
Proposal for Web App

https://spanish-lab-client.vercel.app

May 1, 2023

Makayla Broyles
Cole Milne
Geri Lynn Viallon
makaylabroyles1@gmail.com
colemilne54@gmail.com
geriviallon@gmail.com

https://spanish-lab-client.vercel.app
mailto:makaylabroyles1@gmail.com
mailto:colemilne54@gmail.com
mailto:geriviallon@gmail.com

Abstract

In language classrooms all over the world, students spend most of their time

learning vocabulary lists and grammar rules. Despite knowing words and grammar,

many remain ineffective communicators in their second language. There are many

language apps available, some of them excellent. But most of these are gamified

ways of learning vocabulary and grammar. Our Interactive Spanish app does not

aim to replace these ways of learning, but rather offers a complimentary tool where

students must be active participants, creating their own learning experience.

Our app offers students a fun way to build a narrative. It encourages them to use

what they already know, visually reinforces their ideas, and gives them

opportunities to create and interact in Spanish. By offering structured choices, an

entire class can use the app to vote on what happens in the story, making the

choices that move the story forward. The AI image generator is another effective

aspect of the experience. Since each image is generated for that particular story,

memory is reinforced. There is a sense of accomplishment in creating something

unique.

We want to give teachers a platform that leverages interaction, immediate

feedback, and personal creation. We are hoping that this technology will help

humanize the language classroom. It can also be used by individual learners, on

their own or to complement their classroom experience.

Abstract, update
Our vision stayed very stable throughout the entire process. The hope of a fun

app that would help Spanish teachers have an interactive activity to the class

using visuals was our purpose all throughout.

Introduction

The National Academy of Engineering, in 2008, named 14 Grand Engineering

Challenges facing 21st century humanity. Advancing personalized learning is one of

these challenges[5]. More recently, the challenges that schools, students and

families faced during covid-realated school shutdowns have only made the need for

high quality online resources more acute.

Although skilled teachers are the single most important factor for effective learning

to take place, education resources simply don’t allow for this level of

personalization without the use of technology. With the help of tech tools, teachers

can provide an experience for students where success and growth is the norm. The

experience of both struggle and success is foundational to successful learning.

As to the choice of a Spanish learning app, 13% of the US population are native

speakers of Spanish. This makes it the country with the second largest

Spanish-speaking population in the world [7]. Living in a country with these

demographics, it would seem beneficial for everyone to have at least basic Spanish

skills.

The third challenge we hope to take a small bite out of is the educational

technology gap, particularly in the language classroom. Spanish Lab is meant to be

extremely easy for teachers and students to implement.

We are creating an interactive Spanish classroom application to help teachers and

students create and participate in a more hands-on atmosphere when learning

Spanish in the classroom. It will give teachers and students an application that

leverages immediate feedback, picture memorization, and a fun way to learn

Spanish!

What makes SpanishLab di�erent?

There are many language learning apps available. DuoLingo is by far the most

popular, with over 100 million downloads on the Google Play Store[2]. After

DuoLingo, the other most popular language apps are geared toward learning

English, since most of the world learns English as a second language. Babbel, Busuu,

and Rosetta Stone offer many languages and have around 10 million downloads

each (Google Play Store). Finally, Kahoot is an educational quiz app which has

influenced the design of SpanishLab, so I will mention its functionality as well.

What surprises me most is how similar these different apps are. All are divided very

linearly into lessons, along grammar and vocabulary themes. It is quite similar to

reading a language textbook. Of course there are many advantages over a textbook:

you get immediate feedback, there is audio content, you can respond using voice. I

would call these apps interactive textbooks. They are gamified enough to make it

feel somewhat like a game. They also show you your progress and remind you to

keep to your studying goals.

Our app is not a broad Spanish Learning app, but rather is destined to be a fun,

creative tool to help learners. It doesn’t intend to explicitly teach particular

grammatical or vocabulary items, though the teacher could certainly structure it to

do so.

Kahoot is an educational app where teachers can build a quiz, and students can

login and answer questions. Our app will use aspects of this, but instead of

responding to questions with right/wrong answers, students will be voting on what

they want to happen in the story.

What makes Spanish Lab di�erent, Update

Spanish Lab’s aim is still a classroom tool that adds some fun and imagination to

learning. It would work as a filler activity for spare moments in the classroom. It

can be used to complement a story-based lesson. It could be used to add more

interactivity to a traditional lesson.

