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Introduction

An agricultural combine contains more computers and technology inside
it than modern rocket ships. Why? Because civilization does not depend
on space travel. Civilization does, however, depend on food. Despite
the extraordinary amount of convenience and efficiency modern
computing brings to the table for general purpose, it will always be
more useful to agriculture.

Our goal is to create a drone that will reduce fertilizer and
pesticide use in modern farming. This will be accomplished by flying
over farmland autonomously, taking pictures every so often using an
onboard camera. The microcomputer on the drone will then compile
these pictures into one large image. In the future, the final image
will be sent through a machine learning model for inference. The
inference results will show where a farm specifically needs
fertilizer/pesticides. Since this project encompasses so many
disciplines (computer vision, data engineering, remote sensing,
flight, machine learning), we will focus our efforts on creating the
autonomous drone and image stitching algorithm as our main priority/
minimum viable product (MVP).

Remote sensing drones have been created before. They scan farmland
from the skies by utilizing different wavelengths of the

electromagnetic spectrum.1 Weeds and pests give off different spectrums
of light when examined - allowing them to be identified and destroyed
via precision agriculture. The problem with this system is that it is
an expensive one.2 These advanced agriculture drones can cost upwards

of ten-thousand dollars.

The drone we are creating will have three goals. The first is to be
inexpensive. Technology is useless if it only goes to the highest
bidder. A cheap drone (around $100-$250) would be useful to a farmer
and would not be a burdensome investment like a tractor would be.

2 Censys Technology Drones

1 John Nowastski, Agricultural Remote Sensing Basics



The second goal is for the drone to be under 0.55 pounds, which is the
weight threshold for personal drones. An autonomous flying vehicle
that is under 0.55 pounds does not have to be registered, making it
easier to use for a farmer, who has more important tasks to focus on.3

The final goal of this project is to create a free, unlicensed image
stitching algorithm. The image stitcher is used to turn a previous
streaming process into a batch process. Since the drone needs to be
lightweight, there can not be a lot of memory attached to the
computer. A streamed video as the drone flies over would take up far
too much precious memory. However, several images taken over a few
minutes would be manageable. The image stitching algorithm will take
these pictures and mesh them together to create one, high DPI image,
that can be fed to a machine learning model for inference. These types
of algorithms exist, but they are expensive and locked up inside
academia. Ours will be free for use by precision agriculturists -
saving money for them and lowering the cost of commercial ag drones.

Overall, the drone we create will be lightweight, cheap, and
open-source. Our goal is not to sell this product, but show that this
product is possible. This kind of technology could drastically reduce
the costs for farmers and beyond, all the way to consumers.

3 Federal Drone Registration
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Background
Algal Blooms:
An algal bloom results from the exponential growth of cyanobacteria,
which thrives in the excess nutrients (mainly nitrogen and phosphorus)
present in water. This results in the cyanobacteria (algae) consuming
itself to death, leading to high levels of cyanotoxins in the water
called hypoxia4. By themselves, these toxins are deadly and eat up all
the oxygen present in water. Meaning, sealife -both plants and
animals- can not survive. This is why algal blooms are also called
dead zones - there is no living being in the water. The Gulf of Mexico
dead zone is 6334 square miles as of 20215, and is a byproduct of
farmers using too much fertilizer in the Golden Triangle. This
fertilizer has gradually been washed down the Mississippi river into
the Gulf of Mexico.

Raspberry Pi Zero:
The Raspberry Pi Zero is one of the smallest single board computers
(65mm x 30mm, 5mm) available for general purchase. It comes with
512MB of ram, a CSI camera connector, and a 1Ghz single-core CPU.6 This
board should be powerful enough to control the flight and camera
systems on the drone. Additionally, the board is lightweight (0.56
oz), making it suitable for flight use.

CAD (Fusion 360):
Computer Aided Design, or CAD, is used to sketch, model, and create
objects and tools for use in mechanical engineering and related
disciplines. We used CAD to develop a drone frame to mount and center
all the hardware, as well as provide a light frame to aerodynamically
produce lift with minimal effort.

Python OpenCV:
OpenCV (Open Source Computer Vision) is the biggest CV module that
anyone can use. It supports multiple computer languages (Python in our
case), and thousands of algorithms for use in image analysis.7 Since

7 OpenCV: Python Basics

6 Raspberry Pi Zero

5 NOAA: 2021 Gulf of Mexico Dead Zone

4 National Geographic: Dead Zones



Raspberry Pi supports Linux operating systems, and by transition,
Python, we can utilize OpenCV-Python to manipulate the images our
drone captures.

Image Stitching:
Overview:
Image stitching is a computer vision algorithm that is used to combine
multiple digital images together, with a goal of increasing overall
definition of field of view (FOV)8. Our autonomous drone can use image
stitching techniques to reduce the uptime of our onboard camera. By
taking snapshots every few seconds (calculated by average velocity and
size of flight path), the images can be compiled after flight time and
stitched together to offer one large-scale image of the farm instead
of a continuous video. This image will serve as a datapoint for future
machine-assisted analysis.

8 S Mann, R Picard: Virtual Bellows



Feature Matching:
The way people used to assess fingerprints in crime scenes was using
something called minutia. Minutiae are like the parts that don’t match
up. In a traditional loop fingerprint, someone with a scar or bump in
the middle of their loop would have a minutia there. Fingerprint
sensors in cell phones find these minutia and create polygons out of
them. If a great many polygons match up to the stored record of your
fingerprint, then you are allowed access. Feature Matching works
exactly the same way, but with an image. It finds the minutia of an
image and returns its location. If you find the same minutia in two
images (these minutia are called features), then you can likely stitch
the image together at that point.

Camera Estimation:
Due to the nature of a panorama, an image must coalesce at one spot.
Someone taking the photo cannot be in two places at once (for the most
general of examples). If, however, a photographer does move while
taking the panorama (or a drone takes pictures from different points
in the sky) the camera position has moved. Camera estimation attempts
to find a common ground between moments where pictures have been
taken, and using warping algorithms (provided by OpenCV), the image
can be warped around that central moment, creating a continuous, or
panoramic effect. Camera estimation is crucial to image stitching
since two moments stitched together without being coalesced will
produce lopsided images (much like different projections on maps).

