
1 CSCI 468 Capstone Portfolio - Charis Liddle

1.1 Section 1 - Program

My program source code (source.zip) can be found in the same directory as this
report.

1.2 Section 2 - Teamwork

Our teams workload split was around 60-40. My primary role on the team was
to write the code. This included the tokenizer, parser, and bytecode genera-
tor for the Catscript compiler. While I did that, my team member wrote the
documentation for the project. This included descriptions of every syntactical
element in Catscript, as well as a tutorial for each feature in Catscript. Working
together, we both gained a good understanding of how compilers and program-
ming languages work. My team member also wrote three tests for me to ensure
my code worked properly.

1.3 Section 3 - Design Pattern

static HashMap<CatscriptType, ListType> cache = new HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

ListType listType = cache.get(type);

if(listType == null) {

listType = new ListType(type);

cache.put(type, listType);

}

return listType;

}

In the code shown above, implemented within the Catscript type system, I
used a design pattern called memoization to aid with determining the types of
list objects. Memoization is a pattern designed to conserve memory by storing
unique values so that they only need to be computed once.

This function utilizes memoization by storing each unique list type in a
hashmap, so that whenever it encounters that list type later in the code, it can
find that type in constant time and using up no additional memory. This is
especially useful for list types, since lists can contain any type of component,
including other lists.

1.4 Section 4 - Technical Writing

1.4.1 Catscript Programming Language

Introduction

1

Catscript is a relatively simple scripting language. Here is a basic example:

var x = "foo"

print(x)

Features
Catstript has an array of features, including multiple different statements

and expressions.

For Loops
For loops are a useful tool for iterating through lists of expressions. You will

specify an identifier (item) and utilize a pre-defined list (myList). Within the
loop, you are welcome to include any additional statements you would like to
run each iteration.

for (item in myList) {

print(item)

}

If Statement
The if statement is used to selectively run code. Within the parentheses you

can insert an expression that evaluates to a boolean value. If the expression
evaluates to true, the code within will run. Additionally, you can chain if
statements together with optional else ifs and/or a final else. Only one section
of an else if chain will run, and the else will run if no other statements evaluate
to true.

if (a == true) {

print("foo")

}

Print Statement
A print statement will print whatever is within its parentheses. If it is a

primary expression, the printout will be the value of the expression. Otherwise,
the output will be the result of the expression.

print("Hello World")

Variable Statement
The variable statement allows you to save values within a string based iden-

tifier. This identifier can then be used within any future code, as long as it is
in the same scope.

var a = 1

var c = false

They can also be hardcoded for any type.

var b: string = "foo"

2

Assignment Statement
The assignment statement is used for changing or reassigning a previously

declared variable

var a = 2

a = a + 4 // a = 6

a = 1 // a = 1

Function Call Statement
The function call statement in used for invoking a function. In this example,

the function name is fooBar and it takes an int, a boolean value, and a string
respectively.

fooBar(1, true, "HelloWorld")

Equality Expression
Equality expressions are used for verifying that two values are equivalent.

This is most commonly used in if statements, but has application anywhere a
boolean value is needed.

if (a == b) {

print("true")

}

else if (a != b) {

print("false")

}

Comparison Expression
Comparison expressions are similar to equality expressions, but have the

ability to check the size relationship of int values.

if (a > b) {

print("greater")

}

else if (a < b) {

print("less")

}

else if (a >= b) {

print("greater or equal")

}

else if (a <= b) {

print("less or equal")

}

3

Additive Expression
The Additive expression can do addition or subtraction on int values. The

output is the result.

var a = 1 + 1 // 2

var b = 2 - 1 // 1

You can also concatenate strings with the ’+’ operator.

var a = "Hello" + " World!" // "Hello World!"

Factor Expression
The factor expression multiplies or divides int values. The output is the

result.

var a = 1 * 2 // 2

var b = 4 / 2 // 2

Unary Expression
The unary is used for negating values. There are two main applications of

this, negating boolean values and negating int values.

if (not a == b) { // if a == b results in false, inner code will run

print("a does not equal b")

}

var c = 1

print(-c) // -1

Primary Expression
This is a list of all primary expressions included in Catscript.

print(a) // identifier

print("Hello World") // string

print(1) // int

print(true) // boolean

print(null) // null

print(foo()) // function call

1.5 Section 5 - UML

In the UML sequence diagram displayed below, I have illustrated the parsing
process for a variable statement in Catscript (var x : int = 6 / 3). The parser
begins in the method parseProgram, and proceeds to parse the statement by
calling successively more specific methods.

When it gets to parseVariableStatement, it first parses the type expression (:
int) to determine the explicit type of the variable. Then it calls parseExpresion,

4

Figure 1: UML Sequence Diagram of parsing a variable statement in Catscript

which follows the recursive descent pattern all the way down to parseFactorEx-
pression, where it parses the expressions on the left and right hand side (6 and
3), then returns the result of the division (6 / 3 = 2).

That value is returned through the stack of methods back up to the statement
parser, and assigned as the variables value. Finally, the resulting parsed variable
statement is returned back to the parent program.

1.6 Section 6 - Design Trade-offs

One major design trade-off in this project was the decision to write a recursive
descent parser instead of using one of the many parser generator tools that are
available. This decision was a good choice for a few reasons. First, it allowed
me to dig into how the parsing actually works, and really understand what is
happening in the code. Second, the code I wrote is much more sophisticated
and less complicated than the code that a parser generator would write, making
it easier to debug and find errors in. Lastly, writing my own recursive descent
parser makes it easier for me to use my knowledge of compilers in practical
applications that typically do not require all of the complexities imposed by
parser generators.

1.7 Section 7 - Software Development Life Cycle Model

For this project, we used Test Driven Development (TDD). This means that the
requirements of the system were compiled into nearly 200 separate test cases
that ensured that each of those cases were processed and compiled correctly by
the system. This helped me to see that my code was working correctly, both
when I was finished, and as I was working through each section of the project.

These tests were designed to guide me through each section of the project.

5

They built on each other as I went, which ensured that I didnt skip ahead too
far in the project. This helped me see how different sections of the project
relied on each other, and gave me a good understanding of the process that I
was implementing.

In addition to helping me see that my code was worked correctly, these tests
were a good progress tracker as I worked through the project. I was able to
use the tests to know what needed to be implemented next. It was extremely
satisfying to see more and more tests pass as I made progress!

6

