e.FirstName + 11 11 + e.

LastName))
190 employee= forms.ChoiceField(choices=employee_choices,

required=True)
191
192 class DisPayNoEmployeeSelectionForm(forms.Form):
193 all_employees = Employee.objects.all().order_by('FirstName

'LastName')
19~ employee_choices = []
195 fore in all_employees:
196 employee_choices.append((e.GID, e.FirstName + 11 11 + e.

LastName))
197 employee= forms.ChoiceField(choices=employee_choices,

required=True)
198 all_PayNo = PayNo.objects.all().order_by('Start')

Page 5 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

199 payno_choices = []
200 for pin all_PayNo:
201 if p.Year[:2] != 11 27 11 :

202 payno_choices.append((p.Year, p.Year + 11 (11 + str(p
.Start)+ 11 , 11 + str(p.End) + 11) 11))

203 start= forms.ChoiceField(choices=payno_choices, required=
True)

20~ end= forms.ChoiceField(choices=payno_choices, required=
True)

205
206 class DisPayNoindexSelectionForm(forms.Form):
207 all_indexes = Project.objects.all().order_by(1 Title 1)

208 index_choices = []
209 for i in all_indexes:
210 index_choices.append((i.IndexNo, i.Title))
211 index= forms.ChoiceField(choices=index_choices, required=

True)
212 all_PayNo = PayNo.objects.all().order_by(1 Start 1)

213 payno_choices = []
21~ for pin all_PayNo:
215 if p.Year[:2] != 11 27 11 :

216 payno_choices.append((p.Year, p.Year + 11 (11 + str(p
.Start)+ 11 , 11 + str(p.End) + 11) 11))

217 start= forms.ChoiceField(choices=payno_choices, required=
True)

218 end= forms.ChoiceField(choices=payno_choices, required=
True)

219
220
221
222 class AddEmployeeForm(forms.ModelForm): # not used?
223 GID = forms.CharField(max_length=50, required=True)
22~ Netid = forms.CharField(max_length=50, required=True)
225 FirstName = forms.CharField(max_length=50, required=True)
226 LastName = forms.CharField(max_length=50, required=True)
227 PhoneNum = forms.CharField(max_length=50, required=True)
228 Email= forms.EmailField(required=True)
229 Title= forms.CharField(max_length=50, required=True)
230 PositionNum = forms.CharField(max_length=50, required=True

)
231 Zorg = forms.CharField(max_length=50, required=True)
232 StartDate = forms.DateField(required=True)
233 CurrentSalary = forms.IntegerField(required=True)
23~ LastSalMod = forms.IntegerField(required=True)
235 SalModDate = forms.DateField(required=True)
236 CellphoneAllowance = forms.IntegerField(required=True)
237 Benefits= forms.IntegerField(required=True)
238 BiweeklySalary = forms.IntegerField(required=True)

Page 6 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

239 BiweeklyBenefits = forms.IntegerField(required=True)
2~0 TeamPool = forms.CharField(max_length=50, required=True)
2~1 LOA= forms.CharField(max_length=50, required=True)
2~2 FTE = forms.CharField(max_length=50, required=True)
2~3
2~~ class Meta:
2~5 model= Employee
2~6 fields= ['GID', 'Netid', 'FirstName', 'LastName', '

PhoneNum', 'Email',
2~7 'Title', 'PositionNum', 'Zorg', 'StartDate'

, 'CurrentSalary',
2~8 'LastSalMod', 'SalModDate', '

CellphoneAllowance', 'Benefits',
2~9 'BiweeklySalary', 'BiweeklyBenefits', '

TeamPool', 'LOA', 'FTE']
250
251
252 class ImportForm(forms.Form):
253 fileType = forms.ChoiceField(choices=((l, 'CatBooks'), (2

