Brightvine Mortgage Valuation Proposal

Lauren Helbling, Jacob Brown, Kate Stallbaumer

Abstract

The secondary mortgage market is a little known investment opportunity with major benefits.
Behind the scenes of a single mortgage, mortgage payments may go between several institutions
and investors. When a bank or lending institution has exhausted their capital, third-party
investors, often government agencies, offer to purchase mortgages from the lenders so that they
can continue lending, and the investors can reap the benefits of the mortgage payments with
interest. Brightvine is bringing the secondary mortgage market to the everyday investor by
developing a mortgage marketplace through the decentralized power of blockchain. Within this
startup, novice and experienced investors alike can purchase and sell mortgages without the
tedious transfer of physical paperwork. However, how can an investor quickly recognize which
mortgage may be a smart investment, especially as a novice in the industry? Our team was
tasked with developing a mortgage valuation tool to assist investors in determining a price point
at which a mortgage would be a valuable investment. We evaluated the many factors contributing
to the value of an asset, such as details of the home and the interest rate of the lender, in order to
predict the ideal buy and sell price points of the mortgage. Upon selecting essential fields and a
current mortgage dataset for our training data, we pre-processed the data and iteratively
developed a machine learning (ML) solution utilizing clustering and K-Nearest neighbor that
interfaces as an API endpoint for usage within the Brightvine platform. Through this technology,
investors will be empowered to enter and reap the benefits of the secondary mortgage market on
Brightvine. Long term, this technology could be commercialized and sold as a product to
financial institutions outside of Brightvine to impact the global secondary mortgage market.

Introduction

Motivation

Hidden behind large corporations and the massive exchange of paperwork, the secondary
mortgage market is an undercover but booming business. Within the market, investors and
institutions buy and sell mortgages from depositing banks that are seeking more cash to continue
lending. Fannie Mae, Freddie Mac, and other government agencies dominate this market, owning
upwards of 62% of all mortgages according to the National Mortgage Database [1].

SRSl ENTERPRISE SHARE OF ALL ORIGINATIONS BY YEAR 2002 - 2020 Q2

70%

60% G64%
W 62%
a 50% 55%
m
2
s 40%
= 39%
S 30%
-
=
S 20%
L.
a
10%
0% .
od o o uwy w Is o @ (=] = od o3 bl uw w =] (=21 (=1
o o o o = = A - b - - - - - b= - - o
2 2 2 2 2 8 2 8 & ~ & & & & 8 & & 8 g
Year

Seurce: Mational Merigage Database (WMDEB), Federal Housing Finance Agency
Data as of Janvary 13, 2031

Due to strict underwriting laws, not all mortgages are deemed worthy of being purchased by the
federal government. Brightvine is aiming to become another major player in the secondary
mortgage market by purchasing and selling mortgages of various levels of risk directly to
individual investors. This targets an entirely new market that has been relatively unreached up
until now.

Without institutional expertise and financial advising, individual investors may not know which
mortgages are worth the risk to invest in and at which price point they should buy or sell.
Considering the countless factors involved in a loan, property, and borrower risk, an intelligent
model is necessary to predict the value of a mortgage accurately. The development of a machine
learning model that offers a predicted price point brings power to individual investors to step into
the secondary mortgage market and make intelligent investments. This is a ground-breaking
development that could be used globally to transform the world of real estate investments.

Research Methods
We began our research by following the GQM (goal, question, metric) Model, which specifies
three levels of problem definition. On the conceptual level, we defined our goal: Investors need
a Mortgage Valuation Tool to be featured in the Brightvine Mortgage Desk to assist in
determining at which price points a mortgage would be valuable to buy or sell. Next, at the
operations level, we explored the key questions necessary to reach our end goal, including:
e Which metrics contribute to the value of a mortgage?
e How do we measure the likelihood that a mortgage will foreclose?
e How do we measure the likelihood of a mortgage default?
e How do we predict the future value of a mortgage?
e How do various property types compare in mortgage valuation?
Finally, on the quantitative level, each of these questions is associated with various metrics,
which we narrowed down to key metrics below:
UPB (unpaid principal balance)
Interest Rate
Loan Type & Term
Listing Price
Property Type
Property Location & Size
Occupancy Status
Borrower Collateral
Borrower Credit Score
Economic Conditions
SOFR (secured overnight financing rate)

n | Level
Measurement Goals involve

products, processes, and/or
resources Goal 1 Goal 2

Operations Level / ‘ \
Question try to characterize the
object of measurement in the Q1 Q2 Q3

Q
context of a qualified issue from a
particular viewpoint KAA\
uantitative Level W '
Associated with every question is a
6

set of data, either subjective of M1 M2 M3 M4 M5 M

objective, that helps provide a
quantitative answer

h 4

DEFINITION

£ \
g
ANALYSIS AND INTERPRETATION

After defining these metrics, we will use them to attempt to train different learning models. As
we use the data in training, we will compare both the accuracy and time efficiency of the various
models in order to choose one to implement for the final product. Some models we will test
include the Multi-Layer Perceptron known as a Neural Network with different training methods
such as Backpropagation or a Genetic Algorithm, as well as clustering algorithms like K-Means
Clustering. During this research, we may also explore dimensionality reduction methods like
Forward Selection or Principle Component Analysis which would reduce the datasets to only
contain the minimum number of data attributes that still do well to inform the model’s prediction.

Hypothesis

The expectation is that the neural network will provide the most accurate predictions for this
problem. The process of training and testing using Machine Learning algorithms, Neural
Networks, in particular, is discussed further in the background section of this document. For now,
it is important to know that the process of creating a prediction given some input will be very
quick with a neural network, but the training process can be very time-intensive. The expectation
is that training with a genetic algorithm will provide the fastest and most accurate results.

End Product

At the end of our research phase, we will have finalized a selection for an ML model and its
training method. We will also have performed tests on the training data to assess the need for
each attribute of the dataset. The end product will feature three main aspects. The input
processing that the ML model performs, the visualization of this calculation that is sent to the
web app, and the training of the model with new data. Two of these are triggered by the user of
the Brightvine Mortgage Desk and the third is by an administrator uploading new mortgage data.

When an investor, or another user of the Brightvine Mortgage Desk, opens the details page of a
specific mortgage loan, this will trigger our ML model to make a prediction by taking in the
input values of the selected mortgage, passing those through the trained model, and producing a
prediction. Then, a separate script of code will take the output of the model and transform it back
into a value that makes sense in the scope of the investment problem. This script will also send
values to an API which the existing Brightvine web app can request data from in order to display
the price point suggestion and any corresponding visual representation we design.

When a Brightvine administrator uploads new training data for the model to learn from, this will
trigger a re-training of the model. The model will perform its training method using the new data
and store new weights and parameters for the newly trained model to use when making new
suggestions. We expect this to occur once every week or two to keep up to date with the rapidly
changing state of the real estate and secondary mortgage market. In the future, this tool could be
improved upon by making this a more automated process to constantly be training the model on
newer and more relevant data.

Qualifications

United by our interest in Brightvine, our team of three features a diverse mixture of backgrounds,
experiences, and skills.

Lauren Helbling has both research and internship experience in blockchain technology. In the
spring of 2022, Lauren joined the first engineering team at Brightvine as a software engineering
intern to build the initial products and website for the new startup. Since then, Lauren has found
her interests in web development, digital design, and business. With this, Lauren directed the
front-end and user-interaction components of the project.

Jacob Brown comes into this project with an interest in data analytics and database procedures.
This matches well with the data problem our team faces as we aim to build a predictive model
using many numerical features. After completing a Machine Learning course at the end of the
2022 Fall semester, Jacob led the team in choosing and developing a machine learning model for
this project.

Kate Stallbaumer utilized her background in full-stack development, communications,
operational management, and organizational development to spearhead the data selection and

pre-processing. Together, the team is well-equipped to accomplish this project.

Our resumes further demonstrate our various abilities:

Lauren Helbling

%, 208.691.6120 | & laurengraceh97agmail.com | in lauren-helbling

EDUCATION
Montana State University Expected Graduation, May 2023
Bachelor of Science in Computer Science Bozeman, MT

» Details: 3.99 GPA, Honors College, Minors in Mathematics and Data Science

» Coursework: Data Structures and Algorithms, Discrete Mathematics, Web Development, Software Engineering,
Design Thinking (UI/UX), Data Mining

- Awards: Montana State University Presidential Scholar (2019-2023), NRF Foundation Ray Greenly Award (2022),
Montana NCWIT Aspiraticns in Computing Award (2019), Western Aerospace Scholar (2019)

SKILLS

Languages : Python, Java, JavaScript (React), HTML/CSS
Tools : Git, Docker, Agile, Figma, Slack, Webflow, Adobe Design Programs

EXPERIENCE
Brightvine Fall 2021 - Spring 2022
Software Engineering Intern Remote Work

« Collaborated closely with the founding startup team to design, develop, and launch blockchain-powered FinTech
products

« Independently developed marketing site from Figma designs using Webflow
» Maintained a work-from-home role while enrolled full-time in college

Montana State University Summer 2021
Research Experience for Undergraduates (REU) Bozeman, MT
» Participated in rigorous 10-week, full time cybersecurity research program
- Developed optimistic concurrency control in blockchain to parallelize execution and increase throughput by 500%
» Utilized Python to develop a blockchain simulation to test algorithm efficiency
« Authored research paper accepted into IEEE Globecom Conference

Morrison-Maierle Summer 2019
Summer Intern Helena, MT

» Assembled and maintained database of past projects, blueprints, and important materials for universal access