Blending:
Once accurate seam masks (derivatives of the features above) have been
calculated and images have been warped around consistent moments
(camera estimation above), the final image can be blended and
‘stitched’ together. This process involves small amounts of linear
algebra and blurring techniques to create a continuous feeling.
Optional exposure correction can also occur using techniques like
histogram equalization, but those techniques are out of scope for this
project.



Potential Algorithms:
Unsupervised Learning Algorithms:
Unsupervised learning is a type of machine learning (subset of
artificial intelligence) that heavily relies on patterns. These
algorithms are given large amounts of unclassified data and can be
used in classification and regression scenarios. Oftentimes, there are
manually tunable variables called hyperparameters that assist learning
the underlying patterns in data.9

Random Cut Forest:
Random Cut Forest (RCF) is an unsupervised algorithm that can detect
outlier/anomalous data within datasets.10 It does this by essentially
“cutting” the data like a pizza, in random spots. The sparsest section
in the resulting dataset is dubbed with an anomalous score. This can
be used in this project with RGB data from images of farms. Pixels
that are more yellow or grayish than others would receive a higher
(worse) score than the greener and darker plants.

K-Means:
K-Means is an algorithm primarily for identifying clusters in a
dataset. In this instance, “K” corresponds to the number of clusters
that the algorithm attempts to find and the “Means” corresponds to the
centroids, or centers, of the clusters. K-Means first starts by
picking K random points and initializes them as a centroid. It then
computes the distance (usually euclidean distance) between points in
the data and the centroids. These new data points become a part of
the closest centroid’s cluster. Afterwards, the mean distance of each
cluster is then calculated and the respective centroid is reassigned
to the mean value. This process is repeated for a defined length or
until the clusters do not change. The set of clusters with the optimal
total variance is returned.

The image below11 shows the process of K-Means. The X’s are the
centroids and the dots are the data points.

11 Chris Piech: K-Means

10 Sijin Yiom, Jae-Hung Jung: Random Cut Forest

9 IBM: Unsupervised Learning



This type of algorithm is useful in unsupervised learning scenarios
where the labels of the dataset are unknown.

Supervised Learning Algorithms:
Supervised learning is a type of machine learning that involves
labeled data. The algorithms are given input data and are expected to
make predictions about data. Unlike unsupervised learning, supervised
learning algorithms12 are trained on data that they are “given the
answer to.” They then make predictions based on their training, and if
they are wrong, they adjust weights to get closer to the “correct
answer.”

Perceptron:
A perceptron is a single layer of artificial neurons13. Picture a wall
of lights: the perceptron will light up when something touches a
sensor on the other side14. Using this, if you were to put your hand on
the sensors, the perceptron would light up in a hand-like shape.

14 Scott Pletcher: Intro to Machine Learning

13 Mayank Banoula: Perceptrons

12 IBM: Supervised Learning



Convolutional Neural Network:
A convolutional neural network (CNN) is a type of multi-layer
perceptron that is versatile and can be used for image classification
tasks. The supervised nature of this algorithm requires numerous
annotated data be fed to train. A number of weights and nodes reside
inside the network, and are activated (much like a neuron in the
brain) based on the presence of some stimulus in the input (an image
in our case).15 The input will proceed through a predefined number of
layers, until an eventual answer is given (classification, regression
number, etc.). The network will then train itself using a loss
function (either Stochastic Gradient Descent (SGD) in our case, or
more modern algorithms like Adam)16 and backpropagation. A CNN can be
used to input the stitched farm image, and regression can yield scores
for sections of the farmland. A RCNN (below) can be much more useful
for this type of analysis.

Region-Based Convolutional Neural Network:
A region-based convolutional neural network (RCNN) is a type of
scanning neural net. The key difference between a CNN and RCNN is that
an RCNN can not only classify an object, but it can classify where the
object is.17 Using this type of network (or an idea similar to it), we
can break a farm plot into various regions to identify which crop
areas are struggling the most.

Ensemble Learning:
Ensemble learning is a modern approach to machine learning. It is the
process of combining multiple predictions from multiple different ML
models. The application we can use is combining the RCF model and an
RCNN, to determine anomalous areas of farmland where the crops are
visually struggling. Ensemble learning (in theory) can add great
accuracy and precision to predictions,18 and in our case can act like a
filter (different shades of green should not be weighted as much as a
dead crop patch).

18 Jason Brownlee: Introduction to Ensemble Learning

17 Rohith Gandhi: R-CNN, Fast R-CNN, Faster R-CNN, YOLO

16 Aman Gupta, et al. SGD vs. ADAM

15 IBM: Convolutional Neural Networks



Work Schedule

Milestone Schedule:

Due Date Milestones

January 30 Purchase hardware

February 6 Airframe built

February 13 1st Flight: Hover 1m for 10s

February 20 Camera installed and functioning

February 27 Camera Driver complete

March 6 Image capture algorithm complete

March 13 Drone flight driver test: 1m
forward, 1m backward, 1m left, 1m
right, land

March 13 Image stitching algorithm
complete

March 27 Image stitcher and image capture
integration

March 27 Drone driver integrations

April 25 Print Poster

April 27 MSU Student Research Celebration

May 1 Proposal Due

May 2 Class Presentation

Software Development Life Cycle (SDLC):
Farm Owl will be using a fairly standard agile and scrum methodology.
Meaning, the project will be broken into two week long sprints where
development is done incrementally in small, manageable chunks. A
meeting will take place at the beginning and end of each sprint.
Sprint planning occurs at the beginning and plans out what needs to



happen over the span of the sprint. The sprint review and
retrospective at the end, includes a demonstration of the work
accomplished and what could be improved upon in the next sprint. In
addition to these more involved meetings, short standups will occur
every Tuesday and Thursday of the week. Traditionally, a standup
occurs every day, however for the purposes of this project, twice a
week should suffice. This allows for adequate work to be done, which
should allow for higher quality standups. Agile and scrum is an ideal
SDLC for this project because designing a drone is an iterative
process. Trying to throw something together all at once without
regard for the smaller components is a setup for failure. The project
needs to be done gradually so that it is 1) achievable and 2) a
quality product. Agile and scrum both promote this type of behavior
in project management, which is exactly why it is being used as the
SDLC for Farm Owl.