, ' Paynos')) ,
required=True) # placeholder

for actual import functions
255 file= forms.FileField(required=True,
256 validators=[FileExtensionValidator(

allowed_extensions=['xml', 'csv', 'xlsx'])])
257
258 class EmployeeUpdateForm(forms.ModelForm):
259 GID = forms.CharField(max_length=50, required=True)
260 Netld = forms.CharField(max_length=50, required=True)
261 FirstName = forms.CharField(max_length=50, required=True)
262 LastName = forms.CharField(max_length=50, required=True)
263 PhoneNum = forms.CharField(max_length=50, required=True)
26~ Email= forms.EmailField(required=True)
265 Title= forms.CharField(max_length=50, required=True)
266 PositionNum = forms.CharField(max_length=50, required=True

)
267 Zorg = forms.CharField(max_length=50, required=True)
268 StartDate = forms.DateField(required=True)
269 CurrentSalary = forms.IntegerField(required=True)
270 LastSalMod = forms.IntegerField(required=True)
271 SalModDate = forms.DateField(required=True)
272 CellphoneAllowance = forms.IntegerField(required=True)
273 Benefits= forms.IntegerField(required=True)
27~ BiweeklySalary = forms.IntegerField(required=True)
275 BiweeklyBenefits = forms.IntegerField(required=True)
276 TeamPool = forms.CharField(max_length=50, required=True)
277 LOA= forms.CharField(max_length=50, required=True)
278 FTE = forms.CharField(max_length=50, required=True)

Page 7 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\forms.py

279
280 class Meta:
281 model= Employee
282 fields= ['GID', 'Netid', 'FirstName', 'LastName', '

PhoneNum', 'Email',
283 'Title', 'PositionNum', 'Zorg', 'StartDate'

, 'CurrentSalary',
28~ 'LastSalMod', 'SalModDate', '

CellphoneAllowance', 'Benefits',
285 'BiweeklySalary', 'BiweeklyBenefits', '

TeamPool', 'LOA', 'FTE']
286

Page 8 of 8

File - C:\Users\yywwc\PycharmProjects\miltech\main\models.py

1 from django.db import models
2 from django.contrib.auth.models import AbstractBaseUser,

PermissionsMixin
3 from .managers import CustomUserManager
li
5 class Employee(AbstractBaseUser, PermissionsMixin):
6 GID = models.CharField(max_length=50, unique=True)
7 Netid = models.CharField(max_length=50, unique=True)
8 #AccessLeve1 = mode1s.Boo1eanFie1d(defau1t=Fa1se)
9 Teamid = models.CharField(max_length=50)

10 FirstName = models.CharField(max_length=50)
11 LastName = models.CharField(max_length=50)
12 PhoneNum = models.CharField(max_length=50)
13 Email= models.EmailField(max_length=50)
lli Title= models.CharField(max_length=50)
15 PositionNum = models.CharField(max_length=50)
16 Zorg = models.CharField(max_length=50)
17 StartDate = models.DateField()
18 CurrentSalary = models.IntegerField()
19 LastSalMod = models.IntegerField()
20 SalModDate = models.DateField()
21 CellphoneAllowance = models.IntegerField()
22 Benefits= models.IntegerField()
23 BiweeklySalary = models.IntegerField()
2li BiweeklyBenefits = models.IntegerField()
25 TeamPool = models.CharField(max_length=50)
26 LOA= models.CharField(max_length=50)
27 FTE = models.CharField(max_length=50)
28
29 groups= models.ManyToManyField(to='auth.Group')
30 user_permissions = models.ManyToManyField(to='auth.

Permission')
31 password= models.CharField(max_length=100)
32 is_staff = models.BooleanField(default=True)
33 is_superuser = models.BooleanField(default=False)
3li is_active = models.BooleanField(default=True)
35
36 FINANCE_LEAD = 1
37 OPERATIONS_LEAD = 2
38 OPERATIONS SUPPORT= 3
39 HR= li
li0 EPAF SUPPORT= 5
lil
li2 ROLE_CHOICES = (
li3 (FINANCE_LEAD, 'Finance Lead'),
lili (OPERATIONS_LEAD, 'Operations Lead'),
li5 (OPERATIONS_SUPPORT, 'Operations Support'),
li6 (HR, "HR"),

Page 1 of 3

File - C:\Users\yywwc\PycharmProjects\miltech\main\models.py

'i7 (EPAF _SUPPORT, "EPAF Support")