Pedagogical Basis

The inspiration for this idea came from a local Spanish teacher, Kristen Wolf, who

regularly uses TPRS methodology in her classroom. Teaching Proficiency through

Reading and Storytelling is proving to be an effective tool in the modern language

classroom. A typical TPRS lesson follows 3 basic steps[1]:

1. Show. The teacher shows students the meaning of a few language structures.

She uses gestures, drawings, comprehensible input, cognates, and translation

if necessary.

2. Ask. The teacher asks questions, drawing responses from the students,

forming a narrative together. She may propose options and let the class vote,

or may gather ideas and choose among them.

○ The teacher can ask Who? What? Why? questions to deepen the

narrative and give personality to the story.

○ Students might act out the story.

3. Read. Using the story students just created, they can read elements of it, or

the entire story. This will consolidate understanding. It is also helpful to use

another processing modality to strengthen memory and deepen learning.

Teachers find this method to be highly engaging for their students[4]. Studies have

shown that TPRS boosts student engagement, autonomy and enthusiasm.

Our hope is that the app would be a way to complement a TPRS lesson. It could also

be useful to teachers wanting to test

out TPRS methodology in a simple

way. And our hope would be that

teachers with no exposure to the

TPRS method would also find it a useful tool in their classroom.

Our Team

We are a diverse group and each of us have different reasons that this project is a

motivating one. Makayla is experienced in microservice development, which she

has been doing at Zoot since last summer. Her people skills make her skilled at

figuring out what customers want and need. Cole is skilled at both marketing and

web development. He has an entrepreneurial spirit and runs his own

SEO/marketing business. Geri, before deciding to study Computer Science, spent

most of her time abroad teaching English and French. She was already pursuing

gamification to make the process more engaging to students.

For our project, Geri will be doing most of the backend, Makayla the frontend, and

Cole will be floating between the two.

Roles update
Makayla: frontend styling

Cole: full-stack

Geri: secretary, cheerleader

Work Schedule

We will use Agile as our lifecycle approach. Weekly checkpoints will allow us to

keep motivated, and to have access to each other’s ideas and skills as we complete

our tasks on our own time. We may need to meet more often as the deadline gets

closer, especially once we are able to do some user testing. That may make our

iteration loop shorter, and we can add meetings if necessary.

Schedule, update

We did more work in our own corner than originally intended. Because of this, in

person meetings were often need-based rather than weekly. We did weekly

progress checks and met when we were stuck or needed to consult.

Proposal Statement

The SpanishLab application is an interactive classroom Spanish story generator. It

helps teachers bring an interactive component to the classroom. The application

will feature 5 different theme options– based on skills that the teacher will be able

to share with her class. Students will all connect to the classroom story with a code

and participate in making decisions that will impact the final story. This allows for

all students to be participating and creates a platform where students will learn

Spanish through pictures and story-telling instead of right/wrong vocabulary

lessons. There will be a final story generated after all questions have been answered

that provides the teacher and students the opportunity to look through the story

and translate any words that they may be confused on. The following requirements

have been determined in order to acquire this functionality.

Non-functional Requirements:

1. The login functionality shall be secure.

2. The application shall be quick to receive answers from the other devices.

3. Photo generation should be quick and make sense to the students.

4. The application should be compatible with all devices.

5. The application should be easy to maintain and add features.

Non-functional Requirements, update

We have met these requirements.

Functional Requirements:

1. The website will keep track of the story based on student selections.

2. The website shall have premade story templates that the teacher will be able

to choose for an interactive class.

3. All questions and answers for a given story shall make sense together.

4. The application will generate pictures with an AI Picture Generator in order

to help students learn Spanish.

5. The application shall have translations features built into the final story

generated in order to help students understand the story they have created.

Functional Requirements, update

2. There is a single template at this point.

5. The app does not do translation (and some teachers would argue that it is

better this way.)

All other requirements have been met.

Interface Requirements:

1. The website will have two different views – student and teacher view.

2. It will be accessible across mobile devices and computers.

3. It will be readable and follow best practices for design, layout, and color.

4. It will be simple and easy to use for new users.

Interface Requirements, update

There are teacher and student views. The teacher view belongs to anyone who

creates a story.