Sprint Schedule:

Time Frame Goals

Sprint 1:
January 30 - February 13

● Hover-worthy airframe put
together

● Wiring done
● Basic elevation controls

Sprint 2:
February 13 - February 27

● Forward, backward, left,
right movement

● Camera installed on airframe
● Camera driver functioning

Sprint 3:
February 27 - March 13

● Start and complete image
capturing

● Start and complete image
stitching

● Test flight driver

Sprint 4:
March 13 - March 27

● Integrate image capturing
and image stitching

● Test camera capturing and
stitching

Sprint 5:
March 27 - April 10

● Integrate drone driver
● Drone-wide bug fixes and

optimizations

Sprint 6:
April 10 - April 24

● Overall drone performance
testing with flight and
camera

● Finishing touches

Sprint 7:
April 24 - May 2

● Prepare materials for
student research celebration
presentation and booth

● Present



Roles and Responsibilities:
Given that Farm Owl is a mixture of traditional engineering and
software engineering (with a team of two), there are a couple ways the
roles and responsibilities can be split up. One option is that one
person handles all the physical and hardware side of the project,
while the other works on the software side. This could allow for more
consistency when it comes to the implementation. The second option
could be intermixing responsibilities. One person works on the
physical and hardware side for a sprint and then switches on the next.
Both are viable options and have their benefits. We have decided to
go with intermixing responsibilities since that should allow for a
fresh set of eyes to locate and solve problems. Below are the
responsibilities for each person per sprint.

Division of Labor:

Sprint 1 Assigned Person

● Hover-worthy airframe put
together

Cole

● Wiring done Both

● Basic elevation controls Mason

Sprint 2 Assigned Person

● Forward, backward, left,
right movement

Cole

● Camera driver functioning Both

● Camera installed on airframe Mason



Sprint 3 Assigned Person

● Start and complete image
capturing

Cole

● Test flight driver Both

● Start and complete image
stitching

Mason

Sprint 4 Assigned Person

● Integrate image capturing
and image stitching

● Test camera capturing and
stitching

Both

Sprint 5 Assigned Person

● Integrate drone driver
● Drone-wide bug fixes and

optimizations

Both

Sprint 6 Assigned Person

● Overall drone performance
testing with flight and
camera

● Finishing touches

Both

Sprint 7 Assigned Person

● Prepare materials for
student research celebration
presentation and booth

● Present

Both



Proposal Statement

Functional Requirements:
● The system must be able to hover in place
● The system must be able to fly ordinally
● The system must be autonomous when given valid input
● The system’s Raspberry Pi driver must control an image stitching

algorithm, onboard camera, and motor drivers
● The system must have an algorithm to determine the optimal

time/place to take a photo
● The system’s Raspberry Pi driver must control four DC motors at

the same time
● The system must be able to store captured data for an arbitrary

amount of time
● The system’s Raspberry Pi must be able to land with minimal

damage to the system

Non-functional Requirements:
● The camera must be at least 1080p
● The entire system must cost less than $250
● The system must be able to fly without a controller

Performance Requirements:
● The image stitching algorithm should be >80% accurate

● The system should take 1 photo per 1000 square feet
● The system must be able to fly/hover for more than 10 minutes
● The system must weigh less than 0.55 pounds
● The system must be able to remain upright and stable in winds

less than 2 mph

Interface Requirements:
● The Raspberry Pi must control the mechanical system (DC motors)
● The Raspberry Pi must control the onboard camera
● The Raspberry Pi should have a function to take and store a

picture using the onboard camera
● The Raspberry Pi must activate the image stitcher once it has

landed



Architecture:

Physical Frame

Hardware

Software

Tools/Standards:
Physical parts:

● Propellers
● 3D printed frame

Hardware:
● Raspberry Pi Zero
● Power Supply (Lipo battery)
● RGB Camera
● 4 DC Motors
● Electronic Speed Controller (ESC)
● Power Distribution Board (PSB)
● Flight Control Shield
● Soldering gun

Software:
● Python
● Docker
● Raspberry Pi OS
● OpenCV-Python

VCS/Agile:
● Git
● Github
● Asana



Methodology
User Stories:

1) As a farmer, I want to see an aerial view of my farm land
so that I can accurately fertilize my crops.

2) As a farmer, I want to easily fly a drone so that I do not
cause harm to anything around me.

3) As a farmer, I can easily repair my drone so that I do not
have to send it back to get repaired.

Image Stitcher

The image stitching algorithm will use images and the metadata from
them to combine the images into one single picture with a high field
of view. The image memory class will pull all images taken from the
flight into memory and store them for use by the intermediate model.
The intermediate model is a one image per instance class. Each
instance will take sequential images (initiated by the Image_Compute
class) and calculate their proper location. They will then be combined
for the end product. The other two classes are dedicated to computing
the result and saving it to memory. The ending image will be stored



somewhere easily accessible (i.e. plugging in a USB drive) for
use/collection.

Wire Diagram :

Drone Class Diagram:



Mediator Pattern:
The mediator pattern was chosen to control the image stitching process
of the project. Due to the multi-faceted process of stitching together
an image, many different processes must be channeled and controlled
together via one source; we’ll call that the stitcher. The stitcher
mediates between, or invokes all other classes in a directed and
acyclic fashion. One could consider the stitcher in a similar fashion
to data warehousing concepts—a DAG, or Directed Acyclic Graph. The
stitcher must invoke each class, as each class is dependent upon
another; the process builds upon itself. This way, no tightly coupled
process can get too far ahead of itself, or try to start without
necessary data. The image warping algorithm (via camera estimation)
cannot warp without a camera object! The mediator pattern allows us to
keep neat order of the classes we instantiate before another.