'i9 role= models.PositiveSmallintegerField(choices=
ROLE_CHOICES, blank=True, null=True)

50
51 USERNAME_FIELD = 'Netid'
52 REQUIRED_FIELDS = ['GID', 'role', 'Teamid', 'FirstName', '

53

LastName', 'PhoneNum', 'Email', 'Title', 'PositionNum', 'Zorg'
, 'StartDate', 'CurrentSalary', 'LastSalMod', 'SalModDate', '
CellphoneAllowance', 'Benefits', 'BiweeklySalary', '
BiweeklyBenefits', 'TeamPool', 'LOA', 'FTE']

5'i objects= CustomUserManager()
55 def __ str __ (self):
56 return self.FirstName + ' ' + self.LastName
57
58 class Project(models.Model):
59 IndexNo = models.CharField(max_length=50)
60 Title= models.CharField(max_length=50)
61 Operationslead = models.CharField(max_length=50)
62 StartDate = models.DateField()
63 EndDate = models.DateField()
6'i TotalGrantFunds = models.IntegerField()
65 # CurrentGrantFunds = models.IntegerField(default=B)
66 SalaryBenefitBudget = models.IntegerField()
67 # SalBenBudgetSpentCat = models.IntegerField(default=B)
68 # SalBenBudgetSpentPlan = models.IntegerField(default=B)
69 # SalBenEnCat = models.IntegerField(default=B)
70 # SalBenEnPlan = models.IntegerField(default=B)
71 # SalBenCatPlan = models.IntegerField(default=B)
72 # SalBenRemainPlan = models.IntegerField(default=B)
73 Note= models.CharField(max_length=200)
7li
75 def __ str __ (self):
76 return self.IndexNo + ' ' + self.Title
77
78 class Project_Employee(models.Model):
79 IndexNo = models.CharField(max_length=50)
80 GID = models.CharField(max_length=50)
81
82 class Team(models.Model):
83 Teamid = models.CharField(max_length=50)
8'i Name= models.CharField(max_length=50)
85 Lead= models.CharField(max_length=50)
86
87 class Team_Employee(models.Model):
88 Teamid = models.CharField(max_length=50)
89 GID = models.CharField(max_length=50)

Page 2 of 3

File - C:\Users\yywwc\PycharmProjects\miltech\main\models.py

90
91 class Project_Team(models.Model):
92 IndexNo = models.CharField(max_length=50)
93 Teamid = models.CharField(max_length=50)
9'i
95 class PayNo(models.Model):
96 Year= models.CharField(max_length=50)
97 Start= models.DateField()
98 End= models.DateField()
99 Date= models.DateField()

100 def __ str __ (self):
101 return self.Year
102
103 class Employee_PayNo(models.Model):
10'i GID = models.CharField(max_length=50)
105 Year= models.CharField(max_length=50)
106 Paid= models.IntegerField(default=0)
107 Benefits= models.IntegerField(default=0)
108
109 class Project_PayNo(models.Model):
110 IndexNo = models.CharField(max_length=50)
111 Year= models.CharField(max_length=50)
112 SalBenPlan = models.IntegerField(default=0)
113 SalCat = models.IntegerField(default=0)
ll'i BenCat = models.IntegerField(default=0)
115 def __ str __ (self):
116 return self.IndexNo + ' ' + self.Year
117
118 class Employee_Project_PayNo(models.Model):
119 GI □ = models.CharField(max_length=50)
120 IndexNo = models.CharField(max_length=50)
121 Year= models.CharField(max_length=50)
122 Percent= models.IntegerField(default=0)
123
12'i

Page 3 of 3

File - C:\Users\yywwc\PycharmProjects\miltech\main\managers.py

1 from django.contrib.auth.base_user import BaseUserManager
2 from django.utils.translation import gettext_lazy as_
3
li
5 class CustomUserManager(BaseUserManager):
6 111111

7

8
9

10
11
12

13
lli
15
16
17
18
19
20
21
22
23

2li
25
26
27
28
29
30

Custom user model manager where email is the unique
identifiers

for authentication instead of usernames.
II II II

def create_user(self, GID, password, **extra_fields):
II II II

Create and save a user with the given email and
password.

if not GID:
raise ValueError(_("The GID must be set"))

user= self.model(GID=GID, **extra_fields)
user.set_password(password)
user. save()
return user

def create_superuser(self, GID, password, **extra_fields):
II II II

Create and save a Superuser with the given email and
password.