The interface is functional, quick, intuitive, and accessible across devices.

On the following pages a prototype of the GUI has been attached. This shows the

basic layout of the application and the basic functionality that both the student and

the teacher will see. Notice that the mobile phone pictures are to represent the

students view and the desktop top size prototype is to represent the teacher view

of the application.

Frontend update

While our final user interface doesn’t look exactly like the images above, the

most important features are the same. The color scheme is still blue tones. The

logo is the same. We did not include the translation feature. The multiple

choice questions became more linear, and do not have images. Adding images

is a goal for Next Steps. Making items vertically linear was important for

readability. Verticality also allows any number of choices without impacting

comprehensibility.

See section,Walkthrough, for final screenshots.

Use Cases

As for our use cases, we will have two main actors/ users that will be interacting

with the client of our web application. There will be a minor actor who is able to

view the final story. The flow of our use case will follow as such:

The teacher has different application permissions that the students have. The

teacher will create the basis of the story that will be played through, and will

initiate the beginning of the game/ storytelling. Students will then launch an

instance of the game (one instance for each student) to vote on and/ or create

story elements as it develops. By the end of the playthrough, an entire story will be

created and from that our DeepAI Text-To-Image Generator API will display an

image based on that story the class collectively wrote.

Development Tools

Our project will follow best practices for current web standards. We will be using a

MERN stack for development which includes MongoDB, Express, React.js, and

Node.js. We find that with our experience in our jobs and in the web development

class this will be the easiest for us to implement. We will also be using a couple APIs

including a Google Translate API and an AI Image Generator API. These will be used

to easily translate language for our users and contribute to our story with AI

generated pictures.

We will be using GitHub for version control and collaboration across multiple

people. We have decided that we can all use our own IDE since we will be ultimately

using GitHub for collaboration. We will also be using AWS web services for our

server and deployment side of our project.

Methodology

Design Patterns and UML Diagrams

In our research we found there to be 3 common categories of design patterns:

Creational Design Patterns, Structural Design Patterns, and Behavioral Design

Patterns.

Creational design patterns are defined as such by netsolutions.com, “creational

design pattern deals with object creation and initialization, providing guidance

about which objects are created for a given situation. These design patterns are

used to increase flexibility and to reuse existing code [6].”

Amongst these creational design patterns is the factory pattern. The factory

pattern is one of the most commonly used of the creational design patterns,

especially when developing in Java. In our use case of designing the SpanishLab we

will use the factory pattern for user creation/ registration. The factory pattern will

work as follows for our design:

1. Create a User interface

2. Create concrete classes implementing the User interface

3. Define a factory class UserFactory

4. Create demo class RegistrationPage

a. Uses UserFactory to get a User object

b. Sends information (Teacher or Student) to UserFactory to create the

right type of object

In Unified Modeling Language (UML) this will look like:

Now we have a pattern for how we create users and how we assign different user

types/ permissions depending on if the user is a teacher or student. What we need

to do next is to implement a design pattern for how we create instances of a game.

As a teacher will only be creating one game at a time another creational design

pattern will be used, the Singleton design pattern.

The Singleton design pattern is used when a class is responsible for the “creation,

initialization, access, and enforcement” of a single instance object [2]. This is useful

because it is designed to only allow for a single instance of an object to exist. In the

context of our app the SpanishLab, this would mean that a teacher can not

accidently make extra game instances.

In UML, this design pattern would look as follows:

Component Diagram (Broken up to fit on page):

React.js Front-End

Node.js Backend:

MongoDB Database:

UML update

The biggest change is that we did not use a database. SocketIO ended up being an

extremely useful library. It facilitated many of the functions and meant that we no

longer needed a database. See the following section, Design Trade-offs update, for

further discussion about this choice.

The Singleton pattern as well is built into the functionality of Socket IO.

Design Trade-o�s and Decisions

When we first sat down to figure out our deliverables we met with a Spanish

teacher, Kristen, at a local elementary middle school, with whom Geri is friends. As

we were ambitious in the beginning because this was our first step in actual work,

and because Kristen was the original ideator of the SpanishLab, we initially set very

lofty goals of what we wanted the app to accomplish.

We quickly realized we were in over our heads when we sat down with all of these

grandiose ideas and tried to accomplish parts of this proposal. It took us a bit of

time for us to come to the conclusion that if we were getting overwhelmed writing

a proposal about our web app, then actually programming it will be nearly

impossible for us to accomplish given our experience and time frame.

