Catscript Compiler Portfolio
CSCI 468
Spring 2024

Bryce Lehnen

Section 1: Program

The source code for this course can be found at
https://github.com/Brycelehnen/csci-468-spring2024-private/tree/main. The project
was to implement a working compiler including pieces like a tokenizer, parser, and
bytecode. Zipped source code can also be found in the capstone directory.

Section 2: Teamwork
My teammate provided me with tests and the documentation. | was fully responsible
for the implementation of the Catscript Compiler.

Section 3: Design Pattern

The memoization design pattern was used, and it is located inside of
CatscriptType.java under the parser directory. This design pattern was used to avoid
the wasteful code that was originally there. At first, it would also create a new instance
of a ListType even if the exact same one was already created elsewhere. Now, through
memoization, it looks up the type in a HashMap aptly named cache to first see if a
ListType has already been created. If it has, then it simply returns it. If not, then it
creates a new instance, stores it in the cache, and returns the proper ListType. This
creates a non-wasteful way to store the various ListTypes.

Section 4: Technical Writing
The technical writing can be found under the name Catscript.md, and it is located in
the directory Capstone. It may also simply just be accompanying this document as a

separate file. It is also added below in the original markdown format:
Catscript Guide

This is the documentation regarding the technical aspects of the Catscript
Language.
It contains information about the expressions and statements that make of
Catscript

as well explanations and examples of each.

Introduction

Catscript is a simple scripting language. Here is an example:

The technical outline for a for statement is:

for statement = 'for', '(', IDENTIFIER, 'in', expression ')',

'{', { statement }, '}';

A for statement is a for loop that iterators over an expression, and

evaluating various statements

inside of it. There three main parts to a for statement: the Identifier,

the expression, and the body.

The Identifier is a variable that will change as the for statement is
being iterated over. The expression

will denote the 'boundary' of the Identifier. Lastly, the body can be
comprised of any number of statements

even zero. A more realistic example is shown below:
3]1) { print(x) }
The for statement will iterate over the list literal [1, 2, 3], and run

the body which is the print statement

in this example. The output of this for statement would be:

The technical outline for an if statement is:

if statement 'if', '(', expression, '")', '{',
{ statement },

'else', (if statement | { statement },

An 1if statement allows for branching paths and logic to be added into
Catscript. The most basic if statement

comprises an expression and a body. If the expression is evaluated to be
true then the statement body is also

evaluated. However, an if statement can also contain additional parts to
produce branching paths. It can have

either or both additional else if statements and one else statement. A

more realistic example is shown below:

if (false) { print(l) } else if (false) { print(2) } else { print(3) }

The expressions in the parenthesis are just false, but these are just
basic examples. It's easy to see how

the branching paths would work as well. If the first expression were true,
then a 1 would be printed. If the

second expression were true, then a 2 would be printed. And if neither are

true, then a 3 would be printed.

Print Statement

The technical outline for a print statement is:

print statement = 'print', '(', expression, ')'

A print statement is exactly what the name implies. It prints the
expression that is inside its parenthesis.

That's really all there is to it. The print statement is extremely useful
for tests and debugging since it

can clearly show an output, but it isn't complicated compared to many of
the other statements in Catscript.

A more realistic example is shown below:

print ("Catscript is awesome!")

Variable Statement

The technical outline for a variable statement is:

variable statement = 'var', IDENTIFIER,

[':', type expression,] '=', expression;

The variable statement is exactly what the name implies. It is used to
create variables that can be used as

references to whatever value it 'holds'. There are two basic types of
variable statements. The first uses

logic to give its best guess as to what the type of the variable is, like
the one at the start of this document.

The other explicitly denotes the type of the variable as shown below.
Variables are extremely useful as

the value they hold can be changed or modified while still calling it the
same reference/Identifier. A more

realistic example is shown below:

String = "Catscript"

The only other part of variable statements is the fact that no two
variables (in the same scope) can be named

with the same Identifier. Obviously, this would cause confusion, but it
would also break the entire program.

Safety measures are put in place to give warnings about incorrect naming

of variables.

Assignment Statement

The technical outline for an assignment statement is:

assignment statement = IDENTIFIER, '=', expression;

The assignment statement is very similar to the variable statement that
was described above. However, it is

not used to create new variables, but rather, it assigns a new value to a
variable that already exists. A more

realistic example is shown below:

x = "Catscript"

The import part of the assignment statement is that the value being
assigned to the variable must be of

a compatible type. This means that if when x was created, it must be of
type String or the above

assignment statement would throw an error.

Function Declaration

The technical outline for a function declaration statement is:

function declaration = 'function', IDENTIFIER, '(', parameter list, ')' +
[':' + type expression], '{', {

function body statement }, '}';

The function declaration statement is the most complicated type of
statement. There are a lot of moving
parts to it, so more and more complicated examples will be given starting

with the one below:

function fun () { print(l) }

The above statement denotes a function with the name 'fun'. All it does is
print out the integer '"l'. This is the

most basic type of function as it does not contain any parameters in the
parameter list or returns in the

function body statement.

function fun(a) { print(a) }

The above statement denotes a function with the name 'fun'. It has a
single parameter with the name 'a', and

the function body statement comprises a single statement which will print
out the value of 'a'. The type of

'a' is not explicitly stated, so it could be anything from an Integer to

String or anything in-between.

function fun(a : string) { print(a) }

The above statement denotes a function with the name 'fun'. It has a
single parameter with the name 'a' and it

is of the type 'string'. The function body statement comprises a single
statement which will print out the

value of 'a'.

function fun : int (a : int) {
var y : int = (a + 5)

return y

The above statement denotes a function with the name 'fun'. It has a
single parameter with the name 'a' and
it is of the type 'int'. The function body statement comprises two

statements. The first of which is a

variable statement which takes the value of 'a', adds 5 to it, and stores

it in a variable called 'y'. The second

is a return statement which returns the value of 'y'.