True."))

extra_fields.setdefault("is_staff", True)
extra_fields.setdefault("is_superuser", True)
extra_fields.setdefault("is_active", True)

if extra_fields.get("is_staff") is not True:
raise ValueError(_("Superuser must have is staff=

31 if extra_fields.get("is_superuser") is not True:
32 raise ValueError (_ ("Superuser must have

is_superuser=True."))
33 return self.create_user(GID, password, **extra_fields)
3li

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\file_import.py

1 from django.http import HttpResponseRedirect
2 from django.shortcuts import render, redirect
3 from django.contrib import messages
4 # from 1xm1 import objectify

5 import xml.etree.ElementTree as et
6 import pandas as pd
7 from datetime import datetime
8

9 from main.models import*

10 from main.forms import*

11
12 class Import():
13 project_paynos = Project_PayNo.objects
14 projects = Project.objects
15 paynos = PayNo.objects
16
17 def importPaynos(self, xlxs):
18 dataframe = pd.read_excel(xlxs)
19

20 dataframe = dataframe.reset_index()
21 for index, row in dataframe.iterrows():
22 begin = row[1 Begin 1

]

23 end = row[• End•]
24 pay = row [1 Pay 1]

25 num = str(row[1 Paynum 1

])

26
27 if len(num) == 1:
28 num = 110 11 + num
29

30 year = datetime.now().strftime(11%V 11)

31 num = num + year[2:]
32
33 payno = self.paynos.create(Vear=num, Start=begin,

End=end, Date=pay)
34 payno.save()
35
36 def importCatbooks(self, xml):
37 dataframe = pd.read_excel(xml)
38 test_ list = [1161123 11 , 1161124 11 , 1161123N 11 , 1161125 11 , 11

61165 11 , 1161224 11 , 1161225 11 , 1161308 11 , 1161311 11]

dataframe = dataframe.reset_index()
for index, row in dataframe.iterrows():

account_code = str(row[1 Account 1

])

description = row[1 Description 1

]

amount = int(float(row[1 Amount 1])*100)
encumbered = int(float(row[1 Enc 1

]) * 100)
Index = row[1 Index 1

]

Page 1 of 4

39
li0
lil
li2
li3
li li
li5
li6

Polar
Highlight

File - C:\Users\yywwc\PycharmProjects\miltech\main\file_import.py

li7
'i8
'i9
50
51
52
53

5'i
55
56
57

58
59
60
61
62
63
6'i
65
66

67
68
69
70
71
72
73
7li

75

payno_check)

clear= int(row['Clear'])
sub= row['SubAccount']

if clear in range(0, 12) or clear== 20:
description= description.lower()
if account_code == "61'i99":

Benefits

Finding PayNo
payno_check = "payno"
cut= description.find(payno_check) + len(

payno_id = description[cut:]
space_position = payno_id.find(" ")
if space_position != -1:

payno_id = payno_id. partition (' ') [0]
if len(payno_id) == 1:

payno_id = "0" + payno_id
year = datetime. now(). strftime ("%Y")
payno_id = payno_id + year[2:]

Year=payno_id,
payno = self.project_paynos.get_or_create(

IndexNo=Index)
payno = payno[0]

new_benifts = payno.BenCat + amount
payno.BenCat = new benifts
payno.save()

elif account_code in test_list:
Salary

76 payno_id = description.split()
77 payno_id = payno_id[len(payno_id)-2]
78 if len(payno_id) == 1:
79 payno_id = "0" + payno_id
80 year = datetime. now(). strftime ("%Y")
81 payno_id = payno_id + year[2:]
82 payno = self.project_paynos.get_or_create(

Year=payno_id, IndexNo=Index)
83 payno = payno[0]
8'i
85
86
87

new_benifts = payno.SalCat + amount
payno.SalCat = new benifts
payno.save()

