
Montana State University Computer Science

Senior Team Portfolio

Compilers CSCI 468

Spring 2024

Colton Parks

Nicholas Weigand

Section 1: Program.

Source.zip for my Catscript compiler is located in the same directory as this pdf.

Section 2: Teamwork.

I, Colton Parks, was responsible for the implementation of code used in the

tokenizer, parser and bytecode in Catscript, my partner, Nicholas Weigand,

contributed cat script documentation and 3 additional tests. So, like all the other

groups the workload was about 95% on me in Catscript and 5% on the partner for

writing the tests and documentation. You will find the documentation in Section 4

technical writing and the tests here. This PartnerTests test file is located under

demo under test under src.

public class PartnerTests extends CatscriptTestBase {

 @Test

 public void forStatementWithNestedVarParses() {

 ForStatement expr = parseStatement("for(i in [10, 20, 30]){

print(i) var x : int = 10 }");

 assertNotNull(expr);

 assertEquals("i", expr.getVariableName());

 assertTrue(expr.getExpression() instanceof

ListLiteralExpression);

 assertEquals(2, expr.getBody().size());

 LinkedList<Statement> list = (LinkedList<Statement>)

expr.getBody();

 assertTrue(list.get(0) instanceof PrintStatement);

 assertTrue(list.get(1) instanceof VariableStatement);

 assertEquals(CatscriptType.INT,((PrintStatement)

list.get(0)).getExpression().getType());

 }

 @Test

 void nestedIfTest(){

 assertEquals("1\n", compile("if(true){ if(true){ print(1) }

}"));

 }

 @Test

 public void whitespaceHandlingTokenizerAndEmptyListArray(){

 assertTokensAre("1\t+\t1", INTEGER, PLUS, INTEGER, EOF); //

Tabs

 assertTokensAre("1 + 1", INTEGER, PLUS, INTEGER, EOF); //

Multiple spaces

 assertTokensAre("1\n+\n1", INTEGER, PLUS, INTEGER, EOF); //

Newline characters

 assertEquals("[]\n", compile("print([])"));

 }

}

Section 3: Design pattern.

A pattern we use is memoization which is found in catScriptType.java and the

code can be found below. We do not want to code directly here because we do not

want to run a specific input more than once. To store the specific input results, we

can store each result in a static hash map. Before we run an input through this

method, we can use the hash map to check if we already have the results of that

specific input, if we do already have the results then we don’t need to run it again we

just return those results. If we coded this directly, every time we run the method on

the same input, we could be running it after we already have ran it, which would be

redundant.

static HashMap<CatscriptType, ListType> cache = new HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

 //check if the result is already in the cache

 if (cache.containsKey(type)) {

 return cache.get(type);

 }

 ListType listType = new ListType(type);

 // Put the result into the cache

 cache.put(type, listType);

 return listType;

}

Section 4: Technical writing

(Catscript markdown file containing documentation)

Catscript Documentation
This document outlines all the features in Catscript

Introduction

Catscript is a simple scripting language. Here is an example:

var x = "foo"
print(x)

Features

We have split the features, first the expressions and then the statements

Expressions

Additive Expressions

var result = 5 + 3
print(result) // Output: 8

Represents addition or subtraction operations between two integers or concatenates if they
are not both integers.

Boolean Literal Expressions

var is_true = true
print(is_true) // Output: true

Represents boolean literals, which can have two possible values: true or false. Boolean
literals are used to represent logical values in Catscript.

Comparison Expressions

var result = 5 > 3
print(result) // Output: true

A comparison expression compares two expressions using relational operators such
as ">", ">=", "<", and "<=". It evaluates to true if the specified condition is true and false
otherwise.

Equality Expressions

var result = 5 == 5
print(result) // Output: true

An equality expression compares two expressions for equality using
the "==" or "!=" operators. It evaluates to true if the expressions are equal or false if they are
not.

Factor Expressions

var result = 10 / 2
print(result) // Output: 5

A factor expression performs multiplication or division operations between two expressions
using the "*" or "/" operators. It evaluates to the product or quotient of the expressions.

Function Call Expressions

function add(a, b) {
 return a + b
}
var result = add(3, 5)
print(result) // Output: 8

Represents multiplication or division operations between two expressions.

Identifier Expressions

var x = 10
print(x) // Output: 10

Represents identifiers, which are names used to identify variables, functions, and other
entities in Catscript.

Integer Literal Expressions

var num = 42
print(num) // Output: 42

Represents integer literals in Catscript.

List Literal Expressions

var myList = [1, 2, 3]
print(myList) // Output: [1, 2, 3]

A list literal expression creates a list containing one or more elements. It allows you to
initialize lists with specific values, which can be accessed and manipulated in your Catscript
code.

Null Literal Expressions

var myNull = null
print(myNull) // Output: null

Represents the null literal value, indicating the absence of a value in Catscript.

