
2024

CSCI 468 - Compilers
SPRING 2024
CODY FINGERSON & YABETS EBREN

 1

SECTION 1: PROGRAM

The source code for this project can be found inside the included source.zip folder.

To view the code, create a Maven Java project. Next replace the src folder with the src folder
produced by the zip file.

2

SECTION 2: TEAMWORK

This project was organized with each team member assigned specific tasks and sections

to focus on. The tasks include managing the code base, executing tests, and constructing

documentation.

Team member one managed the GitHub repository and was the main contributor to the

code base. Their programming efforts were primarily directed at completing the tokenizer,

parser, evaluation, and bytecode components of the compiler, ensuring that each checkpoint

was submitted by their respective deadlines.

Team member two was responsible for drafting the technical documentation, including

this report, and for developing program tests to support the test-driven development

environment. Communication between the two team members was conducted though Discord,

as in-person meetings were not necessary.

ESTIMATED CONTRIBUTIONS

Total estimated hours: 140

Team Member One -

Contributions: Code base management, implementation, and debugging.

Estimated Hours: 100 hours

Team Member Two -

Contributions: Documentation and tests.

Estimated Hours: 40 hours.

3

SECTION 3: DESIGN PATTERN

The design pattern used in this project is commonly known as memoization. This design

pattern was chosen due to its ability to optimize expensive, recurring function calls. Essentially,

this approach will store the result of a specified function call, enabling it to bypass repeat

computation. This design pattern is essentially a method of implementing a cache.

To use the implementation, the function needs to store its input values and output into a

cache whenever there are new arguments when it’s called. The cache is usually implemented

using a HashMap. Whenever the function is called, it will then check its parameters against the

existing parameters in the cache. If the parameters are equivalent, the function will return the

previous computed values from the cache associated with those arguments.

Using the memoization technique can save a significant amount of time for extremely

time-consuming computations by avoiding redundant, and unnecessary computations.

Additionally, it has the potential to conserve other system resources such as RAM and CPU

times. However, there are still drawbacks that should be considered. Firstly, the technique

required time to check whether a function call has already been cached or not. Secondly, it is

most effective for functions that are frequently called, have a limited range of inputs, and do

not rely on random numbers. Moreover, this is not a thread-safe approach. Despite these

limitations, it is suitable for this project, however, may not be suitable for a production

environment.

The implementation of this design pattern can be found at:

source.zip/src/parser/CatscriptType.java

Catscript Documentation

Overview

CatScript is a transpiled scripting language that has basic functionality.

Key Features

Data Types

CatScript offers five primary data types and one complex type:

Integer: a 32-bit integer
String: a string similar to Java's string
Boolean: a true/false value
List: a collection of values of type 'x'
Null: represents the absence of a value
Object: a versatile type capable of representing any value

Variables can be declared with or without specifying types.

Lists are special types that can store values of any of the other five types.

var age = 25
var name : string = "Fluffy"
var isHungry : bool = true
var myList : list<int> = [1, 2, 3, 4, 5]
var nothing = null

Basic Operations

CatScript supports basic arithmetic and logical operations:
Addition (+)
Subtraction (-)
Multiplication (*)
Division ()
Logical negation (not)
Negation (-)
Boolean values (true, false)
Null

Examples:

var result = -1 + 1 * 4 // Result: 3
if(not isHungry) // Check if not hungry
if(age != null) // Check if age is not null
else if(false) // This block won't execute

Conditional Statements

CatScript allows conditional statements in various forms:

If statements without else
With an else clause
Or with an else if
Mixing and matching is allowed as long as an if statement precedes an else.

if(age > 18){
 var message = "You are an adult"
}

if(isHungry){
 var message = "Time to eat"
}
else {
 var message = "Not hungry"
}

if(name == "Fluffy"){
 var message = "Hello Fluffy!"
}
else if(name == "Whiskers"){
 var message = "Hello Whiskers!"
}
else {
 var message = "Hello unknown cat!"
}

Equality & Comparison

CatScript supports basic equality and comparison expressions:

Less than (<)
Less than or equal to (<=)
Greater than (>)
Greater than or equal to (>=)
Not equal (!=)
Equals (==)

They can be used in if and else statements.

if(age < 30)
if(name == "Fluffy")
if(age <= 25)
if(age >= 18)
if(name != "Whiskers")
if(age == 25)

Printing

Any expression can be printed using the print statement.

print(age)
print(name)

Loops

For loops can iterate through lists.

var myNumbers = [1, 2, 3, 4, 5]

for(number in myNumbers) {
 print(number)
}

Functions

Functions are declared with a body.

They can be called with function call statements.

Functions can have any number of parameters.

Optionally, functions can return a value using the return statement.

function greet() {
 print("Hello, world!")
}

greet()

function add(x : int, y : int) {
 return x + y
}

var sum = add(5, 3)
print(sum) // Output: 8

This concludes the CatScript manual. Enjoy scripting with your feline companions!

4

SECTION 5: UML

 5

The above diagram represents a sequence diagram of how the compiler will handle a simple

comparison of 50 >= 20. Starting with the string given and ending with the elements of the

abstract syntax tree at the end. The top value of the abstract syntax tree will represent the left-

hand side and the bottom value represents the right hand side of the expression.

 6

SECTION 6: DESIGN TRADE-OFFS

Throughout the development of CatScript, we made several tradeoffs, one of which

involved using a recursive descent parser instead of a parser generator. With this approach, we

manually defined and parsed tokens, providing us with greater control and a more debug-

friendly tokenizer. While parser generators are easier to write and handle many technical details

automatically, our manual approach offered better readability and easier debugging,

outweighing the tradeoff for writability. Additionally, using a recursive descent parser

eliminated the need for the visitor pattern, as we had complete control over the evaluation

lifecycle.

Recursive Descent:

This top-down parsing algorithm is widely used in industry for parsing tokenized source code. It

offers simplicity and a clearer understanding of grammars and parsing, as each production in

the grammar corresponds to a method named after it. This method calls other methods for the

right-hand side of the production, following a recursive nature that is easy to understand.

Parser Generators

Parser generators consist of a lexical grammar as a regex and a long grammar as an EBNF. The

lexer is generated by mixing code generation with the grammar, while the parser produces an

Abstract Syntax Tree. While theoretically requiring less code and infrastructure, parser

generators are more complex to learn and use, making them less popular in industry compared

to recursive descent parsers.

 7

After considering the complexity, implementing a recursive descent parser made more

sense. It offers simplicity, ease of understanding, wider industry usage, and better

comprehension of parsers and compilers.

 8

SECTION 7: SOFTWARE DEVELOPMENT LIFECYCLE

The model that we utilized during the creation of this capstone project was the Test

Driven Development model. Test-Driven Development is a programming approach that

emphasizes simultaneous coding, testing, and design. Developers create the minimum code

necessary to pass tests, resulting in cleaner, more concise code that is less error-prone. Test-

Driven Development allows programmers to focus solely on essential aspects, temporarily

setting aside advanced or unrelated features. This approach not only ensures the functionality

of the code but also provides a clear roadmap, guiding towards project completion.

	section_4.pdf
	SECTION 4: TECHNICAL WRITING
	Introduction
	Type System
	Supported expressions
	Additive
	Literal
	Comparison
	Equality
	Factor
	Function Call
	Unary
	Parenthesized

	Supported statements
	Assignment / Variable Declaration
	Variable assignability

	For Loop
	Function Call
	Function Definition
	If Statement
	Print Statement
	Return Statement

	Simple CatScript Program

	Markdown to PDF.pdf
	Catscript Documentation
	Overview
	Key Features

