
‭Catscript Compiler Portfolio‬
‭CSCI 468‬

‭Spring 2024‬
‭Bryce Lehnen‬

‭Section 1: Program‬
‭The source code for this course can be found at‬
‭https://github.com/BryceLehnen/csci-468-spring2024-private/tree/main. The project‬
‭was to implement a working compiler including pieces like a tokenizer, parser, and‬
‭bytecode. Zipped source code can also be found in the capstone directory.‬

‭Section 2: Teamwork‬
‭My teammate provided me with tests and the documentation. I was fully responsible‬
‭for the implementation of the Catscript Compiler.‬

‭Section 3: Design Pattern‬
‭The memoization design pattern was used, and it is located inside of‬
‭CatscriptType.java under the parser directory. This design pattern was used to avoid‬
‭the wasteful code that was originally there. At first, it would also create a new instance‬
‭of a ListType even if the exact same one was already created elsewhere. Now, through‬
‭memoization, it looks up the type in a HashMap aptly named cache to first see if a‬
‭ListType has already been created. If it has, then it simply returns it. If not, then it‬
‭creates a new instance, stores it in the cache, and returns the proper ListType. This‬
‭creates a non-wasteful way to store the various ListTypes.‬

‭Section 4: Technical Writing‬
‭The technical writing can be found under the name Catscript.md, and it is located in‬
‭the directory Capstone. It may also simply just be accompanying this document as a‬
‭separate file. It is also added below in the original markdown format:‬
‭# Catscript Guide‬

