
CSCI 468

aleksandr means Wei You

Fall 2024

1



Teamwork
In this collaborative project, Team Member 1 and Team Member 2 worked

together to develop the CatScript compiler. Team Member 1 took the lead
on the coding aspects of the project, implementing the core functionality and
ensuring the software met all technical specifications. This role involved not only
writing clean and efficient code but also integrating various system components
and optimizing the software for performance and scalability.

Team Member 2 focused on designing comprehensive tests and creating detailed
documentation. Team Member 2 developed a suite of tests, which helped identify
and rectify potential issues early in the development cycle. Additionally, the
documentation prepared by Team Member 2 was pivotal in supporting both the
end-users and future developers, providing clear guidelines on how to use and
maintain the software effectively.

The synergy between Team Member 1’s technical expertise in coding and
Team Member 2’s skills in test design and documentation ensured a well-rounded
development process, leading to a software solution that was not only functional
and reliable but also well-documented and easy to adopt.

2



Design Pattern
For this project, I used the memoization design pattern. This design pattern

is used to optimize function calls by caching its results. This allows a function to
avoid doing expensive calculations when making calls with the same inputs. In
the Catscript compiler, I used memoization to improve the getListType method
in the CatscriptType class. In particular, I used a HashMap to create a map
from a type to the corresponding ListType.

static final HashMap<CatscriptType, ListType> CACHE = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

ListType listType = CACHE.get(type);
if (listType == null) {

CACHE.put(type, new ListType(type));
}
return listType;

}

3



Technical Writing

Catscript Guide
Expressions

AdditiveExpression Additive expressions handle arithmetic addition and
subtraction. They operate on numeric values and are used to perform basic
arithmetic operations. The result of an additive expression can be used anywhere
a number is valid in Catscript.

var result = 5 + 3 - 2

BooleanLiteralExpression Boolean literal expressions represent boolean
values, which are either true or false. These expressions are often used in
conditional statements and loops. Boolean literals are fundamental in controlling
flow and logic in Catscript.

var isCat = true

ComparisonExpression Comparison expressions compare two expressions
using relational operators like greater than or less than. They are used to make
decisions based on comparing values, such as in conditional statements.

var isTaller = height1 > height2

EqualityExpression Equality expressions compare two expressions for equal-
ity (==) or inequality (!=). These are crucial for condition checks where exact
matches or differences are necessary.

var isEqual = (5 * 2) == 10

Expression The base type for expressions in Catscript, used to represent any
valid combination of operations and literals.

var x = 1 * 1 + 1 / 1

FactorExpression Factor expressions handle multiplication and division
among numeric values. They are used where products or quotients of num-
bers are needed. Along with factoring with precedence, multiplication and
division from left to right to addition and substraction alike.

var product = 8 * 3

FunctionCallExpression Function call expressions execute a function with
the provided arguments. They are essential for reusing code and organizing logic
into manageable sections.

var greeting = getGreeting("Mittens")

4



IdentifierExpression Identifier expressions reference variables or functions
by their names. These are used throughout Catscript to access and manipulate
data stored in variables.

var age = 10
print(age)

IntegerLiteralExpression Integer literal expressions represent numeric inte-
ger values. They are the simplest form of expressing numeric data.

var count = 42

ListLiteralExpression List literal expressions create lists of elements. They
are used to group related data together, which can be iterated over or accessed
by index.

var colors = ["red", "green", "blue"]

NullLiteralExpression Null literal expressions represent the null value, in-
dicating the absence of any object. This can be used to denote missing or
uninitialized data.

var myObject = null

ParenthesizedExpression Parenthesized expressions explicitly dictate the
precedence of operations. This helps in managing complex arithmetic or logical
expressions.

var result = (1 + 3) * 2

StringLiteralExpression String literal expressions represent sequences of
characters. They are used to work with text data in Catscript.

var greeting = "Hello, World!"

SyntaxErrorExpression Syntax error expressions indicate an unrecognized
or misplaced token during parsing. This helps in debugging by signaling where
the error occurred.

var x = 10 + // Missing operand

TypeLiteral Type literals explicitly declare the type of data. They are used
to ensure variables are used consistently within their intended type constraints.

var x: int = 10

5



UnaryExpression Unary expressions involve a single operand and an operator
such as negation. They are used to change the sign of numbers or logically
negate boolean values.

var negative = not true

Statements

AssignmentStatement Assigns a new value to an existing variable. This is
fundamental in any programming language for updating the state of the program.

x = 20

CatScriptProgram Defines the entire Catscript program, which consists of a
series of statements. This is the top-level structure that organizes and executes
the code.

var x = 10
print(x)

ForStatement Iterates over elements typically in a collection. For loops are
essential for executing a block of code multiple times with different values from
a sequence.

for var i in [1, 2, 3] {
print(i)

}

FunctionCallStatement Executes a function and handles the result. Func-
tion calls are used to execute defined functions within the program.

print("Hello, World!")

