
Compilers; CSCI 468

Semester: Fall 2024 

Cameron Oberg, 

Jon Neumann



Section 1: Program
A zip file of the final repository in this directory is included (src.zip).

Section 2: Teamwork
My team had one other member. I implemented the CatScript tokenizer and parser, while the team 
member helped develop documentation and tests. See CapstoneTests.java for the tests.

Section 3: Design pattern
I used the memoization pattern while designing this compiler. This was to help runtime by caching a 
type expression and by consequence, simplifying the amount of times the compiler had to read the 
same type on the same objects. The pattern's code can be found in the CatscriptType.java file.

static HashMap<CatscriptType, ListType> cache = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

//Look in the map if it's there, return it, if not, stick it in there
if(cache.containsKey(type)){

return cache.get(type);
} else {

ListType l = new ListType(type);
cache.put(type,l);
return l;

}
}

Section 4: Technical writing. Include the 
technical document that accompanied your 
capstone project.
See the Catscript.md file in this project’s directory for a preview of the programming language. Additionally, 
the contents have been pasted:













Section 5: UML.
This document showcases the recursive descent algorithm on a sample variable statement. The 
diagram is also located in capstone/uml/UML.png. The recursive descent algorithm utilizes a 
precedence of function calls representing all of the different types in the as described by the grammar. 
The diagram shows all of functions used to produce a variable statement such as var x = “Hello 
World”.

Section 6: Design trade-offs
Recursive Descent is a highly effective algorithm for understanding the workings of a parser. The 
recursive nature of this algorithm makes understanding the parsing process and debugging much easier.
However, the tradeoff is the lack of automation that a parser generator can provide, as the actual 
parsing needs to be done manually. Additionally, though recursive descent is easier to understand and 
much nicer than the code created via parser generators, it is also not optimized. For learning a parser's 
inner workings, recursive descent appears to be the better choice. However, it becomes more difficult 
to implement this type of parser on projects with more complex syntax grammars.

Section 7: Software development life cycle model
We used Test Driven Development (TDD) for this project. This was helpful for rapid changes and 
understanding the code's expectations. However, TDD did make correctness harder to achieve, as a 
passing test in one instance may have ended up failing in another. Developing the tests needed to 
check code correctness would often be a difficult process thanks to this setback.