Design tradeoffs:
1. The Raspberry Pi Zero has been sold out for months. Scalpers and
sharks on the internet are selling them for hundreds of dollars. This
makes it incredibly difficult to get a (usually $5) microcomputer. The
two biggest reasons the Zero was chosen was for its small weight, and
camera ribbon cable. No other small Raspberry Pis have an adequate
choice for camera plugins. The Zero is marketed as the go-to choice
for “media projects”. However, with the short supply, we will likely
choose the Raspberry Pi Pico. This computer is actually smaller and
cheaper than the Zero, but much less powerful. The lack of a dedicated
camera plugin will also make capturing pictures much more difficult.
Thankfully, we will take “difficult but possible” over “impossible”
any day.

2. Upon initial investigation, we realized that the microcomputer we
were using does not have enough memory to store the image stitching
algorithm, let alone a single JPEG! Thus we determined to code the
algorithm and store it separately, with a potential use case of
putting it in the cloud. Although the new workflow is out of scope for
this project, the new process would look like this: Drone flies over
land and surveys, streaming data into the Cloud via a messaging
subscription (like Google Pub/Sub); the drone then eventually lands
and sends a ‘finished’ message to the same service. The cloud project



would then proceed to run a function holding the stitcher code on the
images, dropped into a bucket via the Pub/Sub chain mentioned earlier.
From there, the project could run another function to drop or email
the stitched image into another bucket or someone’s email via another
subscription chain. This would skirt the physical limitations of the
micro-drone, and create a scalable solution for anyone using it.

3. Another design tradeoff is the size of the drone itself. Drones
with a larger size tend to be more stable than smaller drones. This is
great for general flight performance, however performance from size
comes at the cost of added weight. Farm Owl needs to be stable enough
to hover in place and fly, but also weigh less than 250 grams to avoid
needing to register the drone. In other words, stability should be
maximized while size and weight should be minimized. At this point in
time, coming to a conclusive decision on the size of the drone would
limit our options for performance. We are going to experiment with
drone frame sizes and see what best fits the project.



Results
Drone:
Creating a drone from scratch is no easy feat. There are usually many
disciplines involved (mechanical engineer, electrical engineer,
computer engineer/computer science, ect), and even more intricacies to
coincide with them. Farm Owl did not have these other areas of
expertise and that was a significant problem. Computer scientists are
not known for their prowess in circuitry or CAD drawings, and require
an immense amount of studying in order to create a project like this.

Because of the subtleties and complexities of more physical fields,
the drone portion of Farm Owl was definitely ambitious. Especially
when considering that this project was created by students in many
other demanding courses throughout the semester. Many of the initially
desired features are not in a working state and were above what should
have been expected for this project. The drone portion may have been
more achievable if this was a full time job, but obviously that is not
achievable for full time students.

Image Stitcher:
Creating panoramic images from separate source images is more
complicated than it sounds on paper. There is much multivariable
calculus involved: gradients, partial derivatives, etc. On the other
hand however, the process is quite well documented.19 OpenCV contains
all the tools needed to create a full, accurate and relatively fast
stitching algorithm.
The actual resulting code utilizes several built in modules from
OpenCV, as well as classes and functions built by individual academic
contributors. The process of stitching an image (as outlined above in
‘Background’) is complicated and requires many moving parts and
estimations, but ultimately this makes the whole process easier. It’s
not one, large jumble of code; but instead many small pieces working
together, such as a camera estimator performing an estimation, and a
cropping algorithm cropping an image using that estimation.

19 Matthew Brown, David Lowe: Automatic Panoramic Image Stitching



The entire working process took much longer than expected to build
this algorithm, but the result was high quality. This high quality was
due to the fact of several extraordinarily helpful resources along the
way, since this process is so heavily documented.



Code Appendix
Drone:
Controller:
from code.pi.motor_driver import Motor_Driver as MD

class Controller:

@staticmethod
def up(percent, increment: int = 5):

for m in MD.all:
m.throttle_up(percent, increment)

@staticmethod
def down(percent, decrement: int = 5):

for m in MD.all:
m.throttle_down(percent, decrement)

@staticmethod
def forward(percent, decrement: int = 5):

for m in MD.front_set:
m.throttle_down(percent, decrement)

@staticmethod
def backward(percent, decrement: int = 5):

for m in MD.back_set:
m.throttle_down(percent, decrement)

@staticmethod
def left(percent, decrement: int = 5):

for m in MD.left_set:
m.throttle_down(percent, decrement)

@staticmethod
def right(percent, decrement: int = 5):

for m in MD.right_set:
m.throttle_down(percent, decrement)



Motor Driver:
from code.pi.motor import Motor

class Motor_Driver:
motor_1 = Motor(8)
motor_2 = Motor(22)
motor_3 = Motor(11)
motor_4 = Motor(20)

# Group motors together into sets
all = (motor_1, motor_2, motor_3, motor_4)
front_set = (motor_1, motor_2)
back_set = (motor_3, motor_4)
left_set = (motor_1, motor_3)
right_set = (motor_2, motor_4)

Motor:
from machine import Pin, PWM
import utime

class Motor:

def __init__(self, pin_num: int, freq: int = 1000):
self.motor = PWM(Pin(pin_num))
self.motor.freq(freq)
self.throttle = 0

def throttle_up(self, percent, increment: int):
for t in range(0, 65536 * percent, increment):

self.throttle = t
self.motor.duty_u16(self.throttle)
print(self.throttle)
utime.sleep_ms(5)

def throttle_down(self, percent, decrement: int):
for t in range(0, 65536 * percent, -decrement):

self.throttle = t
self.motor.duty_u16(self.throttle)
print(self.throttle)
utime.sleep_ms(5)