We zoomed out a bit and tried to figure out what our main goals were. We wanted a

way for teachers to teach their students Spanish in a fun, interactive way through

custom storytelling. Getting a succinct overview of what we wanted allowed us to

narrow back in on our deliverables and end up with a proposal of a web application

that will be realistic for us to implement come next spring semester.

Design Trade-o�s update

SocketIO

SocketIO was our big discovery that made many other parts of this project

simpler. SocketIO is a TCP-based connection. It is bidirectional, real time, and

event-driven responses [9]. SocketIO uses web Sockets, but many of the more

difficult bits of web Sockets are abstracted away.:

● Unlike webSockets, it can get through a firewall or a proxy.

● SocketIO has built-in reconnecting.

● There are rooms, to facilitate sending different messages to different

groups.

● And generally makes it easier across devices and browsers.[11]

This led us to the surprising conclusion that we no longer needed a database.

SocketIO creates the group, and all necessary information is shared between

members of the group for as long as the connection is maintained. It also

meant we no longer needed accounts or logins. A teacher creates a room by

going to create classroom and creating a room code. The students then gather

there. This means the set uptime for beginning an activity is short. The other

benefit is that students can do this activity independently as well.

I think the only downside to this is that each story is ephemeral. Once

everyone in the room exits, it disappears. Of course this could be fixed with a

database in a future version.

Simplicity

Our original version was much more complex, as things often are in the

dreaming phase. But when our dreams were confronted with implementation,

we decided we would rather have an app that would take roughly 10 seconds to

learn to use, for students and teachers.

Expected Results

I am imagining a classroom where students are excited because they know that

today is story day. We want this tool to be an engaging way for teachers and

students to collaborate in the classroom. I hope that the process itself will go so

smoothly and the technology will be nearly invisible. We hope that students go

home and show their families the stories they made in class.

Did we meet Expectations?
We believe that we have met the most important goals: it is both easy and

enjoyable to use. Since most language classrooms tend to be low-tech, this ease

of use is extremely important. Without it, there would be no chance of

adoption. Smoothly tallying the votes is another invisible feature where its

quick functioning is vital, and is working in our favor for adoption.

Although the framework is in place for a bigger story to be told, that

functionality isn’t complete at this point.

If we could do it over again…

● Prototype early. Low-fi prototypes are very important for having a clear

vision of what we want to do.

○ Doing user testing on low-fi prototypes

● Better time management of how long things will take.

● More communication, not being afraid of conflict

● Choosing technologies that group members were more familiar with

Unresolved issues
perro sushi!

But what about chatGPT and other AI-Ed?

Chat GPT entered the world in the middle of our project. Would we have

designed our app differently if we had started one year later? (And is language

learning still a meaningful subject?)

A large systematic review of the uses of AI in education showed that the

most common use of AI in higher education is in the language classroom[10].

In education worldwide, AI is used for reading, writing, and vocabulary

acquisition. It is also used for “content management” to offer more

personalized learning options according to students’ actual needs.

In a greatly expanded version of our app, if we wanted to continue its

development, we could certainly feature AI generated stories that fit students’

needs. The story would be tailored to the vocabulary and sentence structures

each student had acquired and what they still needed to practice.

Next Steps

If we were to pursue Spanish Lab, here would be some of the most important

things to carry out, from a development perspective:

● Increasing the number of story templates.

● Giving teachers the possibility of making their own story and adding

multiple choice items of their choosing.

● Image generation for the multiple choice elements.

● Ability to save and share stories

● And of course, user testing every step of the way.

Looking at these a bit more closely, Here is what the development of each of

these features would look like in more detail:

More story templates

If the teacher wanted a quick activity in class, they could just quickly

choose a template and wouldn’t need to have anything prepared

beforehand.

Making and personalizing stories

There is a “Create Story” option in the menu. It would allow teachers to

deviate from the templates and tailor the story to their lesson. It could

pre-teach, reinforce, expand, or extend the main points of the lesson.

At this point, this functionality isn’t complete, we have just this pattern

the teacher would follow to complete the story/questionnaire.

Image generation for the multiple choice elements.

As teachers typed in the options for multiple choice elements, they

should have the option to add an image. It is important to have this

choice because if it was a vocabulary item that students hadn’t learned

yet, this is a good way to introduce the word.