» Received training and certification from Helena Summer Jobs Program in work skills, including communication,
teamweork, and conflict resolution

PROJECTS

Happy Scrunchie

« Owner of ecommerce business with over 900 online sales on Etsy (happyscrunchie.etsy.com)
» Design and implement marketing and sales strategies on multiple platforms
« Build traffic with search engine optimization (SEO) and sales analytics

InterVarsity Digital Design

» Create weekly content for Instagram, website, and print media utilizing Canva and Adobe programs

Jacob Brown

20 Hoffman Dr #4, Bozeman, MT 59715 | (208) 590-7765 | Jacob.brown.23@hotmail.com

Education

MONTANA STATE UNIVERSITY | GRADUATING CLASS OF 2023

- Major: Computer Science; Minor: Data Analytics; Honors College

- GPA: 396

- Relevant courses: Machine Learning; Database Systems; Web Development; UX/Ul Design Thinking;
Data Mining - Data Analysis in Python; Statistical Computing/Graphical Analysis - Coding in R;
Python, Java and C/C++ courses

UNIVERSITY HIGH SCHOOL | SPOKANE, WA | GRADUATING CLASS OF 2019
+ 4.0 GPA - Valedictorian - gave speech to 6,000 in McCarthy Athletic Center

Work Experience

EXPERIENCED PRODUCTION OPERATOR | SYNERGY SPORTS | JANUARY 2022 - AUGUST 2022
+ Log data for football plays - tracking event time stamps, player participation, and formation maps

+ Test logging software and workflow phases for bugs, inconsistencies, and pain points

+ Train new loggers in the logging and workflow processes

HEAD ANALYTICS INTERN | MONTANA STATE FOOTBALL | MARCH 2021 - DECEMBER 2021

- Analyze and display play calls used during practice in order to identify tendencies

- Write Python code for more detailed analysis of offensive play-calling to find tendencies in MSU's offense
and in an opponent's play-calling to help provide scouting reports from an analytics perspective

RESIDENT ADVISOR | MONTANA STATE | AUGUST 2020 - MAY 2021
- Foster community among residents on my floor of a residence hall
- Work with team of other RAs to ensure safety of building and plan events for residents

SUMMER INTERN | ADVANCED ELECTRONIC DESIGNS | MAY 2020 - JULY 2020
- Electronics/Electrical /Software Engineering Firm
- Assistin various projects for the company and for individual employees

o Data display and web scraping using Python coding language

o Constructing custom acrylic resin desktops for employees

Extracurricular Activities

BOY SCOUTS
- Eagle Scout - highest scout rank, earned for exceptional leadership and service
+ Senior Patrol Leader of a troop of 60 boys - an elected position, the leader of the whole troop

CHURCH UNIVERSITY HIGH SCHOOL TENNIS
+ Cru, campus ministry - Varsity Tennis - Four Years
o Bible Study leader, Co-Student President o 2018 Team MVP - 2019 Team Captain

kata_stallbavmer@gmail.com
KAT E linkedin.comfin/katestallbaumar
github. com/kstall23

STALLBAUMER “Bazaman, Mt

EDUCATION

Montana State University B3, Computer Science Aug. 2019 = May 2023
Benedictine College BA, Political Science Aug. 2002 = May 2006
COURSEWORK

Advanced Software Engineering Dalabase Syslams Systams Administration
C, Pythan, Java Discrele Struciures Wab Developmant
Camputer Science Thaory Human Computer Interaction LU Diesign

Computer Sacurity Social & Ethical 1ssues in G5 Wab Design

Data Structures & Algorithms Software Enginearing

EXPERIENCE

FOUNDANT TECHNOLOGIES, infern Bozeman, MT

Oct. 2019 ~ Present
« Lliilize technical aptitude and problem solving skills to create thorough documentation of client
questions and needs, and then resolve their issues by finding software solutions for clients across all of
Foundant's software.

FIGURE, Oiffice Coordinator Helena, MT
Jan. 2019 = Aug. 2019
& |Led the everyday office experience for a team of 25 software engineers.
& Tracked expenses and expense reporting.

MONTAMA CODE SCHOOL, Web Development Student Missoula, MT
May 2018 = Aug. 2018
« Experienced in JavaScript, Git, Github, HTML/CES, NPM, Webpack, Babel and the Agile methodology.
s [Developed two web applications using React, Vue, Bootstrap 4, Express, Node, MongoDB and PostgreSQL
and presented them at public demanstration days.
= Fulltime immersive boot-camp to gain experience in the latest full-stack web development technologies.

MONTANA CONSERVATION VOTERS, Development Director Helena, MT
Mar. 2016 = Mar. 2018
+ Maintained Salesforce-based Luminate CRM database.
Built and sustained relationships with major donors.
« Participated in electoral and legislative strategy meefings.

MONTAMA DEMOCRATIC PARTY, Candidate Director Helena, MT
Nov. 2015 = Jan. 2016
= Served as interim candidate director/in-state fundraiser for U.3. Congressional candidate.

¢ Coordinated with campaign consultants and allies to launch all fundraising, research and
communications strategies utilizing NGP VAN database.

+ Fundraised over $263,800 = more than any previous Demaocratic candidate for the U.S. House in
Montana had raised in their first fundraising period.

MONTANA STATE SENATE, Legisiafive Aide Helena, MT
Jan. = April 2015
Jan. — April 2013
¢ Advised and congsulted with Montana Senate Minority Leadership on policy strategy, tracked legislative
actions for caucus and coordinated caucus priorities with the Governor's office.
Coordinated caucus media strategy through press conferences, social media, and briefing materials.
Hired and managed Senate minority legislative staff of four.

MONTANANS FOR FREE AND FAIR ELECTIONS, Deputy Campaign Manager Helena, MT
April 2014 = Mov. 2014
& Oversaw development of statewide marketing campaign, managed press relations, acted as campaign
spokesperson and wrote press releases.
& Coordinated website and social media presence and developed onlineg strategy in conjuncticn with a
paid and earned media program to convey a relatable message strategy.
« Facilitated statewide board meetings, coordinated editorial board visits and letters to the editor program,
recruited and managed third party spokespeople for public meetings.

MONTANANS FOR LEWIS, Finance Associate/Call Time Manager Helena, MT
Sept 2013 - April 2014
+ Managed donor relationships and tracked programmatic benchmarks which led to the designation as a
national op priority campaign by the Democratic Congressional Campalgn Committes.
+ Developed talking points, prepared speech remarks, coordinated campaign events, planned fundraisers,
organized constituent meetings and endorsement interviews.

MONTANA DEMOCRATIC COORDINATED CAMPAIGN, Fisld Organizer Helena, MT
= i partnership with Senator Jon Tester's Re-slection Commiftes May = Nov. 2012
+ Confributed seven days a week lo a statewide grassroots field operation thal generated over 3.2 million
voler contact attempts which led to the successful re-election of Senator Jon Tester.
« Recruited, trained and managed over 100 volunteers and ensured they used tested scripts and sophisticated
targeting which led to a historically high voter turnout in Lewis and Clark County.

U.5. SENATE DEMOCRATIC STEERING AND OQUTREACH COMMITTEE Washington, DC
Mar. 2010 - May 2012
Associate Director
« Established and maintained relationships with diverse external stakeholders, including Industry and
advocacy groups, with an emphasis on labor, womens, seniors, youth, and rural issues.
Built targeted communications plans for Senate Majority Leadership to strengthen coalitions around
legislative priorities.
Outreach Coordinator
« Supported partnership with House Leadership and the White House to organize large outreach events,
formal briefings, and summits.
& Oversaw logistics and managed budgets for all outreach initiatives, including roundtables, press
confarences, briefings, interviews, and videos,

Background

Brightvine aims to help the everyday investor in accessing mortgage investments in the

secondary mortgage market. According to Joe Vellanikaran, the founder of Brightvine,
The main purpose of Brightvine is to increase efficiency and liquidity in the mortgage
market, and thus increase home ownership overall. Legacy institutions like Fannie Mae
and Freddie Mac were created by the US government to increase home ownership for the
middle class. But one unfortunate outcome of new regulations following the subprime
mortgage crisis of 2008 is that the cost per mortgage has increased significantly. And
those costs are being passed along to the borrower, which in the end means that less
people can afford mortgages. However, when we increase efficiency in the securitization
process, it increases the amount of capital that’s available to provide mortgages, thus
bringing prices down and making mortgages more affordable for more people. [10]

Secondary Mortgage Market

The way banks make money is by issuing out loans and collecting high rates of interest.
However, once these loans are issued, banks often sell away the rights to these loans in order to
regain the capital to issue more loans. Investors can purchase these loans like they would
purchase any other investment and begin collecting the payments from the borrower as their way
of receiving a return on their investment. Like other investments, there is risk involved, and some
players are more willing than others to take bigger risks with a chance of higher reward. Because
of this, the purchasing of loans is not done at a set price. The willingness of investors drives the
price they are willing to pay.

The image below illustrates the many players involved in the secondary mortgage market and
how often money changes hands while the original borrower rarely notices a change.