Page 2 of 4

Polar
Highlight

File - C:\Users\yywwc\PycharmProjects\miltech\main\file_import.py

88
89
90

91
92
93
9'i

95
96
97
98
99

100
101
102
103
10'i
105
106
107

108

109

110

111

112

113

ll'i

elif account_code == 11 61100 11 :

Encumbrance

payno_check)

IndexNo=project_id)

Finding PayNo
payno_check = 11 payno 11

cut= description.find(payno_check) + len(

payno_id = description[cut:]
space_position = payno_id.find(11 11)

if space_position != -1:
payno_id = payno_id.partition(' ')[0]

if len(payno_id) == 1:
payno_id = 11 0 11 + payno_id

year = datetime. now() . strftime (11 %Y 11)

payno_id = payno_id + year[2:]

if type(sub) is str:
project_id = sub.split()
project_id = project_id[l]
parent_project = self.projects.get(

project= self.projects.get_or_create(
IndexNo=sub, Title=sub,

Operationslead=parent_project.Operationslead,

StartDate=parent_project.StartDate,

EndDate=parent_project.EndDate,

TotalGrantFunds=parent_project.TotalGrantFunds,

SalaryBenefitBudget=parent_project.SalaryBenefitBudget,

Note= 11 Subaccount 11)

115 project = project [0]
116 project. save ()
117 payno = self. proj ect_paynos.

get_or_create(Year=payno_id, IndexNo=sub)
118 payno = payno [0]
119 new_encumbrance = payno.SalBenPlan +

120
121
122

encumbered
payno.SalBenPlan = new encumbrance
payno.save()

else:

Page 3 of 4

Polar
Highlight

File - C:\Users\yywwc\PycharmProjects\miltech\main\file_import.py

123 payno = self. proj ect_paynos.
get_or_create(Year=payno_id, IndexNo=Index)

12li payno = payno [0]
125 new_encumbrance = payno.SalBenPlan +

126
127
128
129
130
131
132
133
13li
135

encumbered
payno.SalBenPlan = new_encumbrance
payno.save()

Page 4 of 4

Polar
Highlight

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\Team.css

1 .Team_table{
2 width: 50%;
3 margin-left: auto;
~ margin-right: auto;
5 border-collapse: collapse;
6 }
7 .Team_tr,.Team_td{
8 padding: 20px;
9 background-color: white;

10 text-align: center;
11}
12
13 .Team_link_td{
1~ padding: 10px;
15 text-align: center;
16}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\public.css

1
2 /*public CSS*/
3 hl {
4 text-align: center;
5 color: #707070;
6 font-size: 40px;
7 text-decoration: underline lpx #0C24F6;
8 }
9 .link,a{

10 text-decoration: none;
11 }
12
13
14
15
16
17

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\project.css

1 .project_table{
2 width: 80%;
3 margin-left: auto;
~ margin-right: auto;
5 border: lpx solid;
6 border-collapse: collapse;
7 }
8 .project_tr,.project_td{
9 padding: 10px;

10 background-color: white;
11 text-align: center;
12}
13 .project_body{
1~ background-color: #DADDE~;
15}
16 .project_Note{
17 padding: 50px;

width: 100%; 18
19
20
21}

text-align: center;
background-color: white;

22 .project_link_td{
23 padding: 10px;
2~ text-align: center;
25}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\Employee.css

1 !*employee table*/
2 .employee_table{
3 width: 70%;
~ margin-left: auto;
5 margin-right: auto;
6 border: lpx solid white;
7 border-collapse: collapse;
8 }
9 .employee_tr,.employee_td{

10 background-color: #F1F9FF;
11 text-align: left;
12 font-size: 20px;
13}
1~ .employee_td_title{
15 font-size: 20px;
16}
17 .employee_td_Name{
18 font-size: 30px;
19}
20 a{
21 text-decoration: none;
22}
23

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\functions.js

1 yellow= 'gold'
2 green= 'lightgreen'
3 red= 'lightsalmon'
li
5 function reTotal(id) {
6 col= id.split(' ')[0]
7 row= 0
8 total= 0
9 while (document.getElementByid(col+' '+String(row)) != null