To further simplify things for teachers, a few images from Google

image search could pop up as each multiple choice item was entered.

This would make structuring the story a much simpler process for

teachers, with the result that they would likely use it more frequently in

their classroom.

Ability to save and share stories

One proven memory technique is spaced repetition[8]. The ability to save

stories and share them would make the app stronger from a pedagogical

viewpoint. Saving stories would give students a chance to review what

they learned. If they also talked about it, that would serve

More testing

To be ready to deploy, this app would need more formal testing. We have

only done informal beta testing within our group and with a larger group

of people.

Learning Reflections

All three of us agreed that this process was an enormous learning process.

However, the two meanings of “I learned a lot” apply: both ‘it was a helpful

experience’ AND ‘I felt unprepared’.

None of us felt proficient enough in github to use it well. Of course we can

pull and clone. But when it came to using it collaboratively, we all wished we

had more practice, so we could revert/push/branch with confidence.

Working collaboratively was another skill we felt unpracticed in. Sure, we had

all done partner projects where each person works to their strengths. But none

of us felt experienced in a truly collaborative project where so many decisions

needed to be made. Perhaps this is due to our first couple of years being so

deeply affected by COVID protocols, but all of us are more comfortable coding

on our own and not having to integrate it with anyone else’s code. Thus, both

hard and soft collaboration skills felt unpracticed.

Additionally the web App classes we have taken did not go into nearly

enough depth to build a full app such as this one.

Walkthrough

To begin, the teacher clicks Enter Classroom in the menu. Once the code is

created, this allows others to enter into the same room. There is no special

account for the teacher. The leader of this story is simply the one who created

this unique code.

The students will then choose Enter Classroom from the hamburger menu and

type in the classroom code. Here we can see the layout on both iPad and

phone.

Voting

As we see below, there are 2 votes for perro and one vote for oso. On the

teachers page we see the votes as they arrive in real time, and the most popular

answer is shown.

More Voting

Once the teacher clicks on Next Prompt, everyone can move forward to the

next question.

Final Round

After all the votes are counted, the teacher clicks End Quiz.

Image Generation

And the students’ choices generate a unique image from openai, which is

displayed to the screen!

Bibliography

1. D'Argenio, Linda. “What Is TPRS? A Look at the Language Acquisition
Strategy That's Growing in Popularity.” BridgeUniverse - TEFL Blog, News,
Tips & Resources, 28 Nov. 2022, https://bridge.edu/tefl/blog/tprs/.

2. “Design Patterns and Refactoring.” SourceMaking,
https://sourcemaking.com/design_patterns/singleton.

3. “Duolingo: Language Lessons - Apps on Google Play.” Google, Google,
https://play.google.com/store/apps/details?id=com.duolingo&gl=US.

4. Liam Printer (2021) Student perceptions on the motivational pull of Teaching
Proficiency through Reading and Storytelling (TPRS): a self-determination
theory perspective, The Language Learning Journal, 49�3, 288-301, DOI:
10.1080/09571736.2019.1566397

https://bridge.edu/tefl/blog/tprs/
https://sourcemaking.com/design_patterns/singleton
https://play.google.com/store/apps/details?id=com.duolingo&gl=US

5. “NAE Grand Challenges for Engineers.” Grand Challenges - 14 Grand
Challenges for Engineering, National Academy of Engineering,
http://www.engineeringchallenges.org/challenges.aspx.

6. Singla, L. (2022, September 16). What's a software design pattern? (+7 most
popular patterns). Insights - Web and Mobile Development Services and
Solutions. Retrieved November 10, 2022, from
https://www.netsolutions.com/insights/software-design-pattern/#1-creati
onal-design-patterns

7. Thompson, Sonia. “The U.S. Has the Second-Largest Population of Spanish
Speakers-How to Equip Your Brand to Serve Them.” Forbes, Forbes Magazine,
9 Nov. 2022,
https://www.forbes.com/sites/soniathompson/2021/05/27/the-us-has-th
e-second-largest-population-of-spanish-speakers-how-to-equip-your-bran
d-to-serve-them/?sh=568237793aee.