Other Banks Private Financial

H B _ Institutions = Mortgage Backed
Contact Contact " = Ban Ny A %‘% Security Bonds
‘ I] I”] -y sl + ==
Commlssuon “ e «
B > = <p \—V///

Mortgage Broker e E—— N——>
- -— Premium Fee

Prem|um

2
»ﬁ a % Fee

&

Credit Default
Swaps
»

=Y

Credit Rating Agency nsurance Firms

{ Primary Mortgage Market]

[Secondary Mortgage Market]

Mortgage Glossary

Within Brightvine’s Mortgage Desk, many individual mortgages are listed for investors to
pursue. Attached to these mortgages are hundreds of data fields related to the loan, the borrower,
and the property. During the lending process, a bank performs a process called underwriting
where they analyze the risk of lending to the borrower and make a decision whether to offer the
loan at all. To perform this, they collect information from the borrower about their credit,
employment, assets, and other factors. Because the bank collects this information when they
originate the loan, these data points are also available with the loan in Brightvine’s Mortgage
Desk so they can be used to assess the risk of purchasing the loan in the secondary market.

These points will be crucial to this project as they will make up most of the input we analyze in
order to provide the suggested price point for purchasing a given loan. Some of the features are
described here:
e Credit
o Credit scores
o Credit history, including derogatories of all tradelines, mortgage-related
delinquencies, etc.
o Liability assessment
o Borrower fraud report
e C(ollateral
o LTV - Loan to Value ratio (loan on a property compared to property value)
o Collateral Score (from an appraisal of the property)
o Collateral condition /health /safety issues (from appraisal and/or inspection)
e [ncome
DTI - Debt to Income Ratio of the borrower
Length of employment
Receipt of consistent income (from the last two years)
Asset assessment

o O O O

Machine Learning

To understand the methods described in this document, it is important to be familiar with the
language of Machine Learning and the terms commonly used. Machine learning as a whole is a
branch of artificial intelligence that focuses on the use of data and algorithms, trained through the
use of statistical methods, to make classifications or predictions. The methods often imitate the
way that humans, or even the natural world around us, operate, learn, grow, and advance [2].

There are many different types of models to choose from when beginning a machine learning
problem. And within those, there are many variations of each type of model. But, when selecting
a model to use for any machine learning problem, the No Free Lunch principle must be

considered. The theorem states that all algorithms perform equally, on average. When comparing
the success of different models, how well it performs is determined by how aligned the learning
algorithm is with the actual data. [3] At the end of the day, once the models are tuned, they all
perform the same. So, one must implement some preference bias and just pick one and roll with
it. The biggest thing to consider for this preference is the time and space complexity of the
different models and how those align with the performance ability of the machine in use.

Another factor in the preference decision is Occam’s Razor. Sometimes referred to as the
principle of parsimony, this encourages developers to select the simpler model when given the
choice. When all things are equal with performance and complexity, select the model that is less
complicated to implement or understand. Keep it simple.

One process that has been mentioned already is tuning. This process involves the parameters
that are associated with a particular ML model. The parameters are values that must be passed
into the model that affect the various calculations and equations in different ways. Tuning these
parameters involves running a model and all of its training processes, checking the success of the
model when evaluating the test data, and tweaking the parameters. The tuning process is
complete when a reasonable number of parameter values have been tested in combination with
each other and the values that yielded the best results are selected. These parameter values are
then passed into the algorithm whenever it is used to test a new data point.

The training process is the most crucial phase of model preparations. Without training, the
model never learns and can never provide the desired insights. When a model is trained, its
calculations, weights, and other values are tweaked over a process of many iterations until the
equations best describe the data being used for training. Some models need only to look at the
training data as a whole and use the distributions of feature values as data to inform their
decision-making process. This is still training. Other more complicated models look at each data
point individually, try to make a prediction using random weight values in a complicated
calculation, and then use a different complicated calculation to change those weight values to
better lead the model to the right output value. Many of the training algorithms involve complex
calculus and don’t look like they should work. Then after some iterations and some patience, the
performance of the model begins improving and you can watch your model learn.

For this project, we will be finding data with the desired input features that will help create an
informed price suggestion. With this, we will be seeking out data from past mortgage sales that
will be labeled with a value that this mortgage was bought and sold at previously. When training
a model with data like this, it is called supervised learning. When the training data set has actual
truth values associated with each example, the model can use this to learn the ways in which it is
making good predictions and the ways in which it is performing poorly.

The first of two models we will test uses a K-Nearest Neighbors algorithm to make a decision
based on the points closest to the test point. There is no real training involved in this method
other than simply reading the training data. This algorithm operates on the assumption that
similar points exist close together. When making a prediction, the model finds the distance
between the test point and each of the points in the training data. The parameter k determines
how many points to consider as the nearest neighbors to this test point. Once the neighborhood is
determined, the value assigned to the test point is found by checking the most common class in
the neighborhood or by averaging the true values of the neighbors.

The second option for our model implements a Neural Network to perform the prediction
calculation and is considerably more complicated. The network contains layers of nodes. Every
node in one layer is connected to each node in the next layer. These connections are each
assigned a weight value which acts as the key piece in forming a prediction. These weight values
are what the model ‘learns’ through the training process. At the input layer, there is a node for
each attribute in a data point. At the output layer, the number of nodes depends on the type of
problem you are trying to solve. For a regression problem like the one in this project, there is
only one output node that holds the value of the prediction. Each node in the network takes into
account the weighted values it is receiving from the preceding layer, sums them up, and squishes
the value down to be between zero and one. This process takes place in every node in every layer
of the network.

To provide more flexibility within the model, hidden layers can be added. The number of hidden
layers and the number of nodes in each hidden layer are all tunable parameters. Sometimes
adding more layers helps the prediction by adding more opportunities for the model to provide
special treatment to different attributes to make them more or less impactful on the overall
prediction. However, it can also make the model too complex, causing it to take much longer to
reach an optimally trained state without seeing much improvement over a simpler model. Hence,
the reason these values are tunable and should be tested as such. The biggest benefit of using this
model is that performing a prediction on a new test point is very quick and could provide the user
of Brightvine’s app rapid feedback after opening the details of a loan.

If the neural network ends up being the model of choice, we will have to consider a couple of
different training methods. The first one we have experience with is called Backpropagation.
This method involves testing each point in the training data, comparing the prediction to the
actual value, and using the difference to suggest changes in the weights that would allow the
model to better predict the correct value. This is repeated for every point in the training set, and
all of the weight suggestions are averaged and applied to the model’s weights. In order to see
improvement, many iterations are required as the weights shift very slightly after each run
through the training set. Each point is vying for the model to change to best suit itself and the
model is eventually swayed towards a solution by the majority of the training data.

Another option for training uses a Genetic Algorithm that behaves just like a species in the wild
evolving over time through the theory of survival of the fittest. In this method, many different
networks are created to form a population. Each member of this population has its own set of
weights. Over many iterations, each network is tested, and the best-performing models create
new offspring by sharing some of their weight values with each other. These new offspring
replace some of the worst-performing networks in the population. Over time, the best-performing
models survive, reproduce, and introduce some new variability in their weights, and eventually, a
very well-performing model emerges with weight values trained to fit the training data associated
with the problem. This best-performing model and its weight values survive the evolution
process and are then used to create future predictions.

These are different types of machine learning models and training processes that were tested in
the research stages of this project during the Fall and Spring semester. Again, because of the No
Free Lunch policy, no model will ever clearly outperform the others once it is perfectly trained
and tuned. In our research, runtime and space complexity will be heavily considered when
selecting the final model.

Prior Work

All investors are interested in the likelihood of a mortgage defaulting, in which case a borrower
is no longer able to make payments on their mortgage. Before the time of computers, a great
amount of time was committed to manually screening loan details for signs of default. With the
development of computers, and further, machine learning, time is now being devoted to
developing a computational algorithm that can make these predictions for us.

Due to the many stakeholders involved, many parties have researched machine-learning
solutions in the field of mortgage default prediction. Existing research includes Akindaini’s
exploration of the machine learning methods to predict default classification of mortgages,
finding the random forest model to perform with 95.68% accuracy utilizing the publicly-sourced
Fannie Mae Mortgage Dataset [4]. Lai of Jiliang University found the AdaBoost ML model to
achieve 100% accuracy in the Xiamen International Bank dataset [5]. Beyond default prediction,
mortgage investors are interested in the cumulative value of a mortgage, which involves an
accurate valuation of the property. Niu et. al presents a successful property valuation system with
a back propagation neural network model [6]. We aim to explore a similar machine learning
approach to encompass the valuation of a mortgage.

Schedule

Throughout development, we will be using Trello boards for project management in alignment
with two-week sprints and bi-weekly meetings with Brightvine. We selected the Scrum life cycle
because it matches Brightvine’s existing methods with two-week sprints and supports the
iterative methods necessary for machine learning development. There are six basic phases of
machine learning development, shown here:

o000 00

Data Data Data Model Training and Model
collection validation preprocessing building evaluation deployment

Figure 1: Machine learning development workflow, as described in article about ML design patterns [7]

While we will be operating under an iterative process, it is unlikely that we will return to the
beginning once we reach model deployment. Our team will be moving forward along this path,
but will likely bounce back and forth between a few phases before fully moving on to the next.
Each two-week sprint will be treated more like a timeline to complete a task, rather than a time
to fully produce a prototype and further develop that prototype in later sprints. While the process
is iterative, it may look more like an iterative variation of the waterfall method.

We will add flexibility for our student schedules by using a private Trello board as opposed to
Brightvine’s company-wide project management technology, Jira. All group members will be
responsible for creating and updating Trello boards regularly.