Image Stitcher:
Image Handler:
from megapix_scaler import MegapixDownscaler
import cv2 as cv
class Image_Handler:

def __init__(self, imgs):
self.img_names = imgs
self.scales_set = False
self.img_sizes = []
# scaler init (to actually scale an image proportionately
self.medium_scaler = MegapixDownscaler(0.6)
self.low_scaler = MegapixDownscaler(0.1)
self.final_scaler = MegapixDownscaler(-1)
# use above scalers to scale images down to respective sizes
self.medium_imgs = list(self.read_and_resize_imgs(self.medium_scaler))
self.low_imgs = list(self.read_and_resize_imgs(self.low_scaler))
self.final_imgs = list(self.read_and_resize_imgs(self.final_scaler))
# ratios (for cameras and croppers)
self.medium_to_final_ratio = self.final_scaler.scale /

self.medium_scaler.scale
self.medium_to_low_ratio = self.low_scaler.scale /

self.medium_scaler.scale
self.final_to_low_ratio = self.low_scaler.scale /

self.final_scaler.scale
self.low_to_final_ratio = self.final_scaler.scale /

self.low_scaler.scale

# sizes (for warpers)
self.final_img_sizes = [self.final_scaler.get_scaled_img_size(sz) for

sz in self.img_sizes]
self.low_img_sizes = [self.low_scaler.get_scaled_img_size(sz) for sz in

self.img_sizes]
# medium size is get_img_sizes() or img[x].shape

def read_and_resize_imgs(self, scaler):
for img, size in self.input_images():

desired_size = scaler.get_scaled_img_size(size)
yield cv.resize(img, desired_size,

interpolation=cv.INTER_LINEAR_EXACT)
def resize_imgs_by_scaler(self, imgs, scaler):

for img, size in zip(imgs, self.img_sizes):
yield self.resize_img_by_scaler(scaler, size, img)

def input_images(self):
self.img_sizes = []
for name in self.img_names:

img = self.read_image(name)
size = self.get_image_size(img)
self.img_sizes.append(size)
self.set_scaler_scales()



yield img, size
@staticmethod
def get_image_size(img):

# width, height (everything in OpenCV is backwards)
return img.shape[1], img.shape[0]

@staticmethod
def read_image(img_name):

img = cv.imread(img_name)
return img

def set_scaler_scales(self):
if not self.scales_set:

first_img_size = self.img_sizes[0]
self.medium_scaler.set_scale_by_img_size(first_img_size)
self.low_scaler.set_scale_by_img_size(first_img_size)
self.final_scaler.set_scale_by_img_size(first_img_size)

self.scales_set = True

Feature Matcher:
from helper import get_all_combos
import math
import cv2 as cv
import numpy as np
class Feature_Matcher:

def __init__(self, features):
self.matcher = cv.detail_BestOf2NearestMatcher()
self.matches = self.matcher.apply2(features)
self.matcher.collectGarbage()
# match matrix
matrix_dimension = int(math.sqrt(len(self.matches)))
rows = []
for i in range(0, len(self.matches), matrix_dimension):

rows.append(self.matches[i: i + matrix_dimension])
self.match_matrix = np.array(rows)
# confidence matrix (confidence from match matrix)
self.confidence_matrix = np.array([[m.confidence for m in row] for row

in self.match_matrix])
def draw_matches_matrix(self, imgs, features, **kwargs):

matches_matrix = self.match_matrix
for idx1, idx2 in get_all_combos(len(imgs)):

match = matches_matrix[idx1, idx2]
if match.confidence < 1:

continue
kwargs["matchesMask"] = match.getInliers()
kwargs.setdefault("flags",

cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
yield idx1, idx2, cv.drawMatches(

imgs[idx1],
features[idx1].getKeypoints(),



imgs[idx2],
features[idx2].getKeypoints(),
match.getMatches(),
None,
**kwargs

)

Camera Estimator:
import cv2 as cv
import numpy as np
class Camera:

def __init__(self, features, matches, **kwargs):
self.estimator = cv.detail_HomographyBasedEstimator(**kwargs)
self.adjuster = cv.detail_BundleAdjusterRay()
self.wave_correct_kind = cv.detail.WAVE_CORRECT_HORIZ
self.adjuster.setRefinementMask(np.ones((3, 3), np.uint8))
self.adjuster.setConfThresh(1.0)
self.cameras = self.estimate(features, matches)
self.cameras = self.adjust(features, matches, self.cameras)
self.cameras = self.correct(self.cameras)

def estimate(self, features, pairwise_matches):
b, cameras = self.estimator.apply(features, pairwise_matches, None)
for cam in cameras:

cam.R = cam.R.astype(np.float32)
return cameras

def adjust(self, features, pairwise_matches, estimated_cameras):
b, cameras = self.adjuster.apply(features, pairwise_matches,

estimated_cameras)
return cameras

def correct(self, cameras):
rmats = [np.copy(cam.R) for cam in cameras]
rmats = cv.detail.waveCorrect(rmats, self.wave_correct_kind)
for idx, cam in enumerate(cameras):

cam.R = rmats[idx]
return cameras

Warper:
from statistics import median
import cv2 as cv
import numpy as np
class Warper:

def __init__(self, cameras):
self.warper_type = 'spherical'
focals = [cam.focal for cam in cameras]
self.scale = median(focals)

def warp_images(self, imgs, cameras, aspect=1):
for img, camera in zip(imgs, cameras):

warper = cv.PyRotationWarper(self.warper_type, self.scale * aspect)



_, warped_image = warper.warp(
img,
Warper.get_K(camera, aspect),
camera.R,
cv.INTER_LINEAR,
cv.BORDER_REFLECT,

)
yield warped_image

def create_and_warp_masks(self, sizes, cameras, aspect=1):
for size, camera in zip(sizes, cameras):

warper = cv.PyRotationWarper(self.warper_type, self.scale * aspect)
mask = 255 * np.ones((size[1], size[0]), np.uint8)
_, warped_mask = warper.warp(

mask,
Warper.get_K(camera, aspect),
camera.R,
cv.INTER_NEAREST,
cv.BORDER_CONSTANT,