){
10 total+= Number(document.getElementByid(col+' '+String(

row)).value)
11 row+= 1
12 }
13 if (document. getElementByid (col+ 11 base 11) ! = nul 1) {
lli total+= Number(document.getElementByid(col+ 11 base 11).

value)
15 }
16 document.getElementByid(col).innerHTML = String(total) +

"%"
17 if
18

(total> 100){
document.getElementByid(col).style.backgroundColor =

red
19
20

} else if(total < 100) {
document.getElementByid(col).style.backgroundColor =

yellow
21 } else {
22 document.getElementByid(col).style.backgroundColor =

green
23 }
2li}
25
26 function baseTotals(id){ // add color changes to element
27 ids= document.getElementByid(id).name.split(11 11)

28 base= Number(document.getElementByid(ids[l]+ 11 11 +ids[0]+ 11

base 11).value)
29 percent= Number(document.getElementByid(id).value)
30 document.getElementByid(ids[l]+ 11 11 +ids[0]).innerHTML =

String(base+percent) + 11%11

31 if (base+percent > 100){
32 document. getElementByid (ids [1] +11 "+ids [0]). style.

backgroundColor = red
33 } else if(base+percent < 100) {
3li document. getElementByid (ids [1] +11 "+ids [0]). style.

backgroundColor = yellow
35 } else {
36 document. getElementByid (ids [1] +11 "+ids [0]). style.

backgroundColor = green

Page 1 of 2

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\functions.js

37 }
38}
39
~0 function dispaynoChange(id){
~1 baseTotals(id);
~2 reFinal(id);
~3}
~~

~5 function reFinal(id) {
~6 col= id.split(' ')[0]
~7 row= 0
~8 final= 0
~9 while (document.getElementByid(col+' '+String(row)) != null

){
50 employee= document.getElementByid(col+' '+String(row))
51 wage= Number(document.getElementByid(employee.name.

split(' ')[1]). value)
52 final+= Math.round(((Number(employee.value)/100) *

wage I 100), 2)
53 row+= 1
5~ }
55 document.getElementByid(col+"fin").innerHTML = String(final

)
56 document.getElementByid(col+"dif").innerHTML = String(Math.

round(Number(document.getElementByid(col+"init").innerHTML)­
final))

57}

Page 2 of 2

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\dashboard.css

1 .dashboard_body{
2 background-color: #DADDE~;
3 }
~ .dashboard_table{
5 width: 100%;
6 border-spacing: 50px;
7 }
8 .dashboard_td{
9 padding-top: 30px;

10 color: #007FEB;
11 font-size: 20px;
12 text-align: center;
13 border: 3px solid #007FEB;
1~ background-color: #F1F9FF;
15 }

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\tableshow.css

1 table {
2 border-collapse: collapse;
3 }
li td, th {

5 border: black 2px solid;
6 padding: 10px;
7 }

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\addEmployee.css

1 p{
2 font-size: 18px;
3 }
li table{
5 width: 100%;
6
7 }
8 form{
9

10}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\EpafQueries.css

1 table {
2 border-collapse: collapse;
3 }
li
5 td, th {
6 border: black 2px solid;
7 padding: 10px;
8 }

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\employeeForm.css

1 form{
2 text-align: center;
3 }
li label{
5 font-size: 20px;
6 }
7 select{
8 border: thin solid black;
9 padding: 5px 12px;

10 font-size: 15px;
11 }
12 option{
13 font-size: 15px;
lli }

15 .container{
16 position: relative;
17 height: 200px;
18 border: 3px solid white;
19 }
20 .button_center{
21 margin: 0;
22 position: absolute;
23 top: 10%;
2li left: li5%;
25 }
26 .newEmployee_button{
27
28}
29 a{

text-align: center;

30 text-decoration: none;
31}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\selectproject.css

1 form{
2 text-align: center;
3 }
li label{
5 font-size: 20px;
6 }
7 select{
8 border: thin solid black;
9 padding: 5px 12px;