Our strict project timeline is below:

Work Schedule

Establish
Requirements

Begin Design Work
Proposal Rough Draft
Submit Proposal
Begin Development
Prototyped Developed
Product Testing
Research Symposium

Submit Final Project

Beyond these deadlines, our work schedule can further be divided into these personal tasks:

In the planning stage, Lauren designated three hours per week for meetings, research, and
writing. She primarily focused on the abstract, presentation slides, and proposal statements. In
the spring, Lauren will designate five hours per week for development, testing, and meetings
each week. This will break down into two hours of meetings and three hours of independent
work. She will encourage the team to set and meet deadlines and manage the Trello board.

In the planning stage, Jacob dedicated two hours per week to meetings, research, and writing for
the proposal document. He focused on providing background for the machine learning processes
that may be used next semester as well as contributing to diagrams and program design. In the
spring, Jacob will shift his focus to implementation and research to understand the relevant
datasets and create the predictive model. During this time, he will dedicate five hours per week
to writing code, meeting with group members, and meeting with the stakeholder.

In the planning stage, Kate designated three hours per week for meetings, research, and writing.
She primarily focused on the abstract and proposal statement. During the spring semester, Kate
designated three hours per week for development, testing, working with the datasets, team
meetings and addressing the needs of the stakeholder.

Proposal Statement

User Stories

To help guide our design and implementation plan, we created the following user stories:

e As an investor, [want to know whether or not a given loan is a good investment so that I
can make smart investing decisions.

e As an investor, I want to know an appropriate price for a given loan based on other
similar loans so that I know whether or not I’'m getting a good deal.

e As Brightvine, I want a tool that can be accessed in our existing Mortgage Desk so that
our platform can be as useful as possible, making it attractive to investors.

e As Brightvine, I want this tool to use new and relevant data so that our suggestions are
fresh and accurate.

Functional Requirements

The Mortgage Valuation Tool needs to output a recommended buy/sell price point for a specified
mortgage and display it in mortgage details. For this to occur, the tool must:

Accept essential mortgage details as input

Accept current economic and real estate conditions as input
Analyze mortgage valuation with machine learning solution
Output price point as an API endpoint

e Feed price point into mortgage details frontend component
In addition to this core feature, if we have the time, a user should be able to batch-select many
mortgages and view a composite valuation price point. This adds the following requirements:

e Analyze composite mortgage valuation with machine learning solution

e Display composite price point
Each investor has their own view of risk and what contributes to a valuable mortgage purchase.
Therefore, users would benefit from the flexibility to change valuation parameters within the
Brightvine Mortgage Desk. This functionality includes allowing investors to:

e View key valuation fields

e Adjust importance of fields

e Adjust risk tolerance

Nonfunctional Requirements

Beyond the functional requirements, we aim to meet a series of non-functional requirements
specified below:
e Security
o By definition, our valuation tool works directly with real mortgage data and
personal information, including credit scores and home addresses. Due to the
confidential nature of this data, security, including data encryption, will be a top
priority.
e Storage
o Developing predictive machine-learning algorithms requires immense amounts of
training data. However, for the sake of efficiency, we need to carefully consider
the storage requirements of such data and cap the amount of data processed at a
time. This may include taking representative samples of mortgages across
different regions and property types in order to minimize file sizes.
o Compatibility
o The tool must be fully compatible with existing Brightvine products and web
browsers.
e Scalability
o The Mortgage Valuation Tool will initially be utilized solely within the Brightvine
Mortgage Desk, first with Brightvine investors, and then with public investors. In
the future, however, this tool could be utilized by larger corporations in the
secondary mortgage market. Through development, we hope to create a tool that
is usable not only within Brightvine products but also extendable to external
products.
e Usability
o We aim for the Mortgage Valuation Tool to be used without error by most users.
o We will apply the Pareto Principle, which, in the case of usability, states that
“80% of your users use 20% of your features.” [8]. The result of this is displaying
the primary 20% of the software capability clearly enough that a novice user will
correctly interact with the product without instruction. The additional 80% of
capabilities, such as adjusting risk tolerance and preferred mortgage properties,
will be utilized by approximately 20% of users and have more margin for
complexity.
e Data Integrity
o When aiding in major financial investments, this tool must always provide
reliable results and perform as expected. A thorough testing-harness should be
implemented to ensure data integrity and reasonable predictive results.

Performance Requirements

The mortgage market is a rapidly changing environment as it interacts with the global economy,
national housing market, regional statuses, and individual money management. Due to this
dynamic nature, we aim for the data upload and processing time of the model to be minimal so
that frequent data updates can be made daily. While industry leaders in FinTech are able to track
going rates such as stock market prices by the minute, we are aiming for a modest timeframe of
hourly updates. However, we aim for full data processing to take no more than ten minutes.

Interface Requirements

The Mortgage Valuation tool consists of seven interfaces:
Investor
Brightvine admin
Client
Server
Database
e API
Between these interfaces, the following interactions occur:
The Investor selects mortgage details on the client interface.
The Brightvine admin uploads loan data to the server.
The client displays the predicted price point to the investor.
The client sends mortgage details to the API via POST request.
The client retrieves the predicted price point from the API via GET request.
The API passes mortgage details to the server.
The API returns the predicted price point from the server to the client.
The server uploads loan data to the database.
The database passes new data to the ML model.
The ML model outputs the predicted price point to the server.

Architectural Design Documents

Below are three design documents that outline the proposed design for the system developed
during the spring semester. The Use Case Diagram outlines the actors in play when certain

functionality is being performed.

Investor

Brightvine

See Price Suggestion

Define Risk Tolerance

Clarify Parameters

Retrain Model

Add Loan Data

Call ML Model to
Create Suggestion

Mortgage Loan
Database

The Component Diagram shows how functions perform within the context of the overall system
and how data serves as input and output for these functions.

|

AP Endpoints Q—C Data Visualizer

AP| Endpoints

Valuation Tool System

Trained Model

©

]

ML Model

Validator

Prediction Value

|

ML Model

Loan Database

{ Loan Database

Loan Selection from

-

©

Single Mortgage Loan

k

Mortgage Desk

The Sequence Diagram outlines the flow of the data and overall program, showing which actions
receive or send certain information to different components of the system from the interface to
the trained machine learning model.

:Interface :Visualizer ‘ML Model

in: velsror

Opens Detail View of Mortage

e

Take deails of this loan as input to mode/

i
\
\
\
\
\
\
|

- -
Creates prediction based on
Sends prediction to the visualizer input loan and trained model

__returns API points representing a price
point and correspoding visual

Displays Mortgage Valuation

e
|

:Database ML Model

Imports new loan data . »
» Triggers training methods

N .
J Trains and sets new model w/ updated training data
Confirms DB/Model update to Admin +

-

\
Bnghrwr{e Admin
|
\

\

\

\

\
|

Within this system, mentioned is a visualizer object. Due to the nature of python and machine
learning programming, the program will not be object-oriented in the way that java programs are,
so we will not be using true objects and therefore a class diagram would not be effective. But this
visualizer object will simply be a compartmentalized group of functions that take in the output of
the ML model and turn it into valuable information to be sent to an API and later the interface.
This may include de-normalizing the prediction into a real price point suggestion, depending on
the preprocessing of data that occurs, and assigning a corresponding visual representation.

Development Standards

Tech Stack: Considering that our product will be integrated with existing Brightvine software,
our selected technology stack consists of similar technologies to those already used within the
company, in addition to some solution-specific technologies:

e Machine Learning: Python, NeuroLab library

e Back-End: Flask

e Front-End: HTML, CSS, JavaScript

Design Pattern: When designing the structure of the API, it is important to consider it’s usability
and readability for any programmer. For our design pattern, we decided to follow the REST API
design pattern, which is a standardized approach to designing app routes that rely on a set of
HTTP methods and carefully selected keywords. In my Flask application, we implemented this
pattern to provide a consistent and predictable interface for clients to interact with the API. We
used the HTTP methods GET, POST, and DELETE to perform actions and created hierarchical
endpoints to represent the information being displayed. For example, the endpoint '/<loan id>'
represents a specific loan resource that can be retrieved using the GET method, while the
endpoint '/<loan_id>/delete' represents a specific loan resource that can be deleted using the
DELETE method. By implementing the REST API design pattern in our code, we created a
standardized and reliable interface with improved maintainability and scalability.

Design Tradeoffs: Our project mostly deals with backend development, drawing data from a
database, and preparing a machine learning model to perform predictive calculations. We will be
dealing with very little front-end development. In fact, the one design decision we made was to
not implement a complex frontend framework, such as React.js that is used by Brightvine. Our
frontend code, utilizing vanilla HTML, CSS, and JS, is sufficient to demonstrate the
functionality of our solution but is not intended to be transferred to Brightvine.

For Brightvine, on a mortgage loan’s details page, the price point suggestion provided by the ML
model must be displayed. One option we faced was to write an independent bot that can be
plugged into any webpage and would contain all the necessary front-end code to be displayed by
the web browser right away; like a React component. After discussion with our team and our
stakeholder, we have decided to instead use an API to display the data needed for the web
browser rather than a transferable component. Because of this decision, Brightvine can have
access to the data provided by the ML model anywhere in their system. All they have to do is
trigger the model to run by sending it the input from a given loan. This provides more flexibility,
as the model’s data can be used anywhere by simply requesting it from an API. This ultimately
serves the stakeholder better as they can more seamlessly use their existing frameworks, design
elements, and themes to create their own label that will draw from the valuable information our
project provides.

Expected Results

Bringing all of these ideas together, we aim to have a working prototype of a Mortgage Valuation
Tool that accurately predicts a buy/sell price point given mortgage details and user input. Within
the scope of this class, we expect the following specific results for success:

1. The Mortgage Desk can successfully retrieve price point data and visualization from the
Mortgage Valuation API.
2. The ML Model outputs a price point that is accurate to mortgage market standards.