FunctionDefinitionStatement Defines a new function with parameters and
an optional return type. Function definitions are crucial for encapsulating code
into reusable blocks.

function greet(name: string) {
print("Hello, " + name + "!")

}

IfStatement Executes blocks of code based on conditional expressions. If
statements are the basic form of conditional logic in Catscript.

if (x > 5) {
print("x is greater than 5")

} else {
print("x is not greater than 5")

}

6



PrintStatement Outputs a string or value to the console. Print statements
are used for debugging and user interaction by displaying data.

print("Printing to console")

ReturnStatement Exits a function and optionally returns a value. Return
statements are used within functions to send values back to the caller.

function add(a: int, b: int) : int {
return a + b

}

Statement Represents the base type for all executable statements in Catscript.
Statements form the building blocks of executable code.

var isReady = true

SyntaxErrorStatement Indicates an error in the source code syntax. Syntax
errors prevent the program from executing correctly and must be resolved.

if (x > 5 // Missing closing parenthesis

VariableStatement Declares and initializes a new variable. Variable state-
ments are used to create and set initial values for identifiers that store data.

var name: string = "Mittens"

7



UML Diagram

In this UML diagram, I am showing a sequence diagram for the parser
when it parses a function call expression. To start, the CatScriptParser’s
parse(source) method is called, where the source is a string representation
of the code to be parsed. The parser also initializes a CatScriptProgram that
will be returned when the parser has finished. The diagram then shows how it
will call the parseExpression() method, which will descend through the parse
methods until it identifies the kind expression that needs to be parsed. In our
example, once the parser identifies the function call syntax in the parsePrima-
ryExpression() method, the parser creates the ArrayList<Expression> object
named args. The parser will then loop over the arguments provided in the
script and add those expressions to args until it reaches the end of the provided
arguments. Once the parser reaches the end of the argument list, it creates a
new FunctionCallExpression with a name and args, and returns that expression
through each expression parser method. The CatScriptParser then adds that
expression to the program, and returns the program to the parse(source)
caller.

8



Design Trade-Off
The compiler was programmed with a Recursive Descent design.

Using a Recursive Descent design has the advantage of being simple to
implement, since the structure of the grammar is reflected in the structure of the
code. This makes handling complex grammars easier, and helps maintain more
readable code. Additionally, this makes it easier to update and maintain the
code in the future, especially in contrast to Bottom-Up design methods, which
tend to have more complex parser code.

However, the trade-off of using a Recursive Descent parser is that Bottom-Up
parsers are significantly more time and space efficient. One reason why Recursive
Descent parsers are less efficient is because they have to make guesses about
what a statement might be in a grammar, and must backtrack on incorrect
guesses. Design considerations also have to be taken when using a Recursive
Descent parser because certain grammatical structures can cause problems for
Recursive Descent, such as left recursion.

The Catscript grammar was simple enough that the predictive nature of using
this style of parser was not going to be a concern, and since the scripts being
produced would be simple enough, efficiency was a low priority. Meanwhile, it
was important that the compiler be produced quickly, and that it was simple to
understand. Therefore, I decided that using a Recursive Descent design was the
best choice given these circumstances.

9



Software Development Model
For this project, I used a Test Driven Development model. Test driven

development is a software development strategy that focuses on the creation of
feature tests based on outlines before writing the code. You then write enough
code that you can pass the test, which encourages writing minimal code that is
simple and easy to understand. Once the code is written, you run the test to
ensure it passes and refactor the code if it does. This process is repeated until
every feature is completed, or every time a new feature is added.

I used test driven development by setting small test goals that covered simple
unit cases of the compiler. The sum of these parts would come together to
provide a full test coverage of the compiler. When a test would unexpectedly
fail, it provided a focused slice of the compiler’s functionality that I was able
to debug at a granular level. Doing this allowed me to find bugs quickly, and
narrow down problems to highly specific use cases, which assisted with deducing
where errors were occurring.

This style of development was helpful for me because it kept the goals for
the project in a tight scope and allowed me to focus solely on what I needed.
Trying to pass the tests also provides a productive dopamine cycle, which helped
with keeping my motivation up. It also helped with maintaining functionality
in between refactors. Knowing that breaks caused by changes were likely to be
caught meant I was able to make changes to my code with confidence.

10


	Teamwork
	Design Pattern
	Technical Writing
	Catscript Guide
	Expressions
	Statements

	UML Diagram
	Design Trade-Off
	Software Development Model