10 font-size: 15px;
11 }
12 option{
13 font-size: 15px;
lli }

15 .container{
16 position: relative;
17 height: 200px;
18 border: 3px solid white;
19 }
20 .button_center{
21 margin: 0;
22 position: absolute;
23 top: 10%;
2li left: li5%;
25 }
26 .select_button{
27
28}
29 a{

text-align: center;

30 text-decoration: none;
31}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\tableSelection.css

1 form{
2 text-align: center;
3 }
li label{
5 font-size: 20px;
6 }
7 select{
8 border: thin solid black;
9 padding: 5px 12px;

10 font-size: 15px;
11 }
12 .container{
13 position: relative;
lli height: 200px;
15 border: 3px solid white;
16 }

17 .button_center{
18 margin: 0;
19 position: absolute;
20 top: 10%;
21 left: li5%;
22 }

23 .newEmployee_button{
2li
25}
26 a{

text-align: center;

27 text-decoration: none;
28}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\indexdisperTeam.css

1 table {
2 border-collapse: collapse;
3 }
li td, th {
5 border: black 2px solid;
6 padding: 10px;
7 }

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\static\indextargsperTeam.css

1 table {
2 border-collapse: collapse;
3 }
li td, th {
5 border: black 2px solid;
6 padding: 10px;
7 }
8 tbody{
9 margin-left: 20%;

10}

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\403.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 <head>
li <meta charset="UTF-8 11 >
5 <title>ERROR: FORBIDDEN</title>
6 </head>
7 <body>
8 <p>You do not have permission to access this page!</p>
9 Back to the home page!

10 </body>
11 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\Team.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 {% load static%}
li <link rel= 11 stylesheet 11 href= 11 /static/public.css 11 >
5 <link rel= 11 stylesheet 11 href= 11 /static/Team.css 11 >
6 <head>
7 <meta charset="UTF-8 11 >
8 <title>Team Information</title>
9 </head>

10 <body>
11 <button type= 11 button 11 STYLE= 11 float:right; 11 >

Home</button>
12 <hl>Team Information</hl>
13 <table class= 11 Team_table 11 >
lli <tr class= 11 Team_tr 11 >
15 <td class= 11 Team_td 11 >Team ID: {{ team.0 }}</td>
16 <td class= 11 Team_td 11 >Name: {{ team.1 }}</td>
17 <td class= 11 Team_td 11 >Lead: {{ team.2 }}</td>
18 </tr>
19
20 </table>
21 <table class= 11 Team_table 11 >
22 <tr class= 11 Team_tr 11 >
23 <td class= 11 Team_link_td 11 ><button><a href="updateTeam/

{{ team.0 }}">Update Team</button></td>
2li <td class= 11 Team_link_td 11 ><button><a href= 11 /projectTeam/

{{ team.0 }}">Update Team's Projects</button></td>
25 <td class= 11 Team_link_td 11 ><button><a href="/employeeTeam

/{{ team.0 }}">Update Team's Employees</button></td>
26 </tr>
27 </table>
28 </body>
29 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\error.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 <head>
li <meta charset="UTF-8 11 >
5 <title>Error</title>
6 </head>
7 <body>
8

Home
9

10 <p>{{ message }}</p>
11 Try Again
12 </body>
13 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\index.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 <head>
li <meta charset="UTF-8 11 >
5 <title>Login Page</title>
6 </head>
7 <body>
8 <form method= 11 POST 11 action="{% url 'login' %} 11 >
9 {% csrf_token %}

10 <div>
11 <div>
12 {{ form.username }}
13 </div>
lli </div>
15 <div>
16 <div>
17 {{form.password}}
18 </div>
19 </div>
20 <button type= 11 submit 11 >Login</button>
21 </form>
22 </body>
23 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\import.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 {% load static%}
li <link rel= 11 stylesheet 11 href= 11 /static/public.css 11 >
5 <head>
6 <meta charset="UTF-8 11 >
7 <title>File upload and display testing</title>
8 </head>
9 <body>