Parenthesized Expressions

var result = (5 + 3) * 2
print(result) // Output: 16

Represents expressions enclosed within parentheses, used to control the order of operations
and clarify the structure of complex expressions.

String Literal Expressions

var str = "Hello, World!"
print(str) // Output: Hello, World!

Represents string literals in Catscript.

Unary Expression

var result = -5
print(result) // Output: -5

Represents unary operations like negation or logical negation on expressions.

Statements

For loops Statements

var myList = [1, 2, 3]
for (item in myList) {
 print(item)
}
// Output:
// 1
// 2
// 3

This statement initiates a loop that iterates over elements in a list or range. It allows you to
execute a block of code repeatedly for each item in the specified collection or range.

Assignment Statements

var x = 10
x = x + 5
print(x) // Output: 15

An assignment statement is used to assign a value to a variable. It allows you to modify the
value stored in a variable by assigning a new value to it.

Function Call Statements

function greet(name) {
 print("Hello, " + name + "!")
}
greet("Alice") // Output: Hello, Alice!

This statement invokes a function by its name, passing arguments as input parameters. It
allows you to execute the code defined within the function's body and optionally return a
value.

Function Definition Statements

function add(a, b) {
 return a + b
}
print(add(3, 5)) // Output: 8

This statement defines a new function in Catscript, specifying its name, parameters, return
type (optional), and body. It allows you to encapsulate reusable blocks of code and execute
them by calling the function.

If Statements

var x = 10
if (x > 5) {
 print("x is greater than 5")
} else {
 print("x is not greater than 5")
}
// Output: x is greater than 5

An if statement allows conditional execution of blocks of code based on the evaluation of a
specified condition. If the condition evaluates to true, the code within the "if" block is
executed, otherwise, if an "else" block is provided, the code within the "else" block is
executed.

Return Statements

function add(a, b) {
 return a + b
}
print(add(3, 5)) // Output: 8

The return statement is used within a function's body to specify the value that should be
returned when the function is called. It allows functions to produce output values that can be
used in other parts of the program.

Variable Statements

var x = 10
print(x) // Output: 10

This statement is used to declare variables and optionally assign initial values to them. It
allows you to define variables with optional type annotations, specifying the data type of the
variable's value.

Section 5: UML

The sequence diagram illustrates the parsing process for factor expressions

within a larger parsing system. At the start, the Parser actor initiates the parsing

process by invoking the ExpressionParser to handle the factor expression. The

sequence unfolds as each parsing component, including UnaryExpressionParser,

PrimaryExpressionParser, and FactorExpressionParser, plays its role in dissecting

the expression. The recursive descent aspect becomes apparent as we observe the

delegation of parsing tasks from higher-level parsing components to lower-level

ones.

For instance, the ExpressionParser initially calls the UnaryExpressionParser,

which subsequently calls the PrimaryExpressionParser. If the expression

encountered is not a unary operator, the PrimaryExpressionParser communicates

this back to the UnaryExpressionParser, reflecting a recursion point where the

parsing hierarchy returns to a previous level to explore alternative parsing paths.

This recursive descent pattern continues as each parsing component delegates

tasks, delving deeper into the expression structure until terminal symbols are

reached, or parsing errors are encountered. The delegation and subsequent return

of control between parsing components exemplify the recursive nature of the

parsing process, where parsing tasks are broken down hierarchically until the entire

factor expression is successfully parsed.

Section 6: Design trade-offs

CatScript is designed to use recursive descent instead of using what is called

a parser generator. Recursive descent is something that is very profound yet simple

and easy to understand. It can be described as a top-down parser. A parser

generator can have less written code than doing it by hand, and certainly less

infrastructure. Parser generators automatically generate a parser based on a formal

grammar specification. A parser generator can be more difficult to understand, they

may be better for grammars that have complex structures or ambiguous rules. In a

parser generator there is obscure syntax for things that are obvious compared to

when you do it by hand. Parser generators can support multiple target languages,

allowing developers to generate parsers in their language of choice. For students, a

parser generator does not give a good feel of the recursive nature of grammars and

parsing.

Section 7: Software development life cycle model

We used Test-Driven Development, which means that we were supplied with

tests that we needed to pass before we wrote the code. There was a suite of test

files, containing tests to pass in each part of making CatScript. There were test files

for the tokenizer, the parser, and bytecode. If the tests are thorough enough, passing

all of them generally means that your code does everything it is intended to do

correctly. When tests are very specific like we had, it was very helpful. If you are

supplied with tests that are very vague, non-descriptive, or confusing, that could be

more of a hindrance than a help.

I liked this model of development because when I was not sure of what to do

next or if thought there was something that I may have forgotten, the tests provided

me with some direction. The tests had very specific names that described what they

were testing for, so just by seeing the name of the test that is failing you could

determine where you should look. Another way of finding your shortcomings was to

see where the test failed and why the test failed. I would not mind using this method

of development again in the future. Testing after implementation seems fine as well

but I do like to have this kind of testing before implementation.