‭This is the documentation regarding the technical aspects of the Catscript‬

‭Language.‬

‭It contains information about the expressions and statements that make of‬

‭Catscript‬

‭as well explanations and examples of each.‬

‭## Introduction‬

‭Catscript is a simple scripting language. Here is an example:‬

‭̀``‬

‭var x = "foo"‬

‭print(x)‬

‭̀``‬

‭## Statements‬

‭### For_Statement‬

‭The technical outline for a for_statement is:‬

‭̀``‬

‭for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',‬

‭'{', { statement }, '}';‬

‭̀``‬

‭A for_statement is a for loop that iterators over an expression, and‬

‭evaluating various statements‬

‭inside of it. There three main parts to a for_statement: the Identifier,‬

‭the expression, and the body.‬

‭The Identifier is a variable that will change as the for_statement is‬

‭being iterated over. The expression‬

‭will denote the 'boundary' of the Identifier. Lastly, the body can be‬

‭comprised of any number of statements‬

‭even zero. A more realistic example is shown below:‬

‭̀``‬

‭for (x in [1, 2, 3]) { print(x) }‬

‭̀``‬

‭The for_statement will iterate over the list_literal [1, 2, 3], and run‬

‭the body which is the print_statement‬

‭in this example. The output of this for_statement would be:‬

‭̀``‬

‭1‬

‭2‬

‭3‬

‭̀``‬

‭### If_Statement‬

‭The technical outline for an if_statement is:‬

‭̀``‬

‭if_statement = 'if', '(', expression, ')', '{',‬

‭{ statement },‬

‭'}' ['else', (if_statement | '{', { statement }, '}')];‬

‭̀``‬

‭An if_statement allows for branching paths and logic to be added into‬

‭Catscript. The most basic if_statement‬

‭comprises an expression and a body. If the expression is evaluated to be‬

‭true then the statement body is also‬

‭evaluated. However, an if_statement can also contain additional parts to‬

‭produce branching paths. It can have‬

‭either or both additional else_if_statements and one else_statement. A‬

‭more realistic example is shown below:‬

‭̀``‬

‭if (false) { print(1) } else if (false) { print(2) } else { print(3) }‬

‭̀``‬

‭The expressions in the parenthesis are just false, but these are just‬

‭basic examples. It's easy to see how‬

‭the branching paths would work as well. If the first expression were true,‬

‭then a 1 would be printed. If the‬

‭second expression were true, then a 2 would be printed. And if neither are‬

‭true, then a 3 would be printed.‬

‭### Print_Statement‬

‭The technical outline for a print_statement is:‬

‭̀``‬

‭print_statement = 'print', '(', expression, ')'‬

‭̀``‬

‭A print_statement is exactly what the name implies. It prints the‬

‭expression that is inside its parenthesis.‬

‭That's really all there is to it. The print_statement is extremely useful‬

‭for tests and debugging since it‬

‭can clearly show an output, but it isn't complicated compared to many of‬

‭the other statements in Catscript.‬

‭A more realistic example is shown below:‬

‭̀``‬

‭print("Catscript is awesome!")‬

‭̀``‬

‭### Variable_Statement‬

‭The technical outline for a variable_statement is:‬

‭̀``‬

‭variable_statement = 'var', IDENTIFIER,‬

‭[':', type_expression,] '=', expression;‬

‭̀``‬

‭The variable_statement is exactly what the name implies. It is used to‬

‭create variables that can be used as‬

‭references to whatever value it 'holds'. There are two basic types of‬

‭variable_statements. The first uses‬

‭logic to give its best guess as to what the type of the variable is, like‬

‭the one at the start of this document.‬

‭The other explicitly denotes the type of the variable as shown below.‬

‭Variables are extremely useful as‬

‭the value they hold can be changed or modified while still calling it the‬

‭same reference/Identifier. A more‬

‭realistic example is shown below:‬

‭̀``‬

‭var x : String = "Catscript"‬

‭̀``‬

‭The only other part of variable_statements is the fact that no two‬

‭variables (in the same scope) can be named‬

‭with the same Identifier. Obviously, this would cause confusion, but it‬

‭would also break the entire program.‬

‭Safety measures are put in place to give warnings about incorrect naming‬

‭of variables.‬

‭### Assignment_Statement‬

‭The technical outline for an assignment_statement is:‬

‭̀``‬

‭assignment_statement = IDENTIFIER, '=', expression;‬

‭̀``‬

‭The assignment_statement is very similar to the variable_statement that‬

‭was described above. However, it is‬

‭not used to create new variables, but rather, it assigns a new value to a‬

‭variable that already exists. A more‬

‭realistic example is shown below:‬

‭̀``‬

‭x = "Catscript"‬

‭̀``‬

‭The import part of the assignment_statement is that the value being‬

‭assigned to the variable must be of‬

‭a compatible type. This means that if when x was created, it must be of‬

‭type String or the above‬

‭assignment_statement would throw an error.‬

‭### Function_Declaration‬

‭The technical outline for a function_declaration statement is:‬

‭̀``‬

‭function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +‬

‭[':' + type_expression], '{', {‬

‭function_body_statement }, '}';‬

‭̀``‬

‭The function_declaration statement is the most complicated type of‬

‭statement. There are a lot of moving‬

‭parts to it, so more and more complicated examples will be given starting‬

‭with the one below:‬

‭̀``‬

‭function fun() { print(1) }‬

‭̀``‬

‭The above statement denotes a function with the name 'fun'. All it does is‬

‭print out the integer '1'. This is the‬

‭most basic type of function as it does not contain any parameters in the‬

‭parameter_list or returns in the‬

‭function_body_statement.‬

‭̀``‬

‭function fun(a) { print(a) }‬

‭̀``‬

‭The above statement denotes a function with the name 'fun'. It has a‬

‭single parameter with the name 'a', and‬

‭the function_body_statement comprises a single statement which will print‬

‭out the value of 'a'. The type of‬

‭'a' is not explicitly stated, so it could be anything from an Integer to‬

‭String or anything in-between.‬

‭̀``‬

‭function fun(a : string) { print(a) }‬

‭̀``‬

‭The above statement denotes a function with the name 'fun'. It has a‬

‭single parameter with the name 'a' and it‬

‭is of the type 'string'. The function_body_statement comprises a single‬

‭statement which will print out the‬

‭value of 'a'.‬

‭̀``‬

‭function fun : int (a : int) {‬

‭var y : int = (a + 5)‬

‭return y‬

‭}‬

‭̀``‬

‭The above statement denotes a function with the name 'fun'. It has a‬

‭single parameter with the name 'a' and‬

‭it is of the type 'int'. The function_body_statement comprises two‬

‭statements. The first of which is a‬

‭variable_statement which takes the value of 'a', adds 5 to it, and stores‬

‭it in a variable called 'y'. The second‬

‭is a return_statement which returns the value of 'y'.‬

‭### Return_Statement‬

‭The technical outline for a return_statement is:‬

‭̀``‬

