
 Catscript Compiler Portfolio
 CSCI 468

 Spring 2024
 Bryce Lehnen

 Section 1: Program
 The source code for this course can be found at
 https://github.com/BryceLehnen/csci-468-spring2024-private/tree/main. The project
 was to implement a working compiler including pieces like a tokenizer, parser, and
 bytecode. Zipped source code can also be found in the capstone directory.

 Section 2: Teamwork
 My teammate provided me with tests and the documentation. I was fully responsible
 for the implementation of the Catscript Compiler.

 Section 3: Design Pattern
 The memoization design pattern was used, and it is located inside of
 CatscriptType.java under the parser directory. This design pattern was used to avoid
 the wasteful code that was originally there. At first, it would also create a new instance
 of a ListType even if the exact same one was already created elsewhere. Now, through
 memoization, it looks up the type in a HashMap aptly named cache to first see if a
 ListType has already been created. If it has, then it simply returns it. If not, then it
 creates a new instance, stores it in the cache, and returns the proper ListType. This
 creates a non-wasteful way to store the various ListTypes.

 Section 4: Technical Writing
 The technical writing can be found under the name Catscript.md, and it is located in
 the directory Capstone. It may also simply just be accompanying this document as a
 separate file. It is also added below in the original markdown format:
 # Catscript Guide

 This is the documentation regarding the technical aspects of the Catscript

 Language.

 It contains information about the expressions and statements that make of

 Catscript

 as well explanations and examples of each.

 ## Introduction

 Catscript is a simple scripting language. Here is an example:

 ̀``

 var x = "foo"

 print(x)

 ̀``

 ## Statements

 ### For_Statement

 The technical outline for a for_statement is:

 ̀``

 for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',

 '{', { statement }, '}';

 ̀``

 A for_statement is a for loop that iterators over an expression, and

 evaluating various statements

 inside of it. There three main parts to a for_statement: the Identifier,

 the expression, and the body.

 The Identifier is a variable that will change as the for_statement is

 being iterated over. The expression

 will denote the 'boundary' of the Identifier. Lastly, the body can be

 comprised of any number of statements

 even zero. A more realistic example is shown below:

 ̀``

 for (x in [1, 2, 3]) { print(x) }

 ̀``

 The for_statement will iterate over the list_literal [1, 2, 3], and run

 the body which is the print_statement

 in this example. The output of this for_statement would be:

 ̀``

 1

 2

 3

 ̀``

 ### If_Statement

 The technical outline for an if_statement is:

 ̀``

 if_statement = 'if', '(', expression, ')', '{',

 { statement },

 '}' ['else', (if_statement | '{', { statement }, '}')];

 ̀``

 An if_statement allows for branching paths and logic to be added into

 Catscript. The most basic if_statement

 comprises an expression and a body. If the expression is evaluated to be

 true then the statement body is also

 evaluated. However, an if_statement can also contain additional parts to

 produce branching paths. It can have

 either or both additional else_if_statements and one else_statement. A

 more realistic example is shown below:

 ̀``

 if (false) { print(1) } else if (false) { print(2) } else { print(3) }

 ̀``

 The expressions in the parenthesis are just false, but these are just

 basic examples. It's easy to see how

 the branching paths would work as well. If the first expression were true,

 then a 1 would be printed. If the

 second expression were true, then a 2 would be printed. And if neither are

 true, then a 3 would be printed.

 ### Print_Statement

 The technical outline for a print_statement is:

 ̀``

 print_statement = 'print', '(', expression, ')'

 ̀``

 A print_statement is exactly what the name implies. It prints the

 expression that is inside its parenthesis.

 That's really all there is to it. The print_statement is extremely useful

 for tests and debugging since it

 can clearly show an output, but it isn't complicated compared to many of

 the other statements in Catscript.

 A more realistic example is shown below:

 ̀``

 print("Catscript is awesome!")

 ̀``

 ### Variable_Statement

 The technical outline for a variable_statement is:

 ̀``

 variable_statement = 'var', IDENTIFIER,

 [':', type_expression,] '=', expression;

 ̀``

 The variable_statement is exactly what the name implies. It is used to

 create variables that can be used as

 references to whatever value it 'holds'. There are two basic types of

 variable_statements. The first uses

 logic to give its best guess as to what the type of the variable is, like

 the one at the start of this document.