10 <button type= 11 button 11 STYLE= 11 float:right; 11 >
Home</button>

11 <hl>File upload and display testing</h1>
12 <form method= 11 POST 11 enctype= 11 multipart/form-data 11 >
13 {% csrf_token %}
lli {{ form.as_p }}
15 <button type= 11 submit 11 >Import File</button>
16 </form>
17 </body>
18 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\update.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 {% load static%}
li <link rel= 11 stylesheet 11 href= 11 /static/public.css 11 >
5 <head>
6 <meta charset="UTF-8 11 >
7 <title>Update Employee</title>
8 </head>
9

10 <body class= 11 update_employee_body 11 >
11 <button type= 11 button 11 STYLE= 11 float:right; 11 >

Home</button>
12 <hl>Update Employee</hl>
13 <table class= 11 update_employee_table 11 >
lli {% if updateUser.errors %}
15
16 {% for key, value in updateUser.errors.items %}
17 {{ value }}
18 {% endfor %}
19 >
20 {% endif %}
21 <form method= 11 POST 11 enctype= 11 multipart/form-data 11 >
22 {% csrf_token %}
23 {{ form.as_p }}
2li <tr>
25 <td><button type= 11 submit 11 >Update Employee</button

></td>
26 <td><button type= 11 reset 11 >Reload Information</button

></td>
27 </tr>
28
29 </form>
30 </table>
31 </body>
32 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\main\templates\addTeam.html

1 <!DOCTYPE html>
2 <html lang= 11 en 11 >
3 {% load static%}
li <link rel= 11 stylesheet 11 href= 11 static/public.css 11 >
5
6 <head>
7 <meta charset="UTF-8 11 >
8 <title>Add New Team</title>
9 </head>

10 <body>
11 <button type= 11 button 11 STYLE= 11 float:right; 11 >

Home</button>
12 <hl>Add New Team</hl>
13 <form method= 11 post 11 enctype= 11 multipart/form-data 11 >
lli {% csrf_token %}
15 {{ form.as_p }}
16 <button type= 11 submit 11 >SUBMIT</button>
17 </form>
18 </body>
19 </html>

Page 1 of 1

File - C:\Users\yywwc\PycharmProjects\miltech\miltech\views.py

1 import datetime
2
3 from django.contrib.auth.decorators import permission_required

, login_required
~ from django.http import HttpResponseRedirect
5 from django.shortcuts import render, redirect
6 from django.contrib import messages
7 from datetime import date
8 from datetime import timedelta
9

10 from main.models import*
11 from main.forms import*
12
13
1~ from main.file_import import*
15 from miltech.help import*
16
17 yellow= 'gold'
18 green= 'lightgreen'
19 red= 'lightsalmon'
20
21 login_url = "/"
22 dashboard_url = "/dash"
23
2~ @login_required(login_url=login_url)
25 def index(request):
26 return render(request, 'dashboard.html')
27
28 @login_required(login_url=login_url)
29 @permission_required('Employee.FINANCE_LEAD', 'Employee.

OPERATIONS_LEAD', 'Employee.OPERATIONS_SUPPORT')
30 def importFile(request):
31 if request.method== 'POST':
32 form= ImportForm(request.POST)
33 choice= form['fileType'].value()
3~ i = Import()
35 if choice== '1':
36 i.importCatbooks(request.FILES['file'])
37 elif choice== '2':
38 i.importPaynos(request.FILES['file'])
39 return redirect(dashboard_url)
~0 else:
~1 form= ImportForm()
~2 return render(request, 'import.html', {'form': form})
~3
~~ @login_required(login_url=login_url)
~5 @permission_required('Employee.FINANCE_LEAD', 'Employee.

OPERATIONS_LEAD', 'Employee.OPERATIONS_SUPPORT')

Page 1 of 34

Polar
Highlight

References:

“SDLC - Iterative Model.” Tutorials Point,

www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm.

“Django.” Django Project, DjangoProject, www.djangoproject.com/.

Computer Security Division, Information Technology Laboratory. “NIST Policy on Hash

Functions - Hash Functions: CSRC.” CSRC, NIST, 22 June 2020,

https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions.

http://www.tutorialspoint.com/sdlc/sdlc_iterative_model.htm
http://www.djangoproject.com/
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions

	Proposal-Miltech-2.pdf
	project_print.pdf