‭return_statement = 'return' [, expression];‬

‭̀``‬

‭The return_statement does exactly as the name implies. It either returns‬

‭back out of a function, or returns a‬

‭value. The first is just a simple 'return' without anything following it.‬

‭It is used to break out of a function,‬

‭and it can be used in various ways. The most common would be to simply‬

‭stop the rest of a function from‬

‭running. The second type of return_statement is shown below:‬

‭̀``‬

‭return x‬

‭̀``‬

‭This type of return_statement returns the value or referenced value that‬

‭follows the 'return'. In this case, it‬

‭will return the value of 'x'. This is best used in a function that‬

‭calculates some value where the function‬

‭is used multiple times throughout a program. The value it returns can then‬

‭easily be used elsewhere in the‬

‭program or stored using either a variable_statement or an‬

‭assignment_statement.‬

‭## Expressions‬

‭### Expression‬

‭Expression is used as a start to all the various expressions (except‬

‭type_expression). It is essentially‬

‭a placeholder that is used to describe statements since the statements‬

‭themselves do not know what‬

‭type of expression will be placed inside of them. The first step in‬

‭evaluating an expression is‬

‭the equality_expression which is described next.‬

‭### Equality_Expression‬

‭The technical outline for an equality_expression is:‬

‭̀``‬

‭equality_expression = comparison_expression { ("!=" | "==")‬

‭comparision_expression };‬

‭̀``‬

‭A basic equality_expression is quite simple. It can either evaluate down‬

‭to just a comparison_expression‬

‭which is the next step, or it will evaluate to basic expression that is‬

‭seen in so many languages.‬

‭A more realistic example is shown below:‬

‭̀``‬

‭x != 10‬

‭̀``‬

‭### Comparison_Expression‬

‭The technical outline for a comparison_expression is:‬

‭̀``‬

‭comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")‬

‭additive_expression };‬

‭̀``‬

‭A basic comparison_expression does just as the name implies. It compares‬

‭two additive_expressions. A‬

‭more realistic example is shown below:‬

‭̀``‬

‭x >= 10‬

‭̀``‬

‭### Additive_Expression‬

‭The technical outline for an additive_expression is:‬

‭̀``‬

‭additive_expression = factor_expression { ("+" | "-") factor_expression‬

‭};‬

‭̀``‬

‭A basic additive_expression does just as the name implies. It adds (or‬

‭subtracts) two factor_expressions. A‬

‭more realistic example is shown below:‬

‭̀``‬

‭x + 10‬

‭̀``‬

‭### Factor_Expression‬

‭The technical outline for a factor_expression is:‬

‭̀``‬

‭factor_expression = unary_expression { ("/" | "*") unary_expression };‬

‭̀``‬

‭A basic factor_expression covers two operations. Those two being‬

‭multiplication and division of two‬

‭unary_expressions. A more realistic example is shown below:‬

‭̀``‬

‭x * 10‬

‭̀``‬

‭### Unary_Expression‬

‭The technical outline for a unary_expression is:‬

‭̀``‬

‭unary_expression = ("not" | "-") unary_expression | primary_expression;‬

‭̀``‬

‭A basic unary_expression covers both the negative sign for things like‬

‭integers and the "not" for things‬

‭like booleans. A more realistic example is shown below:‬

‭̀``‬

‭not true‬

‭̀``‬

‭### Primary_Expression‬

‭The technical outline for a primary_expression is:‬

‭̀``‬

‭primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" |‬

‭"null"|‬

‭list_literal | function_call | "(", expression, ")"‬

‭̀``‬

‭A basic primary_expression covers a whole host of things. These are the‬

‭most basic expressions. From‬

‭basic types like Strings and Integers to booleans and null values. Primary‬

‭expression also can evaluate‬

‭to list_literals which are, as the name implies, a list of expressions. A‬

‭more realistic example is shown‬

‭below:‬

‭̀``‬

‭"Catscript is awesome!"‬

‭̀``‬

‭### Type_Expression‬

‭The technical outline for a type_expression is‬

‭̀``‬

‭type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,‬

‭type_expression, '>']‬

‭̀``‬

‭A basic type_expression simple evaluates to one of the 5 types listed‬

‭above. A null type is also‬

‭technically a part of Catscript, but it is of type 'object'. The‬

‭type_expression is only used in‬

‭a few statements for explicitly declaring what the type of the statement‬

‭is.‬

‭Section 5: UML‬
‭The UML Diagram was created using PlantText Editor. It denotes the sequence diagram‬
‭for the following code snippet: 'var x : int = 10'‬

‭Section 6: Design Trade-Offs‬
‭The main design trade-off was the use of recursive descent rather than a parser‬
‭generator. Recursive descent parsers are typically hand-coded, offering greater control‬
‭and visibility into the parsing process. This approach can be advantageous for simpler‬
‭grammars or when performance is critical, as handcrafted parsers often yield faster‬
‭execution speeds. However, recursive descent parsers can become unwieldy for‬
‭complex grammars, leading to maintenance challenges and potential inefficiencies due‬
‭to manual implementation. On the other hand, parser generators automate much of the‬
‭parsing process based on a formal grammar specification, reducing development time‬
‭and potential human errors. They excel in handling complex grammars and offer‬
‭modularity, facilitating easier maintenance and extension. However, parser generators‬
‭may introduce additional overhead, both in terms of learning curve and runtime‬
‭performance, and can sometimes produce less readable or efficient code compared to‬
‭handcrafted parsers. Thus, the choice between recursive descent and parser‬
‭generators often hinges on factors such as the complexity of the grammar,‬
‭performance requirements, development time constraints, and the desired level of‬
‭control and visibility in the parsing process.‬

‭Section 7: Software Development Life Cycle Model‬
‭Employing Test-Driven Development (TDD) as a model for project development has‬
‭proven invaluable in various aspects. By following the TDD approach, developers first‬
‭write tests that define the desired behavior of the system. This clarifies requirements‬
‭upfront and guides the development process towards meeting those specifications.‬
‭Moreover, these tests serve as a safety net, enabling developers to refactor or modify‬
‭code confidently, knowing that they can quickly identify regressions if any occur. TDD‬
‭also encourages modular and loosely coupled code, as developers focus on writing‬
‭code that can be easily tested in isolation. Furthermore, TDD promotes a more iterative‬
‭and incremental development process, where small units of functionality are‬
‭implemented and tested in rapid cycles, leading to early bug detection and quicker‬
‭feedback loops. Overall, TDD was the best option for development as it gave me quick‬
‭feedback on the code that I was writing. I would not have enjoyed this project nearly as‬
‭much if TDD was not used.‬