)
yield warped_mask

def warp_rois(self, sizes, cameras, aspect=1):
roi_corners = []
roi_sizes = []
for size, camera in zip(sizes, cameras):

warper = cv.PyRotationWarper(self.warper_type, self.scale * aspect)
K = Warper.get_K(camera, aspect)
roi = warper.warpRoi(size, K, camera.R)
roi_corners.append(roi[0:2])
roi_sizes.append(roi[2:4])

return roi_corners, roi_sizes
@staticmethod
def get_K(camera, aspect=1):

K = camera.K().astype(np.float32)
""" Modification of intrinsic parameters needed if cameras were
obtained on different scale than the scale of the Images which should
be warped """
K[0, 0] *= aspect
K[0, 2] *= aspect
K[1, 1] *= aspect
K[1, 2] *= aspect
return K

Cropper:
from collections import namedtuple
import cv2 as cv
from blender import Blender
import largestinteriorrectangle
# code from : LukasAlexanderWeber



class Rectangle(namedtuple("Rectangle", "x y width height")):
__slots__ = ()
@property
def area(self):

return self.width * self.height
@property
def corner(self):

return (self.x, self.y)
@property
def size(self):

return (self.width, self.height)
@property
def x2(self):

return self.x + self.width
@property
def y2(self):

return self.y + self.height
def times(self, x):

return Rectangle(*(int(round(i * x)) for i in self))
def draw_on(self, img, color=(0, 0, 255), size=1):

if len(img.shape) == 2:
img = cv.cvtColor(img, cv.COLOR_GRAY2RGB)

start_point = (self.x, self.y)
end_point = (self.x2 - 1, self.y2 - 1)
cv.rectangle(img, start_point, end_point, color, size)
return img

class Cropper:
DEFAULT_CROP = True
def __init__(self, crop=DEFAULT_CROP):

self.do_crop = crop
self.overlapping_rectangles = []
self.cropping_rectangles = []

def prepare(self, imgs, masks, corners, sizes):
if self.do_crop:

mask = self.estimate_panorama_mask(imgs, masks, corners, sizes)
lir = self.estimate_largest_interior_rectangle(mask)
corners = self.get_zero_center_corners(corners)
rectangles = self.get_rectangles(corners, sizes)
self.overlapping_rectangles = self.get_overlaps(rectangles, lir)
self.intersection_rectangles = self.get_intersections(

rectangles, self.overlapping_rectangles
)

def crop_images(self, imgs, aspect=1):
for idx, img in enumerate(imgs):

yield self.crop_img(img, idx, aspect)
def crop_img(self, img, idx, aspect=1):

if self.do_crop:
intersection_rect = self.intersection_rectangles[idx]
scaled_intersection_rect = intersection_rect.times(aspect)



cropped_img = self.crop_rectangle(img, scaled_intersection_rect)
return cropped_img

return img
def crop_rois(self, corners, sizes, aspect=1):

if self.do_crop:
scaled_overlaps = [r.times(aspect) for r in

self.overlapping_rectangles]
cropped_corners = [r.corner for r in scaled_overlaps]
cropped_corners = self.get_zero_center_corners(cropped_corners)
cropped_sizes = [r.size for r in scaled_overlaps]
return cropped_corners, cropped_sizes

return corners, sizes
@staticmethod
def estimate_panorama_mask(imgs, masks, corners, sizes):

mask = Blender(imgs, masks, corners, sizes).result_mask
return mask

def estimate_largest_interior_rectangle(self, mask):
# largestinteriorrectangle is only imported if cropping
# is explicitly desired (needs some time to compile at the first run!)
contours, hierarchy = cv.findContours(mask, cv.RETR_TREE,

cv.CHAIN_APPROX_NONE)
contour = contours[0][:, 0, :]
lir = largestinteriorrectangle.lir(mask > 0, contour)
lir = Rectangle(*lir)
return lir

@staticmethod
def get_zero_center_corners(corners):

min_corner_x = min([corner[0] for corner in corners])
min_corner_y = min([corner[1] for corner in corners])
return [(x - min_corner_x, y - min_corner_y) for x, y in corners]

@staticmethod
def get_rectangles(corners, sizes):

rectangles = []
for corner, size in zip(corners, sizes):

rectangle = Rectangle(*corner, *size)
rectangles.append(rectangle)

return rectangles
@staticmethod
def get_overlaps(rectangles, lir):

return [Cropper.get_overlap(r, lir) for r in rectangles]
@staticmethod
def get_overlap(rectangle1, rectangle2):

x1 = max(rectangle1.x, rectangle2.x)
y1 = max(rectangle1.y, rectangle2.y)
x2 = min(rectangle1.x2, rectangle2.x2)
y2 = min(rectangle1.y2, rectangle2.y2)
return Rectangle(x1, y1, x2 - x1, y2 - y1)

@staticmethod
def get_intersections(rectangles, overlapping_rectangles):



return [
Cropper.get_intersection(r, overlap_r)
for r, overlap_r in zip(rectangles, overlapping_rectangles)

]
@staticmethod
def get_intersection(rectangle, overlapping_rectangle):

x = abs(overlapping_rectangle.x - rectangle.x)
y = abs(overlapping_rectangle.y - rectangle.y)
width = overlapping_rectangle.width
height = overlapping_rectangle.height
return Rectangle(x, y, width, height)

@staticmethod
def crop_rectangle(img, rectangle):

return img[rectangle.y: rectangle.y2, rectangle.x: rectangle.x2]

Seam Finder:
import cv2 as cv
import numpy as np
from helper import add_weighted_image, remove_invalid_line_pixels,
colored_img_generator
from blender import Blender
class Seam_Finder:

def __init__(self):
self.finder = cv.detail_DpSeamFinder("COLOR")

def find(self, imgs, corners, masks):
imgs_float = [img.astype(np.float32) for img in imgs]
return self.finder.find(imgs_float, corners, masks)

@staticmethod
def resize(seam_mask, mask):

dilated_mask = cv.dilate(seam_mask, None)
resized_seam_mask = cv.resize(

dilated_mask, (mask.shape[1], mask.shape[0]), 0, 0,
cv.INTER_LINEAR_EXACT

)
return cv.bitwise_and(resized_seam_mask, mask)