 The other explicitly denotes the type of the variable as shown below.

 Variables are extremely useful as

 the value they hold can be changed or modified while still calling it the

 same reference/Identifier. A more

 realistic example is shown below:

 ̀``

 var x : String = "Catscript"

 ̀``

 The only other part of variable_statements is the fact that no two

 variables (in the same scope) can be named

 with the same Identifier. Obviously, this would cause confusion, but it

 would also break the entire program.

 Safety measures are put in place to give warnings about incorrect naming

 of variables.

 ### Assignment_Statement

 The technical outline for an assignment_statement is:

 ̀``

 assignment_statement = IDENTIFIER, '=', expression;

 ̀``

 The assignment_statement is very similar to the variable_statement that

 was described above. However, it is

 not used to create new variables, but rather, it assigns a new value to a

 variable that already exists. A more

 realistic example is shown below:

 ̀``

 x = "Catscript"

 ̀``

 The import part of the assignment_statement is that the value being

 assigned to the variable must be of

 a compatible type. This means that if when x was created, it must be of

 type String or the above

 assignment_statement would throw an error.

 ### Function_Declaration

 The technical outline for a function_declaration statement is:

 ̀``

 function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +

 [':' + type_expression], '{', {

 function_body_statement }, '}';

 ̀``

 The function_declaration statement is the most complicated type of

 statement. There are a lot of moving

 parts to it, so more and more complicated examples will be given starting

 with the one below:

 ̀``

 function fun() { print(1) }

 ̀``

 The above statement denotes a function with the name 'fun'. All it does is

 print out the integer '1'. This is the

 most basic type of function as it does not contain any parameters in the

 parameter_list or returns in the

 function_body_statement.

 ̀``

 function fun(a) { print(a) }

 ̀``

 The above statement denotes a function with the name 'fun'. It has a

 single parameter with the name 'a', and

 the function_body_statement comprises a single statement which will print

 out the value of 'a'. The type of

 'a' is not explicitly stated, so it could be anything from an Integer to

 String or anything in-between.

 ̀``

 function fun(a : string) { print(a) }

 ̀``

 The above statement denotes a function with the name 'fun'. It has a

 single parameter with the name 'a' and it

 is of the type 'string'. The function_body_statement comprises a single

 statement which will print out the

 value of 'a'.

 ̀``

 function fun : int (a : int) {

 var y : int = (a + 5)

 return y

 }

 ̀``

 The above statement denotes a function with the name 'fun'. It has a

 single parameter with the name 'a' and

 it is of the type 'int'. The function_body_statement comprises two

 statements. The first of which is a

 variable_statement which takes the value of 'a', adds 5 to it, and stores

 it in a variable called 'y'. The second

 is a return_statement which returns the value of 'y'.

 ### Return_Statement

 The technical outline for a return_statement is:

 ̀``

 return_statement = 'return' [, expression];

 ̀``

 The return_statement does exactly as the name implies. It either returns

 back out of a function, or returns a

 value. The first is just a simple 'return' without anything following it.

 It is used to break out of a function,

 and it can be used in various ways. The most common would be to simply

 stop the rest of a function from

 running. The second type of return_statement is shown below:

 ̀``

 return x

 ̀``

 This type of return_statement returns the value or referenced value that

 follows the 'return'. In this case, it

 will return the value of 'x'. This is best used in a function that

 calculates some value where the function

 is used multiple times throughout a program. The value it returns can then

 easily be used elsewhere in the

 program or stored using either a variable_statement or an

 assignment_statement.

 ## Expressions

 ### Expression

 Expression is used as a start to all the various expressions (except

 type_expression). It is essentially

 a placeholder that is used to describe statements since the statements

 themselves do not know what

 type of expression will be placed inside of them. The first step in

 evaluating an expression is

 the equality_expression which is described next.

 ### Equality_Expression

 The technical outline for an equality_expression is:

 ̀``

 equality_expression = comparison_expression { ("!=" | "==")

 comparision_expression };

 ̀``

 A basic equality_expression is quite simple. It can either evaluate down

 to just a comparison_expression

 which is the next step, or it will evaluate to basic expression that is

 seen in so many languages.