Return Statement

The technical outline for a return statement is:

return statement = 'return' [, expression];

The return statement does exactly as the name implies. It either returns
back out of a function, or returns a

value. The first is Jjust a simple 'return' without anything following it.
It is used to break out of a function,

and 1t can be used in various ways. The most common would be to simply
stop the rest of a function from

running. The second type of return statement is shown below:

return x

This type of return statement returns the value or referenced value that
follows the 'return'. In this case, it

will return the value of 'x'. This is best used in a function that
calculates some value where the function

is used multiple times throughout a program. The value it returns can then
casily be used elsewhere in the

program or stored using either a variable statement or an

assignment statement.

Expressions

Expression

Expression is used as a start to all the various expressions (except
type expression). It is essentially

a2 placeholder that is used to describe statements since the statements
themselves do not know what

type of expression will be placed inside of them. The first step in
evaluating an expression is

the equality expression which is described next.

The technical outline for an equality expression is:

equality expression = comparison expression { ("!=" "==")

comparision expression };

A basic equality expression is quite simple. It can either evaluate down
to just a comparison expression

which is the next step, or it will evaluate to basic expression that is
seen in so many languages.

A more realistic example is shown below:

The technical outline for a comparison expression is:

comparison expression = additive expression { (">" | ">=" | "<" | "<=")

additive expression };

A basic comparison expression does just as the name implies. It compares
two additive expressions. A

more realistic example is shown below:

The technical outline for an additive expression is:

additive expression = factor expression { ("+" | -") factor expression

b

A basic additive expression does just as the name implies. It adds (or
subtracts) two factor expressions. A

more realistic example is shown below:

x + 10

The technical outline for a factor expression is:

factor expression = unary expression { (O™ | W@ unary expression };
A basic factor expression covers two operations. Those two being
multiplication and division of two

unary expressions. A more realistic example is shown below:

b = 10

The technical outline for a unary expression is:

unary expression = ("not" | "-") unary expression | primary expression;

A basic unary expression covers both the negative sign for things like
integers and the "not" for things

like booleans. A more realistic example is shown below:

The technical outline for a primary expression is:

primary expression = IDENTIFIER | STRING | INTEGER | "true" | "false" |
”null" ‘

") AL

list literal | function call | " (", expression,

A basic primary expression covers a whole host of things. These are the
most basic expressions. From

basic types like Strings and Integers to booleans and null values. Primary
expression also can evaluate

to list literals which are, as the name implies, a list of expressions. A
more realistic example is shown

below:

"Catscript is awesome!"

The technical outline for a type expression is

type expression = 'int' | 'string' | 'bool' | 'object' | 'list' [,

type expression, '>']

A basic type expression simple evaluates to one of the 5 types listed

above. A null type is also

technically a part of Catscript, but it is of type 'object'. The

type expression is only used in

a few statements for explicitly declaring what the type of the statement

is.

Section 5: UML

The UML Diagram was created using PlantText Editor. It denotes the sequence diagram
for the following code snippet: 'var x : int = 10'

parseTypeExpression | | parseExpression | | parseEqualityExpression | | parsecompari parseFactorE: parseUnan/E: on| [p YEXD!

>

>

TypeExpression l
)— >
-

Expression)

VP on parseEqualtyExpression | | parseCompar p © parseUnan on | |p

Section 6: Design Trade-Offs

The main design trade-off was the use of recursive descent rather than a parser
generator. Recursive descent parsers are typically hand-coded, offering greater control
and visibility into the parsing process. This approach can be advantageous for simpler
grammars or when performance is critical, as handcrafted parsers often yield faster
execution speeds. However, recursive descent parsers can become unwieldy for
complex grammars, leading to maintenance challenges and potential inefficiencies due
to manual implementation. On the other hand, parser generators automate much of the
parsing process based on a formal grammar specification, reducing development time
and potential human errors. They excel in handling complex grammars and offer
modularity, facilitating easier maintenance and extension. However, parser generators
may introduce additional overhead, both in terms of learning curve and runtime
performance, and can sometimes produce less readable or efficient code compared to
handcrafted parsers. Thus, the choice between recursive descent and parser
generators often hinges on factors such as the complexity of the grammar,
performance requirements, development time constraints, and the desired level of
control and visibility in the parsing process.

Section 7: Software Development Life Cycle Model

Employing Test-Driven Development (TDD) as a model for project development has
proven invaluable in various aspects. By following the TDD approach, developers first
write tests that define the desired behavior of the system. This clarifies requirements
upfront and guides the development process towards meeting those specifications.
Moreover, these tests serve as a safety net, enabling developers to refactor or modify
code confidently, knowing that they can quickly identify regressions if any occur. TDD
also encourages modular and loosely coupled code, as developers focus on writing
code that can be easily tested in isolation. Furthermore, TDD promotes a more iterative
and incremental development process, where small units of functionality are
implemented and tested in rapid cycles, leading to early bug detection and quicker
feedback loops. Overall, TDD was the best option for development as it gave me quick
feedback on the code that | was writing. | would not have enjoyed this project nearly as
much if TDD was not used.