Evaluation of a supervised machine learning model can be performed in numerous ways. Often a
type of loss function is used which takes in both the predicted and actual outputs of the rows in
the dataset and returns the value of the loss function. For our case, we will be using Mean-
Squared Error (MSE) and a modified accuracy calculation for numerical prediction values. The
model will be optimized by minimizing the MSE. Unfortunately, the MSE value is difficult to
interpret and does not provide a good way to verbalize the success of our prediction in terms of a
percentage success rate. The value alone is fairly meaningless to a human evaluator, but when
compared to the MSE of previous iterations in the training process, it is still a very effective
metric for finding convergence when training an ML model.

Because of the limitations of MSE, we will try to employ a modified accuracy metric for
understanding the success rate of our prediction algorithm. This will include using an alpha level,
likely & = 0. 1, as a margin of error where the model’s prediction will be deemed correct if it
falls within the range around the actual value. With the time allotted to this project, we expect to
reach an accuracy of 90%.

As aresult of this project, we expect Brightvine to benefit through increased trust and
engagement by investors within their Marketplace platform. By providing a provably accurate
price point prediction, investors can be sure of their investment decisions without external
advising, in turn broadening the accessibility of mortgage investments to a variety of
socioeconomic and education levels. This ties in directly with the mission of Brightvine -- to
“uncloak the black box of opportunity” to all investors [11]. The Mortgage Valuation Tool should
do just that, distilling the complexity of the secondary mortgage market into a price point that
provides a step up to novice and seasoned investors alike.

Beyond Brightivine, we anticipate our Mortgage Valuation Tool could have a significant impact
on the secondary mortgage market and financial technology industries globally. Such a tool
could be implemented in other mortgage marketplace software or used by private investors as
they aim to gain the best insights on their own. The tool could also be fine-tuned by Brighvine or
other entities to take in more specialized input and parameters to provide more sophisticated

suggestions. The scalability and relevance of this tool and the methods behind it are nearly
endless as the excitement around machine learning continues to grow.

Final Results

Throughout the fall semester, our team conducted extensive research into the problem and
necessary requirements, began to research a solution, and crafted detailed proposal documents.
During the subsequent spring semester, our team continued our research efforts, focussing on
selecting a suitable dataset, identifying appropriate prediction methods, and implementing a
solution prototype. As we developed our solution, our team pivoted from the original plan of
using a neural network with a multi-layer perceptron model trained by either backpropagation or
a genetic algorithm like particle swarm optimization. Instead, due to the nature of the datasets
available to us, we selected an unsupervised learning approach-- a K-Means clustering algorithm,
followed by a K-Nearest Neighbors prediction that leveraged the reduced dataset generated by
the clustering process.

Data and Preprocessing

We selected the Single-Family Mortgage-Level Properties, high-cost single-family mortgages
purchased and securitized by the Enterprises (National File C) from the Federal Housing Finance
Agency dataset because the FHFA is an independent federal agency responsible for regulating
and supervising the Federal Home Loan Bank System and the government-sponsored enterprises
Fannie Mae and Freddie Mac. The FHFA website provides access to various datasets related to
the housing and mortgage markets, including the FHLBank Public Use Database, the National
Mortgage Database, and the House Price Index. These datasets are made available to the public
to support research and analysis of the U.S. housing market and economy. Researchers and
analysts can download the datasets in various formats and use them to conduct studies on a wide
range of topics related to housing finance, mortgage lending, and housing affordability.

We then preprocessed the data to include the following essential fields: Total Monthly Income
Amount, Loan Acquisition Actual Unpaid Balance Amount, LTV Ratio Percent, Borrower
Count, Note Rate Percent, Note Amount, Housing Expense Ratio Percent, Total Debt Expense
Ratio Percent, Borrower 1 Credit Score Value, Borrower 2 Credit Score Value.

After the dataset was selected, downloaded, and columns were chosen based on the value and
usability of the data, Jacob began the process of data evaluation. The main problem with the
public data we could find was that it did not come with columns describing anything about the
performance of the loan or the reliability of the borrowers. Due to the nature of machine
learning, this essentially eliminated the use of any supervised learning techniques like the ones
we proposed. When using a model like a neural network, in order for the machine to learn and
the model be trained, it needs to know whether or not it is doing a good job of predicting a value.
With no data telling us or the machine what makes a good borrower or what makes a loan a
reliable investment, there was no way for a ML model to train itself towards improving
performance. Thus, we had to move into exploring unsupervised learning techniques for our
solution.

First, Jacob performed some exploratory analysis on the dataset. The data was read from a csv
into a data structure called a DataFrame using the pandas library for python. A few columns used
values to represent missing data, so the corresponding rows were removed. After analyzing the
distribution of values in each column, it was deemed appropriate to treat points with values
outside of three times the interquartile range as outliers and remove them from the dataset.
Together, these methods were able to effectively clean the dataset while maintaining 98.3% of
the points in our 236,758 point training set.

While each column seemed to have information that would be valuable to estimating the value of
a loan, exploration revealed that several columns were very highly correlated. For example, the
Note Amount (initial loan amount) and Loan Acquisition Actual UPB Amount (remaining
unpaid balance when acquired by secondary market investor) were the same in a vast majority of
the columns and so were highly correlated. Similarly, the Borrower Count and Borrower 2 Credit
Score Value were highly correlated because most loans had only one borrower, which always
leads to the credit score value for borrower number 2 being N/A and therefore represented by a 9
in the dataset.

Despite the correlation, it is still valuable to maintain this information in the dataset. We still
want to know when the unpaid balance has changed since origination because that shows
proactive payments by the borrower. We still want to know the credit score of the second
borrower when applicable. In order to remove some of the correlation without dropping data
features, we employed the dimensionality reduction method of principal component analysis
(PCA) through the use of the decomposition class of the sci-kit learn python library. In order to
preserve 90% of the explained variance in the data, we only reduced the data from eleven
attributes down to six.

Throughout the training and testing processes, we utilized remote repositories to imitate remote
databases for storing, reading, and updating data. Initially, the training and testing data were all
stored in this repository. After training, new information was pushed to this repository including
the clusters of data, the cluster centroids, and the actual python objects used to clean,
standardize, and cluster the data. During testing, the python objects and appropriate data cluster
were pulled from the repository and read into the algorithm to be used for the prediction.

Model Training

Without the ability to train a neural network using the data’s ground truth, we turned to clustering
methods to provide insights. The chosen algorithm, K-Means, clusters the data into a set number
of clusters by randomly assigning points to be cluster centers, then repeatedly assigning points to
their nearest clusters and recalculating cluster centers until the model converges and the centers
no longer change. Since there is no correct answer when clustering unclassified data, there are

two different evaluation metrics used to determine the effectiveness of the clustering: inertia
value and silhouette score.

Inertia is essentially an overall measure of how far the data points are from their cluster centers.
This value should be minimized. The silhouette score incorporates both how far a point is from
all of its cluster mates and how far it is from the points in the other clusters. The comparison of
the cohesion and separation of clusters results in a value between -1 and 1 that should be
maximized. When plotting these scores in tandem for different cluster counts, the point where
there is an elbow in the inertia graph and a maximum in that area in the silhouette graph is the
optimal number of clusters that should be used for clustering a dataset.

That point was determined to be at eight clusters for our mortgage dataset. However, we ran into
trouble with calculating the silhouette score, which is relevant for the prediction method explored
later in this paper. In order to calculate this value, each point in the dataset must be compared to
every other point, and their distances computed. With a dataset as large as the mortgage dataset
being used in this project, the python script running this exploratory analysis failed to produce
silhouette scores for more than two or three cluster counts in any extended period of time. It was
determined to be information that we could proceed without in regards to finding an optimal
number of clusters, however it provided crucial insight into the kind of time complexity we were
working with when computing distances between every single point in the dataset.

Proceeding with the information learned about clustering, the data was sorted into eight clusters
using the K-Means algorithm through the use of the cluster class of the sci-kit learn python
library. This was to serve as the training for a future testing/prediction algorithm. New points
could then be read into the program and be assigned to the cluster into which they best fit. It is
important to note that clustering algorithms sort data into like clusters. This is not classification.
It makes no claim to be classifying points into certain classes, only clustering the data together
based on similarity.

Price Point Prediction

Without the ability to run a point through a trained neural network for prediction, the clustering
provides a much less sophisticated method for predicting a price point. After assigning the new
test point to a cluster based on the centroids of the previously trained clusters, all of the data
points from that cluster were read into the program from the database. By taking the assigned
price of each of the points in this cluster, the average price was assigned to the test point as its
prediction value. This was based on the assumption that the clusters represented a tightly knit
group of data points with very similar attributes like loan amount, monthly income, and loan to
value ratio.

It was discovered, however, that this is a very ineffective method of prediction. The assumption
that each cluster represents a tightly knit group of data points is likely false considering the
massive amount of data being used. Through this clustering method, each cluster consisted of
about 30,000 points. Also, since a test point is always assigned to one of these eight clusters,
there would only be eight possible outputs for our prediction algorithm. Surely, not every
mortgage loan is best represented by one of these eight values. So, we found that the supposedly
optimal eight clusters were not actually very meaningful and that averaging the prices across a
huge number of points would not be very insightful.