Additional references:

8. G Branwen, Spaced repetition. Retrieved April 29, 2023 from
https://www.gwern.net/Spaced%20repetition. (2016).

9. Introduction. SocketIO RSS. (2023, March 27). Retrieved April 29, 2023, from
https://socket.io/docs/v3.

10. Crompton, Helen, and Diane Burke. “Artificial Intelligence in Higher
Education: The State of the Field.” International Journal of Educational
Technology in Higher Education 20, no. 1 (2023): 22–.
https://doi.org/10.1186/s41239-023-00392-8.

11. Bunch, Robert. (2023, April). Socketio (with websockets) - the details. updated
April 2023. Udemy. Retrieved April 29, 2023, from
https://www.udemy.com/course/socketio-with-websockets-the-details/

https://www.netsolutions.com/insights/software-design-pattern/#1-creational-design-patterns
https://www.netsolutions.com/insights/software-design-pattern/#1-creational-design-patterns
https://www.forbes.com/sites/soniathompson/2021/05/27/the-us-has-the-second-largest-population-of-spanish-speakers-how-to-equip-your-brand-to-serve-them/?sh=568237793aee
https://www.forbes.com/sites/soniathompson/2021/05/27/the-us-has-the-second-largest-population-of-spanish-speakers-how-to-equip-your-brand-to-serve-them/?sh=568237793aee
https://www.forbes.com/sites/soniathompson/2021/05/27/the-us-has-the-second-largest-population-of-spanish-speakers-how-to-equip-your-brand-to-serve-them/?sh=568237793aee
https://www.gwern.net/Spaced%20repetition
https://socket.io/docs/v3
https://doi.org/10.1186/s41239-023-00392-8

Appendix

1. spanish-lab-client/public/index.html ↻
2. SpanishLab/client/src/App.css
3. SpanishLab/client/src/pages/JoinRoom.js ↻
4. SpanishLab/client/src/Room.js
5. SpanishLab/client/src/generateImage.js
6. SpanishLab/client/src/index.js
7. SpanishLab/client/src/openai-api.js
8. spanish-lab-server/server.js↻
9. SpanishLab/server/controllers/openaiControllers.js ↻
10. SpanishLab/server/routes/openaiRoutes.js ↻

spanish-lab-client/public/index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="theme-color" content="#000000" />
<meta

name="SpanishLab: A fill in the blank style story to help you learn Spanish."
/>
<link rel="apple-touch-icon" href="%PUBLIC_URL%/logo192.png" />
<!--

manifest.json provides metadata used when your web app is installed on a
user's mobile device or desktop. See

https://developers.google.com/web/fundamentals/web-app-manifest/
-->
<link rel="manifest" href="%PUBLIC_URL%/manifest.json" />
<!--

Notice the use of %PUBLIC_URL% in the tags above.
It will be replaced with the URL of the `public` folder during the build.
Only files inside the `public` folder can be referenced from the HTML.

Unlike "/favicon.ico" or "favicon.ico", "%PUBLIC_URL%/favicon.ico" will

work correctly both with client-side routing and a non-root public URL.
Learn how to configure a non-root public URL by running `npm run build`.

-->
<title>SpanishLab</title>

</head>
<body>
<noscript>You need to enable JavaScript to run this app.</noscript>
<div id="root"></div>
<!--
This HTML file is a template.
If you open it directly in the browser, you will see an empty page.

You can add webfonts, meta tags, or analytics to this file.
The build step will place the bundled scripts into the <body> tag.

To begin the development, run `npm start` or `yarn start`.
To create a production bundle, use `npm run build` or `yarn build`.

-->
</body>
</html>

SpanishLab/client/src/App.css (back to appendix)

.App {
text-align: center;

}

.App-logo {
height: 40vmin;
pointer-events: none;

}

@media (prefers-reduced-motion: no-preference) {
.App-logo {

animation: App-logo-spin infinite 20s linear;
}

}

.App-header {
background-color: #282c34;
min-height: 100vh;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
font-size: calc(10px + 2vmin);

color: white;
}

.App-link {
color: #61dafb;

}

@keyframes App-logo-spin {
from {

transform: rotate(0deg);
}
to {

transform: rotate(360deg);
}

}

SpanishLab/client/src/pages/JoinRoom.js (back to appendix)

import React, { useState } from 'react';
import { useNavigate } from 'react-router-dom';

function JoinRoom() {
const [roomId, setRoomId] = useState('');
let navigate = useNavigate();

const handleSubmit = (e) => {
e.preventDefault();
navigate(`/room/${roomId}`);

