Group 5 Portfolio
ESOF 423

Jacob Tanner, Mike Kadoshnikov, Boone Schmaltz, Gunnar
Rasmussen

Section 1: Program

Link to GitHub page: https://qgithub.com/423s24/Group 5
Database Management System: PostgreSQL
Web Framework: Django

Section 2: Teamwork
Team member 1 (20%):

Focused on maintenance form and support page. Set up emails for testing and
got a gmail account setup and authorized for use in sending email notifications. Created html
notifications with plaintext backup. Fixed maintenance form bugs after outside testers provided
feedback.

Team member 2(10%):
Focused on housekeeping and keeping the GitHub 10 page and documentation
up to date, contributing to website styling, managing issues on GitHub, managing the support
page on the website, and making sure the website maintains an intuitive user experience.

Team member 3 (37%):

Got user authentication to work (login, sign up, logout, password reset). Got
account types set up, separated dashboards for each account type, and allowed admin users to
change user account types. Hosted the production version on a public domain with a personal
server for testing and client demos. Made the site mobile friendly.

Team member 4 (33%):

Initially setup the postgresql database and django project. Worked on several
basic tables for buildings and maintenance requests. Got active search working for maintenance
requests. Made the basic dashboard format. Created Maintenance Notes and functions for
adding, editing, and deleting them. Added file upload to the project as well. Worked on exporting
pages as pdf. Changed initial navbar and design into a sidenav. | managed to get django tests
to work with GitHub continuous integration yaml file.

Section 3: Design Pattern

The project primarily inherits an active record pattern. An active record pattern is defined
as such “The active record pattern is an approach to accessing data in a database. A database
table or view is wrapped into a class. Thus, an object instance is tied to a single row in the table.
After creation of an object, a new row is added to the table upon save. Any object loaded gets
its information from the database. When an object is updated, the corresponding row in the
table is also updated. The wrapper class implements accessor methods or properties for each
column in the table or row.” How this relates to the project is as follows: The HRDC Maintenance
Portal primarily uses a database to store all information regarding the buildings, maintenance
forms, users, saved requests, and related objects. When a user, request, note, image, building,

https://github.com/423s24/Group_5

etc. are added to the project they are immediately added to the database and the tables reflect
the change. We directly have a row of a table to an object, and the table is updated upon saving
an object. Although this pattern is often considered an anti-pattern and can lead to greater
issues it's also noted that “Another critique of the active record pattern is that, due to the strong
coupling of database interaction and application logic, an active record object does not follow
the single responsibility principle and separation of concerns. This is opposed to multi tier
architecture, which properly addresses these practices. Because of this, the active record
pattern is best and most often employed in simple applications that are all forms-over-data with
CRUD functionality, or only as one part of an architecture. Typically that part is data access and
why several ORMs implement the active record pattern.” As is typical with simpler applications
and best to implement with them, we fall into form-over-data with CRUD functionality. Although
considered an anti-pattern for this project it works perfectly. Although it will be hard to fully
describe where exactly in the code it is, | believe 90% of the project contributes to this design
pattern, and to highlight and contribute it to this document would be a rather tedious task. The
project itself is meant to use CRUD directly with the database, there isn’t really any task that
could be performed that doesn’t directly contribute towards the design pattern.

Section 4: Technical Writing

A link to the documentation for the maintenance portal can be found here:
https://423s24.qgithub.io/Gr:

Section 5: UML

Here is a simple representation of how creating a maintenance request works:

‘ createMaintenanceRequest | ‘ maintenance | ‘ MaintenanceReqguest.create | ‘ MaintenanceFile create | ‘ sendEmailThread

|
-

render{(maintenance. html) /
T

redirectl(dashbnardfrequests{rlequestld) /
T

| maintenance request /
T

e

A A A

| maintenance file / i j l
P 1 J

-

AT A

-
[

-
g

createMaintenanceRequest ‘ ‘ maintenance | ‘ MaintenanceRequest.create ‘ ‘ MaintenanceFile create ‘ ‘ sendEmailThread

https://423s24.github.io/Group_5/

Below we have our database diagrammed:

| Manager
id Integer
Archived Boolean

UserAccount
id Integer
O-Hemail String
password String mﬁ
(O-+Husername String | Tenent
is_superuser Boolean ‘ id | Integer J
is_manager Boolean
is_active Boolean Building
firstName Str!ng i Integer
lastName String Name String
date_joined Date Address |String
last_login Date City String
email_notifications |Boolean State String
pagingCount Integer Country |String
% accountType String Zipcode |String

MaintenanceRequest

id

firstName
lastName
phone
unit_number
building
date_submitted
date_completed
status

priority

title

request

entry_permission

Integer
String
String
String
String
Integer
Date
Date
String
String
String
String
String

MaintenanceNote

Section 6: Design Trade-Offs

id

dateSubmitted

Notes

tenantViewable

userid
maintenancerequestld

Integer
Date
String
Boolean
Integer
Integer

MaintenanceFile

id
maintenanceRequestld
file

Integer
Integer

file

Initially in the database design we were going to include a Unit field that would have tied
a request to a building, and we would have the manager connected to the building, that way we
could perform joins to get the manager from the unit. Eventually through testing of the software
we came to an understanding that in order to minimize the amount of work the clients would
need to do, we would just remove those connections and only tie the maintenance requests to
their respective buildings. Not only does it reduce computation on the server-side but it also
reduces the amount of items required to be added to the database. For example if the client has
15 buildings which all contain 20 units, then the client would have to add all 15 buildings and the
300 units associated to those buildings, then the user would have to choose their unit correctly
on the maintenance form. Now we only require the client to add only the buildings totaling 15
additions, each request will be tied directly to the building and the unit/number will be input
directly from the user submitting a request. With this trade off the client now has a reduced work
load, the units field is removed freeing up more space on the database only at the expense that
the user inputs the correct unit upon request completion. This design change reflects reducing
the amount of computation with retrieving data, reducing the amount of space the database
takes up, and also reducing the amount of work for the client, at the expense of the user
verifying that their Unit number is correct when inputting it in the maintenance request form.

Section 7: Software Development Life Cycle Model

We used Agile project management to develop our project. This allowed our team to
discuss who was going to work on what and for discussion of this every class period. Dividing
the project into sprints gave our group a decent structure for what needed to be finished by
when, so dividing up the work per day per teammate was simple. The problem with this type of
development comes in whenever a team member is absent. Even if they check in over text, it
doesn’t quite replace the value you get out of an actual scrum meeting and session of class,
especially if it was a meeting at the start of a sprint or demo day.