Continuing with the assumption that very similar points will be grouped closely together, we
aimed to select only a few of the closest points to generate a prediction value. This method is
called K-Nearest Neighbors (KNN). The model simply searches the entire dataset to find the
given number of points that are closest to the given test point. As we discovered during data
exploration, iterating through the entire dataset to compare distances is a very time-complex
process and would not be ideal for providing a prediction within the parameter of our
non-functional requirement of speed. Instead, since we already tested the ability to assign a new
point to a cluster using the centroids, we then used that assigned cluster as a reduced dataset
within which to perform the KNN search. And, since we were no longer looking for an optimal
number of clusters for the K-Means algorithm, we increased the cluster count to 30 in order to
produce datasets of around 8,000 points — a modest task for the KNN search.

This method allows the prediction algorithm to compare the point to only 30 values (cluster
centroids) and in doing so remove nearly 97% of the data points from consideration — all of
which would never be one of the test point’s few closest neighbors considering they wouldn’t
even be in the same 8,000-point cluster. The KNN algorithm is able to search through this cluster
of data to find the K-sized neighborhood in no time at all.

The size of this neighborhood was another tested parameter. We ran the search for several
different points and looked at the neighorhoods for sizes ranging from five to ten. When ten
points were included in the neighborhood, the farthest points started to have some very
significant differences from the test point in a few columns. While some diversity is important
for the prediction, it was determined that a K of seven would provide the largest neighborhood
for prediction without reaching too far away from the test point and losing too much similarity.
The assigned prices of each of these seven neighbors is averaged and that value is assigned to the
test point as a prediction value. We believe this provides the best insight into a meaningful
prediction given the data available.

Data Display and Interpretation

Over the course of several months, our team worked diligently to create a working demo of our
mortgage valuation tool using Flask, HTML, CSS, and JavaScript. We began by designing a
home page that allowed users to upload a singular mortgage in CSV format. Once the dataset
was uploaded, it was passed to our REST API endpoint which would display all the mortgage
details on a new page. We then linked this web application to the machine learning scripts
through a series of buttons in which a user could retrain the model and generate a new prediction
leveraging the K-Means clustering and K-Nearest Neighbors search algorithms. The results were
then displayed on a separate page where users could view the mortgage details and predicted
price point. We also included details on the changing value of the mortgage, and how it compares
to similar mortgages.

When reading the prediction value of a single mortgage loan, if the prediction value is higher
than the given price of the loan, an investor can know that this loan is priced lower than other
very similar loans that have been sold. This does not necessarily mean we are giving the investor
the “all-clear” to purchase the loan right away, but it does give them valuable insight into how
this specific investment opportunity compares to other similar options. If the prediction value is
lower than the given price, it may be an indication to the investor that this specific loan is
overpriced and to continue searching for a better deal. Within the details of the loan, it also alerts
the investor if the loan payments are current or delinquent and whether the value of the property
has seen significant appreciation or depreciation. A delinquent loan is not always a bad
investment, but it is very important to be aware of. Similarly, a loan on an appreciating house
should become a much higher priority for an investor than one with a decreasing property value.
Overall, we successfully created a functional and user-friendly interface that demonstrates how
our solution quickly and accurately determines the value of a mortgage investment.

Appendix

Model: Database handling, preprocessing, training, and predicting
°

GitFunctions.py
PreProcessing.py
trainingModel.py
predictionModel.py

L o o I~ L A . B W A

[G S
L

import pandas as pd
import git
from git import Repo

import os

Check that we are in the MortgageValuation directory and change if not
def checkDirectory():
current_dir = os.getcwd()
head_tail = os.path.split{current_dir)
if head tail[l] != "MortgageValuation":
exit("ERROR ::::: Code is not running in the MortgageValuation repository directory!!™)

14
35
18
17
12
39
28
21
22
23
24
25
28
27
28
29
3@
31
32
33
34
35
38
37
38
39
48

Check for a conneciton to the dataset repository, should be in same folder as this repo, but not in this repo
==CREATE== a connection if there isn't one

===PlULL=== current remote repository status

def getRepc():

os.chdir{™..™)

repo_dir = os.getcwd() + "/Brightvine_model_files"” # path of data repo
try:

repo = Repo(repo_dir) # works if it exists
except: # if error, enters this chunk to initialize it

print{"Repoe does not yet exist locally")

initiate new Git repo
git.Git(repo dir).clone("https://github.com/jjbrown23/Brightvine model files.git")
repe = Repo({repo dir)

finally:

assert not repo.bare

repo.remotes.origin.pull() # pull most recent repo down locally

return repo, repo_dir

42

s
A5
46
47
48
A9
50
51
52
53
Hd
55
56
57
58
59
B0
61
62
63
64
65
66
&7
B8
69
7@
71
72
73
74
75

==L0AD== some data into a DataFrame

def readData(repo_dir, input_file name, columns):
data = pd.read_csv(os.path.join{repo dir, input file name), sep=",", names=columns, header=@)
print("...Reading an input file from remote repo...")
print(”....{} data instances with {} attributes....".format(data.shape[@], data.shape[1l]))

return data

==PUSH== new changes back toc the remote repo,
added a bunch of prints to show repo status throughout
def pushRepo(repo, output_file name, commit_msg):
print{"\n...file edited")
print{repo.git.status())

if typef{output_file_name) == str: # if only one file, will show up as a string
add files = [output file name] # and it needs to be thrown in a list to be read by git.add
if type(output_file name) == list: # if multiple files;, will show up as a list

add files = output file name # and it's already in list form for git.add

repo.index.add{add files)
print("in...file added”)
print{repo.git.status())

repo.index. commit{commit msg}
print("i\n...file committed”)
print{repo.git.status())

repo.remotes.origin.push()
print("in...file pushed")
print(repo.git.status())

LY = L= A ¥ 0 B - T S T

e L B o T T T
bt I = L B - .= LY = F =« B 'Y I = B o R = R R 8

import pandas as pd

import numpy as np

import os

os.environ['TF_CPP_MIM_LOG LEVEL'] = '3°
import tensorflow as tf

from tensorflow import keras

from sklearn import preprocessing

from sklearn.model selection import train_test split

VARIABLES - found in previous exploratory analysis
NUM_CLUSTERS = 8

NUM_CLUSTERS = 3@

NUM_PCS = 6

def removeMissing(data):
print{"\n....Dropping rows with Missing Values....")
start = len{data)
data = data.dropna()
data = data[data["HousingExpenseToIncome'] = 999]
data = data[data[’'TotalDebtToIncome'] != 999]
end = len(data)
if start - end ==
BrAREL ™ 5 e an Mo missing wvalues, no rows dropped™)
else:

'

pranEl "noe + stristart-end) +

return data

rows dropped with at least one missing value™)

33 def removeExtremeQutliers(data, columns):

34 print("\n....Removing extreme outliers....")

35 o S 2] o amme e Dropping rows with values outside the whiskers of length 3 x IQR\n")
36

37 # gather guartile limits for each column

38 limits = {}

39 for col in columns:

48 limits[ecol] = (3 * (data[col].quantile(.75) - data[col].quantile(.25))) + data[col].guantile(.75)
41

A2 # remove outliers from each column

43 start = len(data)

44 thisStart = len{data)

45 for col in columns:

A8 data = data[data[col] < limits[col]]

A7

48 end = len{data)

49 print({"+++ Outliers removed from " + col + " column: ™ + str(thisStart - end))
58 thisStart = end

51

52 print("\n" + str(start-end) + " rows with outliers dropped from the dataset")}

55 print{”...{} rows remaining...".format{end))

54

55 return data

56

58
59
6
61
52
63
64
65
66
67
63
69
79
71
72
73
74
75
76
77

def normalize(data, columns):

print{"\n....Standardizing the columns of data....™)

print{™....... Setting each column's values to have mean of @ and std of 1")

years = data[Year']
data = data.drop(columns=["Year'])

columns.remove('Year')

ss = preprocessing.StandardScaler()

standData = ss.fit transform{data)

reshape years to concatenate to data
years = np.asarray(years).reshape{len(years), 1)
standData = np.concatenate((years, standData), axis=1)

columns.insert(@, 'Year')

transform back into a DataFrame so we can still use column headers

standDataFrame = pd.DataFrame(standData, columns=cclumns)

return standDataFrame, columns, ss

L =« B T o B - O

Y T Y T v N = NI '~ =
GO =~ h W & R @

import numpy as np

import pandas as pd

from datetime import datetime
import os, sys

import pickle

backend dir = os.path.join{os.getcwd(), “backend/machinelLearning™)

sys.path.append(backend_dir)
import PreProcessing as pp

import GitFunctions as gf

from sklearn.decomposition import PCA

from sklearn.cluster import KMeans

VARIABLES - found in previous exploratory analysis

from PreProcessing import NUM_CLUSTERS
from PreProcessing import NUM_PCS

19
28
21
22
Fa
24
25
26
27
23
29
38
31
32
33
34
35
36
37
338
39
409
41
432
43

45
46
a7
A3
43
58

def getData():

Check that we are in the MortageValuation directory

gf.checkDirectory()

Check for a conneciton to the dataset repository,

==CREATE== a connection if there isn't one

===PULL=== current repo files/status

repo, repo_dir = gf.getRepo()

==L0AD== some data into a DataFrame

input file name = "NewData.csv”

fullColumns = ["Year', "MonthlyIncome®, "UPBatAcguisition', 'LTVRatioc',

fullData = gf.readData(repo dir, input file name, fullColumns)