 A more realistic example is shown below:

 ̀``

 x != 10

 ̀``

 ### Comparison_Expression

 The technical outline for a comparison_expression is:

 ̀``

 comparison_expression = additive_expression { (">" | ">=" | "<" | "<=")

 additive_expression };

 ̀``

 A basic comparison_expression does just as the name implies. It compares

 two additive_expressions. A

 more realistic example is shown below:

 ̀``

 x >= 10

 ̀``

 ### Additive_Expression

 The technical outline for an additive_expression is:

 ̀``

 additive_expression = factor_expression { ("+" | "-") factor_expression

 };

 ̀``

 A basic additive_expression does just as the name implies. It adds (or

 subtracts) two factor_expressions. A

 more realistic example is shown below:

 ̀``

 x + 10

 ̀``

 ### Factor_Expression

 The technical outline for a factor_expression is:

 ̀``

 factor_expression = unary_expression { ("/" | "*") unary_expression };

 ̀``

 A basic factor_expression covers two operations. Those two being

 multiplication and division of two

 unary_expressions. A more realistic example is shown below:

 ̀``

 x * 10

 ̀``

 ### Unary_Expression

 The technical outline for a unary_expression is:

 ̀``

 unary_expression = ("not" | "-") unary_expression | primary_expression;

 ̀``

 A basic unary_expression covers both the negative sign for things like

 integers and the "not" for things

 like booleans. A more realistic example is shown below:

 ̀``

 not true

 ̀``

 ### Primary_Expression

 The technical outline for a primary_expression is:

 ̀``

 primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" |

 "null"|

 list_literal | function_call | "(", expression, ")"

 ̀``

 A basic primary_expression covers a whole host of things. These are the

 most basic expressions. From

 basic types like Strings and Integers to booleans and null values. Primary

 expression also can evaluate

 to list_literals which are, as the name implies, a list of expressions. A

 more realistic example is shown

 below:

 ̀``

 "Catscript is awesome!"

 ̀``

 ### Type_Expression

 The technical outline for a type_expression is

 ̀``

 type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' ,

 type_expression, '>']

 ̀``

 A basic type_expression simple evaluates to one of the 5 types listed

 above. A null type is also

 technically a part of Catscript, but it is of type 'object'. The

 type_expression is only used in

 a few statements for explicitly declaring what the type of the statement

 is.

 Section 5: UML
 The UML Diagram was created using PlantText Editor. It denotes the sequence diagram
 for the following code snippet: 'var x : int = 10'

 Section 6: Design Trade-Offs
 The main design trade-off was the use of recursive descent rather than a parser
 generator. Recursive descent parsers are typically hand-coded, offering greater control
 and visibility into the parsing process. This approach can be advantageous for simpler
 grammars or when performance is critical, as handcrafted parsers often yield faster
 execution speeds. However, recursive descent parsers can become unwieldy for
 complex grammars, leading to maintenance challenges and potential inefficiencies due
 to manual implementation. On the other hand, parser generators automate much of the
 parsing process based on a formal grammar specification, reducing development time
 and potential human errors. They excel in handling complex grammars and offer
 modularity, facilitating easier maintenance and extension. However, parser generators
 may introduce additional overhead, both in terms of learning curve and runtime
 performance, and can sometimes produce less readable or efficient code compared to
 handcrafted parsers. Thus, the choice between recursive descent and parser
 generators often hinges on factors such as the complexity of the grammar,
 performance requirements, development time constraints, and the desired level of
 control and visibility in the parsing process.

 Section 7: Software Development Life Cycle Model
 Employing Test-Driven Development (TDD) as a model for project development has
 proven invaluable in various aspects. By following the TDD approach, developers first
 write tests that define the desired behavior of the system. This clarifies requirements
 upfront and guides the development process towards meeting those specifications.
 Moreover, these tests serve as a safety net, enabling developers to refactor or modify
 code confidently, knowing that they can quickly identify regressions if any occur. TDD
 also encourages modular and loosely coupled code, as developers focus on writing
 code that can be easily tested in isolation. Furthermore, TDD promotes a more iterative
 and incremental development process, where small units of functionality are
 implemented and tested in rapid cycles, leading to early bug detection and quicker
 feedback loops. Overall, TDD was the best option for development as it gave me quick
 feedback on the code that I was writing. I would not have enjoyed this project nearly as
 much if TDD was not used.