};

return (
<div className="standardPage">
<h1>Join a room</h1>
<form className ="displayBlock" onSubmit={handleSubmit}>
<input
type="text"
placeholder="Room ID"
value={roomId}
onChange={(e) => setRoomId(e.target.value)}
required
/>
<button className="primaryButton" type="submit">Join Room</button>
</form>
</div>

);
}

export default JoinRoom;

SpanishLab/client/src/Room.js (back to appendix)

import React, { useState, useEffect } from 'react';
import { useParams } from 'react-router-dom';
import io from 'socket.io-client';
import ImageComponent from './generateImage';

const socket = io('http://localhost:3001');
const popularAnswers = [];
function Room() {

const { roomId } = useParams();
const [answer, setAnswer] = useState('');

const [answers, setAnswers] = useState([]);
const [isTeacher, setIsTeacher] = useState(false);
const [promptIndex, setPromptIndex] = useState(0);
const [selectedAnswer, setSelectedAnswer] = useState('');
const [hasAnswered, setHasAnswered] = useState(false);
const [showImage, setShowImage] = useState(false);
const [finalPrompt, setFinalPrompt] = useState('');
const Questions = [
{ "question": "What animal is our story about?", "options": ["Dog", "Cat",

"Lion", "Bear"] },
{ "question": "What is the animal eating?", "options": ["Hamburger", "Sushi",

"Pizza", "Burrito"] },
{ "question": "Where is the animal eating?", "options": ["On the beach", "At

School", "In The Mountains", "At the Lake"] },
]

var isDone = false;
var displayEnd = (promptIndex+1 === Questions.length) ? true : false;

useEffect(() => {
socket.emit('joinRoom', roomId);

socket.on('receiveAnswer', (receivedAnswer) => {
setAnswers((prevAnswers) => [...prevAnswers, receivedAnswer]);

});

socket.on('teacher', () => {
setIsTeacher(true);

});

socket.on('nextPrompt', () => {

http://localhost:3001

setPromptIndex((prevIndex) => prevIndex + 1);
setAnswers([]);
setHasAnswered(false);

});

return () => {
socket.off('receiveAnswer');
socket.off('teacher');
socket.off('nextPrompt');

};
}, [roomId]);

const handleNextPrompt = () => {
popularAnswers.push(popularAnswer());
console.log(promptIndex + " " + Questions.length)
if(promptIndex+1 === Questions.length) {

isDone = true;
} else {

socket.emit('nextPrompt', roomId);
}
};

const handleEndQuiz = () => {
popularAnswers.push(popularAnswer());
setFinalPrompt(`A cartoon ${popularAnswers[0]} eating a ${popularAnswers[1]}

${popularAnswers[2]}`);
setShowImage(true);
}

const handleSubmit = (e) => {
e.preventDefault();
socket.emit('newAnswer', { roomId, answer: selectedAnswer });
setSelectedAnswer('');
setHasAnswered(true);
};

const popularAnswer = () => {
const counts = {};
let maxCount = 0;
let maxValue = null;

answers.forEach((a) => {
counts[a] = (counts[a] || 0) + 1;
if (counts[a] > maxCount) {
maxCount = counts[a];
maxValue = a;
}

});

return maxValue;
};

return (
<div>
{showImage ? <ImageComponent prompt={finalPrompt} /> :
<div>

<h1>Room: {roomId}</h1>
<h2>Prompt: {Questions[promptIndex].question}</h2>
<form onSubmit={handleSubmit}>
{Questions[promptIndex].options.map((choice, index) => (

<div key={index}>
<input
key={`prompt-${promptIndex}-choice-${index}`}
type="radio"
id={`choice-${index}`}
name="answer"
value={choice}
onChange={(e) => setSelectedAnswer(e.target.value)}
required
/>
<label htmlFor={`choice-${index}`}>{choice}</label>

</div>
))}

<button type="submit" disabled={hasAnswered}>Submit Answer</button>
</form>
{isTeacher && (
<div>
{displayEnd ?