Run some preprocessing methods on this data for clustering

no missing data = pp.removeMissing{fullData)

columnsForQutliers = ['MonthlyIncome', 'UPBatAcquisition', 'LTVRatic',

"BorrowerCount’, 'InterestRate’,

'BorrowerCount', 'InterestRate’,

no outliers data = pp.removeExtremeQutliers(no missing data, columnsForQutliers)

columnsForClustering = ["Year®, "MonthlyIncome', "UPBatAcquisition’, "LTVRatio', ‘BorrowerCount®,

reduced_data = no_outliers_data[columnsForClustering]

print({"\n....Reduce dataset to columns relevant for clustering....™)

should be in same felder as this repe, but not in this repo

read data into pandas DataFrame

‘InterestRate’,

prae | e s {} data instances with {} attributes....".format{reduced_data.shape[®], reduced_data.shape[1l]))

std_data, columns, ss = pp.normalize(reduced_data, columnsForClustering)

trainData, testData = pp.create folds{std data)

return no_outliers data, std data,

columns, ss, repo, repo dir

"OriginationValue’,

'OriginationValue’,

'‘OriginationValue’,

'HousingExpenseTolncome ',

'HousingExpenseTolIncome',

‘TotalDebtTolncome',

"HousingExpenseToIncome', 'TotalDebtToIncome']

'TotalDebtT

51
52
53

def

det

getClusters(data):

Reduce Dimensionality with PCA
print{”"\n...Performing PCA...™)
pca = PCA(n_components = MNUM_PCS)
pca data = pca.fit transform{data)

print{".....Data reduced to {} attributes..... " .format{pca_data.shape[1]))

Use KMeans to cluster the PCA-ed
print{"\n...Performing K-Means Clustering...™)

kmeans = KMeans(n_clusters = NUM_CLUSTERS, n_init = 18)
clusters = kmeans.fit predict{pca data)

print{".....Data grouped into {} clusters using the K-Means algorithm..... " Fformat{MUM_CLUSTERS))

return kmeans.cluster_centers_, clusters, pca, kmeans

storeClusterData(repo_dir, std_centroids, columns, cluster labels, fullData, ss, pca, kmeans):

print{"'n\n...Writing cluster data and data processing cbjects to files in the remote database repository...")

all file names for the three database files and data manipulation objects

file names = ["StandardizedCentroids.csv"”, "ReadableCentroids.csv”, "ClusterlLabels.csv™, “ss.pkl"™, "pca.pkl”, "kmeans.pkl"]

Turns out that storing these three files to the database is pointless, they won't be used in prediciton,

just good for human visualization of the process

Throw standardized centroids into a DataFrame and write it to a csv
std_cent_df = pd.DataFrame{std_centroids, columns=["PC"+str(x) for x in range(1,NUM_PCS5+1)]) # create a df

std cent df.to csv{os.path.join(repo dir, "ModelQutputFiles™, file names[8])} # write to csv in database repo directory

85
36
37
38
a9
9@
g1
92
93
94
95
g6
97
93

1ae
181
12
1@3
184
1a5
186
ie7
1a8
189
11@
111

Translate standardized centroids back to original values that actually mean something, throw into a DataFrame
read cent df = pd.DataFrame(ss.inverse transform{pca.inverse transform{std centroids}), columns=columns) # create a df

read cent df.to csv{os.path.join(repo_dir, "ModelOutputFiles"”, file names[1])}) # write to csv in database repo directory

Store cluster labels for every point in the dataset as a csv

np.savetxt{os.path.join(repo_dir, "ModelOQutputFiles", file names[2]), cluster_labels, delimiter=", ', fmt="% s', header="1label")

Store each data by cluster
for i in range(NUM CLUSTERS):
mask = cluster labels == 1
cluster_df = fullData[mask]
cluster file = str{i) + "ClusterData.csv"

cluster df.to csv(os.path.join{repo dir, "ModelOutputFiles™, cluster file})

Store StandardScaler and PCA objects

pickle.dump(ss, open({os.path.join{repo dir, "ModelOutputFiles"”, file names[3]), "wb’})
pickle.dump{pca, open(os.path.join{repo_dir, "ModelQOutputFiles", file_names[4]), 'wb'))
pickle.dump(kmeans, open{os.path.jein(repo dir, "ModelOutputFiles™, File names[5]), 'wb"})

return file names

112
13
114
115
116
17
118
119
12@
121
122
123
124
125
176
127
128
129
130
131
132
133
134
135
136
137

def trainingClustersDriver():

print{"\n==== Preprocessing Data ====")

set up repo, load in the data, run preprocessing

no_outliers_data, data, columns, ss, repo, repo_dir = getData()

print{"\n\n==== Training/Clustering ====")
Cluster the training data

std_centroids, cluster_labels, pca, kmeans = getClusters{data)

Write cluster centroids te csv's in standardized and readable form
Also write the cluster labels to a file
Also save the data manipulation objects to a file for later use on test data (StandardScaler and PCA objects)

file_names = storeClusterData(repo_dir, std_centroids, columns, cluster_labels, no_outliers_data, ss, pca, kmeans)

Push these files to the 'database’

msg = datetime.now().strftime(" "%d-¥m-%¥y ¥H:%M") + " Cluster Database Update”
gf.pushRepo{repo, "ModelOutputFiles/', msg)

os.chdir('MortgageValuation')

if name_ == "_ main_ ":

trainingClustersDriver()

Wota = ith A R W R e

T T L o L N S Ll
S I = R o S e I = A ¥ B - N WV % P S v |

import numpy as np
import pandas as pd
from datetime import datetime

import os, sys

backend_dir = os.path.join{os.getcwd(), "backend/machinelearning")
sys.path.append(backend dir)
import PreProcessing as pp

import GitFunctions as gf

from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.neighbors import Mearestleighbors

import pickle

import warnings

VARIABELES - found in previous exploratory analysis

from PreProcessing import NUM CLUSTERS

from PreProcessing import NUM_PCS

FILES PATH = ‘MortgageValuation/backend/database/uploadedFiles’

23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
48
41
42
43
a4
45
48
47
48
43
58
51
52

def getClusterData():
Check that we are in the MortageValuation directory
gf.checkDirectory()

Check for a conneciton to the dataset repository, should be in same folder as this repo, but net in this repo

==CREATE== a connection if there isn't one
===PULL=== current repo files/status
repo, repo_dir = gf.getRepo()

""" No longer need the cluster centroids - now we pull the kmeans model from the training script and use it for clustering the new point

==L0AD== the cluster centroids into a DataFrame

input_file name = "ModelOutputFiles/StandardizedCentroids.csv”

centroids = gf.readData(repo dir, input file name, columns=["PC"+str(x) for x in range(l,NUM PCS+1)]) # read data into pandas DataFrame

' Mo longer nsed cluster labels - now we pull all the data for one cluster in a later step "'

==L0AD== the cluster labels into & DataFrame
input file name = "ModelOutputFiles/Clusterlabels.csv”™
cluster_labels = list{gf.readData(repo_dir, input_file name, columns=['Label’])['Label’])

==L0AD== the data wmanipulation objects for manipulating test data points

object files = ['ss.pkl’, 'pca.pkl’, “kmeans.pkl']

ss = pickle.load{open{os.path.jein(repo_dir, "ModelOutputFiles”, cobject_files[@]), 'rb'))}
pca = pickle.load{open{os.path.join(repo dir, "ModelOutputFiles™, object files[1]), “rb"})
kmeans = pickle.load{opsn({os.path.join{repo_dir, "ModelOutputFiles”, object_files[2]), 'rb’'))

return repo, repo_dir, ss, pca, kmeans

read labels into a dataframe, convert to list

53
54
55

57
58
59
60
51
62
63
Bd

def getTestPoint(repo_dir):

==L0AD== the test point from somewherse

input_file name = "TestPointl.csv”

fullColumns = ['Year', 'MonthlyIncome®, ‘UPBatAcquisition’, ‘LTWRatio', ‘BorrowerCount’, 'InterestRate’, 'OriginationValue',

fullPoint = gf.readData(repo dir, input file name, fullColumns)

#print(fullPoint['UPBatAcquisition’].iloc[@])

return fullPoint

load the data point into a dataframe

'HousingExpenseTolncome’,

'TotalDebtToIncome",

B b snuias o s S e S s

9@

91 def provideSuggestion(point, repo dir, ss, pca, kmeans, fullPoint):

92 # Determine which cluster the new point belongs to

93 [cluster] = kmeans.predict{point)

94

95 # ==10AD== the data associated with that cluster from the database repo

96 cluster_file name = "ModelOutputFiles/" + str(cluster) + "ClusterData.csv"

97 fullColumns = [“Year', "MonthlyIncome®, ‘UPBatAcquisition’, “LTVRatio®, ‘BorrowerCount’, "InterestRate’, 'OriginationValue’, “HousingExpenseToIncome’, ’TotalDebtTolncome®,
98 full cluster_data = gf.readData{repo_dir, cluster_file name, fullColumns) # load the data peint into a dataframe
99

180 # # Determine a price suggestion based on average price of cluster-mates

181 # price = fullClusterData[Price"'].mean()

162

183 # Determine a price suggestion by running K-Nearest-Neighbor within the cluster data

184 # Have to prepare the cluster data for distance comparisons

185 columnsForClustering = ["MonthlyIncome®, 'UPBatAcquisition’, ‘LTVRatio®, ‘BorrowerCount', “InterestRate’, 'OriginationValue', ‘HousingExpenseToIncome', ‘TotalDebtToIncome®
1@s reduced_cluster_data = full_cluster_data[columnsForClustering]

187 std cluster data = pd.DataFrame(ss.transform{reduced cluster data), columns=columnsForClustering)