@staticmethod
def draw_seam_mask(img, seam_mask, color=(0, 0, 0)):

seam_mask = cv.UMat.get(seam_mask)
overlaid_img = np.copy(img)
overlaid_img[seam_mask == 0] = color
return overlaid_img

@staticmethod
def draw_seam_polygons(panorama, blended_seam_masks, alpha=0.5):

return add_weighted_image(panorama, blended_seam_masks, alpha)
@staticmethod
def draw_seam_lines(panorama, blended_seam_masks, linesize=1, color=(0, 0,

255)):



seam_lines = Seam_Finder.extract_seam_lines(blended_seam_masks,
linesize)

panorama_with_seam_lines = panorama.copy()
panorama_with_seam_lines[seam_lines == 255] = color
return panorama_with_seam_lines

@staticmethod
def extract_seam_lines(blended_seam_masks, linesize=1):

seam_lines = cv.Canny(np.uint8(blended_seam_masks), 100, 200)
seam_indices = (seam_lines == 255).nonzero()
seam_lines = remove_invalid_line_pixels(

seam_indices, seam_lines, blended_seam_masks
)
kernelsize = linesize + linesize - 1
kernel = np.ones((kernelsize, kernelsize), np.uint8)
return cv.dilate(seam_lines, kernel)

@staticmethod
def blend_seam_masks(seam_masks, corners, sizes):

imgs = colored_img_generator(sizes)
blended_seam_masks, _ = Blender(

imgs, seam_masks, corners, sizes
).result
return blended_seam_masks

Blender:
import cv2 as cv
import numpy as np
class Blender:

def __init__(self, imgs, masks, corners, sizes):
# init blender
self.blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO)
# prepare step
roi = cv.detail.resultRoi(corners=corners, sizes=sizes)
self.blender.prepare(roi)
# feed to blender
for img, mask, corner in zip(imgs, masks, corners):

self.blender.feed(cv.UMat(img.astype(np.int16)), mask, corner)
# blend and result
self.result, self.result_mask = None, None
self.result, self.result_mask = self.blender.blend(self.result,

self.result_mask)
self.result = cv.convertScaleAbs(self.result)

Helper:
import matplotlib.pyplot as plt
import cv2 as cv
import numpy as np
import random
from itertools import chain



def plot_image(img, figsize_in_inches=(5, 5)):
fig, ax = plt.subplots(figsize=figsize_in_inches)
ax.imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.show()

def plot_images(imgs, figsize_in_inches=(5, 5)):
fig, axs = plt.subplots(1, len(imgs), figsize=figsize_in_inches)
for col, img in enumerate(imgs):

axs[col].imshow(cv.cvtColor(img, cv.COLOR_BGR2RGB))
plt.show()

def get_all_combos(num_imgs):
ii, jj = np.triu_indices(num_imgs, k=1)
for i, j in zip(ii, jj):

yield i, j
def draw_keypoints(img, features, **kwargs):

kwargs.setdefault("color", (random.randint(0, 200), random.randint(100,
255), random.randint(50, 150)))

keypoints = features.getKeypoints()
return cv.drawKeypoints(img, keypoints, None, **kwargs)

def subset_list(list_to_subset, indices):
return [list_to_subset[i] for i in indices]

def get_indices_to_keep(features, pairwise_matches):
indices = cv.detail.leaveBiggestComponent(features, pairwise_matches, 1)
return indices

def subset_matches(features, matches, match_matrix):
indices = cv.detail.leaveBiggestComponent(features, matches, 1)
matches_matrix = match_matrix
matches_matrix_subset = matches_matrix[np.ix_(indices, indices)]
matches_subset_list =

list(chain.from_iterable(matches_matrix_subset.tolist()))
return matches_subset_list

def colored_img_generator(
sizes,
colors=(

(255, 000, 000), # Blue
(000, 000, 255), # Red
(000, 255, 000), # Green
(000, 255, 255), # Yellow
(255, 000, 255), # Magenta
(128, 128, 255), # Pink
(128, 128, 128), # Gray
(000, 000, 128), # Brown
(000, 128, 255), # Orange

),
):

for idx, size in enumerate(sizes):
if idx + 1 > len(colors):

raise ValueError(
"Not enough default colors! Pass additional "
'colors to "colors" parameter'



)
yield create_img_by_size(size, colors[idx])

def create_img_by_size(size, color=(0, 0, 0)):
width, height = size
img = np.zeros((height, width, 3), np.uint8)
img[:] = color
return img

def add_weighted_image(img1, img2, alpha):
return cv.addWeighted(img1, alpha, img2, (1.0 - alpha), 0.0)

def remove_invalid_line_pixels(indices, lines, mask):
for x, y in zip(*indices):

if is_edge(mask, x, y):
lines[x, y] = 0

return lines
def is_edge(img, x, y):

return any([
is_black(img, x, y),
is_black(img, x + 1, y),
is_black(img, x - 1, y),
is_black(img, x, y + 1),
is_black(img, x, y - 1),

])
def is_black(img, x, y):

return np.all(img[x, y] == 0)

Stitcher:
from helper import plot_images, plot_image, draw_keypoints, subset_list,
get_indices_to_keep, subset_matches
from image_handler import Image_Handler
from camera import Camera
import cv2 as cv
from blender import Blender
from feature_matcher import Feature_Matcher
from cropper import Cropper
from warper import Warper
from seam_finder import Seam_Finder
class Stitcher:

@staticmethod
def stitch(imgs):

image_list = imgs
img_handler = Image_Handler(image_list)
medium_imgs = img_handler.medium_imgs
low_imgs = img_handler.low_imgs
final_imgs = img_handler.final_imgs
plot_images(low_imgs, (20, 20))
"""https://docs.opencv.org/4.x/d0/d13/classcv_1_1Feature2D.html"""



feature_detector = cv.ORB.create()
features = [cv.detail.computeImageFeatures2(feature_detector, img) for

img in medium_imgs]
keypoints_center_img = draw_keypoints(medium_imgs[1], features[1])
plot_image(keypoints_center_img, (15, 10))
matcher = Feature_Matcher(features)
matches = matcher.matches
all_relevant_matches = matcher.draw_matches_matrix(medium_imgs,

features, matchColor=(255, 0, 0))
for idx1, idx2, img in all_relevant_matches:

print(f"Matches Image {idx1 + 1} to Image {idx2 + 1}")
plot_image(img, (20, 10))

indices = get_indices_to_keep(features, matches)
medium_imgs = subset_list(medium_imgs, indices)
low_imgs = subset_list(low_imgs, indices)
final_imgs = subset_list(final_imgs, indices)
features = subset_list(features, indices)
matches = subset_matches(features, matches, matcher.match_matrix)
img_names = subset_list(img_handler.img_names, indices)
img_sizes = subset_list(img_handler.img_sizes, indices)
img_handler.img_names, img_handler.img_sizes = img_names, img_sizes
print(img_handler.img_names)
print(matcher.confidence_matrix)
camera = Camera(features, matches)
cameras = camera.cameras
warper = Warper(cameras)
low_sizes = img_handler.low_img_sizes
camera_aspect = img_handler.medium_to_low_ratio # since cameras were

obtained on medium imgs
warped_low_imgs = list(warper.warp_images(low_imgs, cameras,

camera_aspect))
warped_low_masks = list(warper.create_and_warp_masks(low_sizes,

cameras, camera_aspect))
low_corners, low_sizes = warper.warp_rois(low_sizes, cameras,

camera_aspect)
final_sizes = img_handler.final_img_sizes
camera_aspect = img_handler.medium_to_final_ratio # since cameras were

obtained on medium imgs
warped_final_imgs = list(warper.warp_images(final_imgs, cameras,

camera_aspect))
warped_final_masks = list(warper.create_and_warp_masks(final_sizes,

cameras, camera_aspect))



final_corners, final_sizes = warper.warp_rois(final_sizes, cameras,
camera_aspect)

plot_images(warped_low_imgs, (10, 10))
plot_images(warped_low_masks, (10, 10))
cropper = Cropper()
mask = cropper.estimate_panorama_mask(warped_low_imgs,

warped_low_masks, low_corners, low_sizes)
plot_image(mask, (5, 5))
lir = cropper.estimate_largest_interior_rectangle(mask)
plot = lir.draw_on(mask, size=2)
plot_image(plot, (5, 5))
low_corners = cropper.get_zero_center_corners(low_corners)
rectangles = cropper.get_rectangles(low_corners, low_sizes)
plot = rectangles[1].draw_on(plot, (0, 255, 0), 2) # The rectangle of

the center img
plot_image(plot, (5, 5))
overlap = cropper.get_overlap(rectangles[1], lir)
plot = overlap.draw_on(plot, (255, 0, 0), 2)
plot_image(plot, (5, 5))
intersection = cropper.get_intersection(rectangles[1], overlap)
plot = intersection.draw_on(warped_low_masks[1], (255, 0, 0), 2)
plot_image(plot, (2.5, 2.5))
cropper.prepare(warped_low_imgs, warped_low_masks, low_corners,

low_sizes)
cropped_low_masks = list(cropper.crop_images(warped_low_masks))
cropped_low_imgs = list(cropper.crop_images(warped_low_imgs))
low_corners, low_sizes = cropper.crop_rois(low_corners, low_sizes)
lir_aspect = img_handler.low_to_final_ratio # since lir was obtained

on low imgs
cropped_final_masks = list(cropper.crop_images(warped_final_masks,

lir_aspect))
cropped_final_imgs = list(cropper.crop_images(warped_final_imgs,

lir_aspect))
final_corners, final_sizes = cropper.crop_rois(final_corners,

final_sizes, lir_aspect)
seam_finder = Seam_Finder()
seam_masks = seam_finder.find(cropped_low_imgs, low_corners,

cropped_low_masks)
seam_masks = [seam_finder.resize(seam_mask, mask) for seam_mask, mask

in zip(seam_masks, cropped_final_masks)]
seam_masks_plots = [Seam_Finder.draw_seam_mask(img, seam_mask) for img,

seam_mask in



zip(cropped_final_imgs, seam_masks)]
plot_images(seam_masks_plots, (15, 10))
panorama = Blender(cropped_final_imgs, seam_masks, final_corners,

final_sizes).result
plot_image(panorama, (20, 20))

imgs = [‘x1’,’x2’,’x3’]
Stitcher.stitch(imgs)



Citations
1. https://www.ag.ndsu.edu/publications/crops/agricultural-remote-se

nsing-basics
2. https://censystech.com/agriculture/
3. https://www.federaldroneregistration.com/faq
4. https://education.nationalgeographic.org/resource/dead-zone
5. https://oceantoday.noaa.gov/deadzonegulf-2021/welcome.html
6. https://www.raspberrypi.com/products/raspberry-pi-zero/
7. https://docs.opencv.org/4.x/d0/de3/tutorial_py_intro.html
8. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=413336&t

ag=1
9. https://www.ibm.com/cloud/learn/unsupervised-learning
10. https://arxiv.org/abs/2202.01891
11. https://stanford.edu/~cpiech/cs221/handouts/kmeans.html
12. https://www.ibm.com/cloud/learn/supervised-learning
13. https://www.simplilearn.com/tutorials/deep-learning-tutorial/p

erceptron
14. https://acloudguru.com/course/introduction-to-machine-learning
15. https://www.ibm.com/cloud/learn/convolutional-neural-networks
16. https://opt-ml.org/papers/2021/paper53.pdf
17. https://towardsdatascience.com/r-cnn-fast-r-cnn-faster-r-cnn-y

olo-object-detection-algorithms-36d53571365e
18. https://machinelearningmastery.com/tour-of-ensemble-learning-a

lgorithms/
19. http://matthewalunbrown.com/papers/ijcv2007.pdf