<button type="button" onClick={handleEndQuiz}>
End Quiz

</button> :
<button type="button" onClick={handleNextPrompt}>

Next Prompt
</button>

}
</div>
)}
<h2>Popular Answer: {popularAnswer()}</h2>
<h3>All Answers:</h3>

{answers.map((answer, index) => (

<li key={index}>{answer}
))}

</div>
}
</div>

);
}

export default Room;

SpanishLab/client/src/generateImage.js (back to appendix)

import React, { useState } from 'react';
import { generateImage } from './openai-api';

function ImageComponent({ prompt }) {
const [imageUrl, setImageUrl] = useState('');
const [isLoading, setIsLoading] = useState(false);

const fetchImage = async () => {
setIsLoading(true);
const imageData = await generateImage(prompt);

if (imageData && imageData.data) {
setImageUrl(imageData.data);
} else {
console.error('Failed to generate image');
}
setIsLoading(false);

};

return (
<div>
<h3>{prompt}</h3>
{isLoading && <p>Loading...</p>}
{imageUrl && }

<button onClick={fetchImage}>Generate Image</button>
</div>

);
}

export default ImageComponent;

SpanishLab/client/src/index.js (back to appendix)

import React from 'react';
import ReactDOM from 'react-dom/client';
import App from './App';

const root = ReactDOM.createRoot(document.getElementById('root'));
root.render(
<React.StrictMode>

<App />
</React.StrictMode>

);

SpanishLab/client/src/openai-api.js (back to appendix)

import axios from 'axios';

const API_URL = 'http://localhost:3001'; // Replace with your server URL in production

const api = axios.create({
baseURL: API_URL,

});

export const generateImage = async (prompt) => {
try {

const response = await api.post('/openai/generate-image', {
prompt: prompt,
});
console.log(prompt);
console.log(response.data);
return response.data;

} catch (error) {
console.error('Error generating image:', error);
return null;

}
};

SpanishLab/server/controllers/openaiControllers.js
const { Configuration, OpenAIApi } = require("openai")

const configuration = new Configuration({
apiKey: process.env.OPENAI_API_KEY,

});
const openai = new OpenAIApi(configuration);

const generateImage = async (req, res) => {
console.log(req.body);
const { prompt } = req.body;
try {
const response = await openai.createImage({

prompt: prompt,
// n: 1, n = 1 is default
size: "512x512",

});

const imageUrl = response.data.data[0].url

res.status(200).json({
success: true,
data: imageUrl

});
} catch (error) {
if (error.response) {

console.log(error.response.status);
console.log(error.response.data);

} else {
console.log(error.message);

}

res.status(400).json({
success: false,
error: 'The image could not be generated'

});
}

};

module.exports = { generateImage };

spanish-lab-server/routes/openaiRoutes.js (back to appendix)

const express = require('express');
const { generateImage } = require('../controllers/openaiControllers');
const router = express.Router();

router.post('/generate-image', generateImage);

module.exports = router;

spanish-lab-server/server.js (back to appendix)

const express = require('express');
const app = express();
const { createServer } = require('http');

// Enable CORS for all routes
app.use(cors(corsOptions));

app.use(express.json());
app.use(express.static('public'));

const io = new Server(httpServer, {
cors: {
origin: ['https://spanish-lab-client.vercel.app', 'http://localhost:3000'],
}

});

if (isNewRoom) {
room.teacher = socket.id;
socket.emit('teacher');

}

room.users.add(socket.id);
rooms.set(roomId, room);

socket.join(roomId);
console.log(`User (${socket.id}) joined room: ${roomId}`);
console.log(`Teacher: ${room.teacher}`);
});

socket.on('newAnswer', (data) => {
const room = rooms.get(data.roomId);
if (room) {
console.log(data.answer);

room.answers.push(data.answer);
io.to(data.roomId).emit('receiveAnswer', data.answer);

}
});

socket.on('nextPrompt', (roomId) => {

const room = rooms.get(roomId);
if (room && socket.id === room.teacher) {

room.answers = [];
io.to(roomId).emit('nextPrompt');

}
});

socket.on('disconnect', () => {
console.log('user disconnected');

for (const [roomId, room] of rooms.entries()) {
room.users.delete(socket.id);
if (room.teacher === socket.id) {
room.teacher = room.users.values().next().value;
}
if (room.users.size === 0) {
rooms.delete(roomId);
}

}
});

});

const PORT = process.env.PORT || 3001;
httpServer.listen(PORT, () => {

console.log(`listening on *:${PORT}`);
});