188 pca_cluster_data = pca.transform(std_cluster_data)

189

110 # Then create a new knn object for finding the nearest neighbors

111 knn = Nearestleighbors{n_neighbors=7)}

112 knn = knn.fit(pca_cluster_data) # fit the object with the "training data’

113 distances, [indices] = knn.kneighbors(point) # find the nearest points by passing in the ‘test data point~
114

115 # And make a prediction based on these neighbors

116 neighbors = full _cluster_data.iloc[indices]

1 price = neighbors[Price’].mean()

118

113

12@
121
122
123
124
125
126
127
128
129
15@
131
132
133
134
135
136
137
138
139

Add flags if the loan is currently Delinquent or has significant (app/dep)reciation

fullPoint = pd.Series{fullPoint.iloc[8])

if fullPeoint['Performance'] == "Current™:

deling = False

elif fullPoint['Performance’] == "Delinguent™:

deling = True

if fullPoint['ValueChange'] »= 28:
appr = True
depr = False

elif fullPoint['ValueChange'] <= -28:

depr = True

appr = False
else:

appr = False

depr = False

flagging if valus has appreciated by at least 25%

flagging if value has depreciated by at least 25%

return price, deling, appr, depr, neighbors[Price’]

148
141
142
143
144
145
146
147
148
145
15@
151
152
H B
154
155
156
157
158
159
16@
161
162
163

def testOnePointDriver():

#print(“"Hey look, maybe someday this will provide a prediction point.")

set up repo, load in the cluster data

repo, repo_dir, ss, pca, kmeans = getClusterData()

load in new test point

fullPoint = getTestPoint(repo_dir)

preprocess the test point using data manipulation objects from training data

point = testPointProcessing(fullPoint, ss, pca)

provide suggestion - place point in a cluster and draw pricing data from cluster members

suggestionNumber, deling, appr, depr, neighbors = provideSuggestion(point, repo_dir, ss, pca, kmeans, fullPoint)

print("Suggested price: ", str{suggestionlumber))

print{“Flags: ", deling, appr, depr)

print("Heighbors: ", neighbors)

return suggestionlumber

Demo: Flask Routes from Index.py

17 # Home Page

18 @app.route('/")

19 def index():

20 return render_template('index.html', filenames=get_filenames())
21

22

23 # Return File History

24 @app.get("/")

25 def get_filenames():

26 files = os.listdir(FILES_PATH)
27 return files

30 # Upload Files
31 @app.post("/")
32 def uploadFiles():

33 pattern = re.compile(r'.*\.csv$"')

34 uploaded_file = request.files['file']

35 if pattern.match(uploaded_file.filename):

36 loanID = str(uuid.uuid4()).split('~")[@].upper()

37 file_path = os.path.join(FILES_PATH, loanID+'.csv')
38 uploaded_file.save(file_path)

39 else:

40 flash("Please select a valid csv file before submitting.")
41 return redirect('/")

42 return redirect('/' + loanID + '/load')

43

44

45 # Train Model

46 @app.get('/train')

47 def train():

48 trainingModel.trainingClustersDriver()
49 return redirect('/")

69 # Generate Predicted Value
70 @app.get('/<loanID>/predict')
71 def predict(loanID):

72 time.sleep(2)

73 file_name = loanID + '.csv'

74 file_path = os.path.join(FILES_PATH, file_name)

75 df = pd.read_csv(file_path)

76 df['PPP'], df['delinq']l, df['appr'l, df['depr']l, neighbors = predictionModel.testFromUpload(file_name)
77 df['loanID'] = loanID

78 df['last_updated'] = time.strftime("%Y—%m-%d %H:%M")

79 df['neighbor_min'] = neighbors.min()

80 df['neighbor_max'] = neighbors.max()

81 df.to_csv(file_path)

82 return jsonify("Prediction Complete!")

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

View Specified Mortgage
@app.get('/<loanID>")
def mortgageDetails(loanID):
file_name = loanID + '.csv'
file_path = os.path.join(FILES_PATH, file_name)
df = pd.read_csv(file_path)
data = df.to_dict('records"')[0]
for item in ['Price', 'UPBatAcquisition', 'PPP', 'OriginationValue', 'PropertyValue',
‘neighbor_min', 'neighbor_max']:
if 'PPP' not in data.keys():
return redirect('/' + file_name + '/load')
if not isinstance(datalitem], str):
datalitem] = "${:,.2f}".format(datalitem])
for item in ['InterestRate', 'LTVRatio'l:
if not isinstance(datalitem], str):
datalitem] = "{:.2%}".format(datalitem] / 100)
return render_template('mortgageDetails.html', data=data, file_name=file_name)

Delete Specified File

@app. route("/<loanID>/delete")

def delete_file(loanID):
file_name = loanID + '.csv'
os.remove(os.path.join(FILES_PATH, file_name))
return redirect('/")

'CurrentPropertyValue',

Demo: Running Screenshot

@ Import File X +

¥ ® 127.0.0.1:5000

Retrain Model

Retrain Model

Upload your CSV file

No file chosen

Upload History

€) Loan B6B47B43
€ Loan207D3A21
€) LoanA25AC874
€ Loan 6668B7E7
€ Loan BOFB10D1

Q Loan 359F0FB4

% Capstone Demo X +

¥ ® 127.0.0.1:5000/B6B47B43

eturn to File Upload

Mortgage Details

-

Loan Number: B
Price Unpaid Principal Balance Loan Term
$190,000.00 $190,000.00 20 years

Appraised Value Loan-To-Value Property Type

$283,582.09 67.00%

Documents

Current Interest Rate

2.88%

Single Family Residence (SFR)

Brightvine Predicted Value

$181,628.57

Occupancy Status
Primary Residence

Neighbor Information

Additional Considerations

x Warning: this mortgage has a history of delinquency.

Prediction Status

Last updated: 2023-04-25 15:44 Update Prediction

x Warning: this property has significantly depreciated in value.

Similar mortgages are priced between $160,000.00 and $198,000.00.

References

[1] What Types of Mortgages Do Fannie Mae and Freddie Mac Acquire? Federal Housing
Finance Agency. (2021, April 14). Retrieved November 29, 2022, from
https://www.fhfa.gov/Media/Blog/Pages/What-Types-of-Mortgages-Do-Fannie-Mae-and-Freddie

-Mac-Acquire.aspx.

[2] IBM Cloud Education. (2020, July 15). What is machine learning? Retrieved November 30,
2022, from https://www.ibm.com/cloud/learn/machine-learning.

[3] Sewell, M. (n.d.). No Free Lunch Theorems. Retrieved from http://www.no-free-lunch.org/.

[4] Akindaini, Bolarinwa. (2017). Machine learning applications in mortgage default prediction.
University of Tampere.

[5] Lai, L. (2020). Loan Default Prediction with Machine Learning Techniques. 2020
International Conference on Computer Communication and Network Security (CCNS).

[6] Niu, Jiafei. (2019). An intelligent automatic valuation system for real estate based on
machine learning. In Proceedings of the International Conference on Artificial Intelligence,
Information Processing and Cloud Computing (AITPCC '19). Association for Computing
Machinery, New York, NY, USA, Article 12, 1-6. https://doi.org/10.1145/3371425.3371454.

[7] Chen, C. (2020, December 27). Machine Learning Design Patterns: Reproducibility. Github.
Retrieved November 11, 2022, from https://changyaochen.github.io/ML-design-pattern-1/.

[8] Douglas, S. (2019, September 5). The Pareto Principle and UX. Usability Geek. Retrieved
November 11, 2022, from https://usabilitygeek.com/pareto-principle-and-ux/.

[9] Kolamanvitha. (2021, July 19). Design Patterns for Machine Learning. Medium. Retrieved
November 11, 2022, from
https://towardsdatascience.com/design-patterns-for-machine-learning-410be845c0db.

[10] Hartman, J. (2022, July 28). Joe Vellanikaran of Brightvine on 5 things you need to succeed
in the Modern World of Finance &... Medium. Retrieved from https://medium.com/authority-
magazine/joe-vellanikaran-of-brightvine-on-5-things-you-need-to-succeed-in-the-modern-world-

of-finance-5c4eed060bcS8.

[11] About Us. (2022) Brightvine. Retrieved November 11, 2022, from
https://www.brightvine.com/about-us.

https://www.fhfa.gov/Media/Blog/Pages/What-Types-of-Mortgages-Do-Fannie-Mae-and-Freddie-Mac-Acquire.aspx
https://www.fhfa.gov/Media/Blog/Pages/What-Types-of-Mortgages-Do-Fannie-Mae-and-Freddie-Mac-Acquire.aspx
https://www.ibm.com/cloud/learn/machine-learning
http://www.no-free-lunch.org/
https://doi.org/10.1145/3371425.3371454
https://changyaochen.github.io/ML-design-pattern-1/
https://usabilitygeek.com/pareto-principle-and-ux/
https://towardsdatascience.com/design-patterns-for-machine-learning-410be845c0db
https://medium.com/authority-magazine/joe-vellanikaran-of-brightvine-on-5-things-you-need-to-succeed-in-the-modern-world-of-finance-5c4eed060bc8
https://medium.com/authority-magazine/joe-vellanikaran-of-brightvine-on-5-things-you-need-to-succeed-in-the-modern-world-of-finance-5c4eed060bc8
https://medium.com/authority-magazine/joe-vellanikaran-of-brightvine-on-5-things-you-need-to-succeed-in-the-modern-world-of-finance-5c4eed060bc8
https://www.brightvine.com/about-us

