
My source code can be found in source.zip alongside this pdf.

For this project, my team was able to effectively split up the work load to create an expansive

and complete final product. Team member 2 created tests (example provided below) to

ensure the implementation was correct, and team member 1 fixed anything that was

incorrect based on those tests. Additionally, team member 1 spent the majority of their time

implementing the program details based on the tests written by team member 2. Team

member 2 also provided the Catscript documentation. The team was able to work effectively

on the project and produced a robust final result.

In this project, we used memoization. The following code can be found in:

src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java.

Section 1: Program

Section 2: Teamwork

public class Test extends CatscriptTestBase {
 @Test
 void listLiteralsAndFunctionReturnsAndForStatementsExecuteProperly() {
 assertEquals("foo, [1, 2, 3], bar, \n", executeProgram(""
 + "var foo : list = [\"foo\", [1, 2, 3], \"bar\"]\r\n"
 + "function foobar(foo2 : list<object>) : string {\r\n"
 + " var bar = \"\"\r\n"
 + " for(x in foo2) {\r\n"
 + " bar = bar + x + \", \"\r\n"
 + " }\r\n"
 + " return bar\r\n"
 + "}\r\n"
 + "print(foobar(foo))"));
 }
}

Section 3: Design pattern

public class CatscriptType {
 static HashMap<CatscriptType, ListType> cache = new HashMap<>();

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 1/14

This pattern was used to ensure that a new ListType will only be created if a ListType of

the input type does not already exist. If there is a Catscript program that utilizes 5 different

lists, all of type int, the same ListType would be used every time the getListType() method

was called. This design pattern not only has beneficial applications, but also requires less

code to be written so that the product can be deployed more efficiently without cutting

corners.

This results in some useful benefits, including a faster runtime and less memory usage.

Additionally, even though the number of potential inputs is finite and currently known,

memoization allows for attentional types to easily be integrated into the program structure.

Catscript is a simple scripting langauge. Here is an example:

 public static CatscriptType getListType(CatscriptType type) {
 ListType listType = new ListType(type);
 if (cache.containsKey(type)) {
 return cache.get(type);
 } else {
 cache.put(type, listType);
 }
 return listType;
 }
}

Section 4: Technical writing.

Catscript Guide

Introduction

var x = "foo"
print(x)

Features

Print statements

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 2/14

In Catscript, you can print output to the console using the print statement, as shown

below:

Output:

To declare a variable in Catscript, use the var keyword:

Variables in Catscript are statically typed. Rather than requiring a type declaration for each

variable, however, Catscript simply requires a variable to be initialized upon declaration. The

type of the variable is inferred from the expression assigned to the variable:

If you would like to declare the type of your variable, use a colon (:) after the variable
name:

The data types offered by Catscript are: int , string , bool , object , and list<> .

List types can be entirely inferred, or they can have only their component type inferred, or

they can have their entire type declared:

print("Hello world!")

Hello World

Variables

var a = 1

var y = 9 // produces an int type
var z = "hello world" // produces a string type

var b : bool = true

var list1 = [1, 2, 3] // produces a list<int>
var list2 : list = ["one", true, 3] // produces a list<object>
var list3 : list<string> = ["foo", "bar"] // produces a list<string>

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 3/14

In Catscript, you can reassign variables to new values using the variable name followed by an

equals sign (=) and then the desired value:

Note that the type of the variable must remain consistent in the reassignment, since

Catscript is a statically typed language:

In Catscript, if statements are used for conditional flow control. An if statement tests a

boolean expression and executes the statements in the if block if the expression is true,

and the else block otherwise. Intermediate boolean expressions can be tested using else
if blocks.

To write an if statement in Catscript, use the if , else if , and else keywords. Every if

and else if is immediately followed by their respective boolean expression, enclosed in

parentheses. Statement blocks associated with each if , else if , and else are then

included within curly braces. An example is shown below:

Output:

Assignemnt statements

var x = 5
x = 1 // The variable x is reassigned to the value 1

var foo = "bar"
foo = "hello world" // This is fine
foo = 20 // Error: strings are not assignable from ints

If statements

var a : int = 1
var y : int = 9
if(a == y) {

print("a and y are equal")
} else if(a < y) {

print("a is less than y")
} else {

print("a is greater than y")
}

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 4/14

A for statement in Catscript iterates over the values in a given list. The statements within the
for block execute for every value in the list. After each time these statements execute, the

program returns to the top of the loop, checking whether there are more items in the list. If it

finds another value, it will execute the for block again, continuing to loop in this way until

the items in the list are exhausted.

You can use for loops to iterate over a list using the for and in keywords, specifying a

variable name to represent the current value from the list being used in the loop, as well as

the list to be iterated over. This is followed by the statements you wish to execute, enclosed

in curly braces. An example is shown below:

Output:

Functions in Catscript are used to define a block of statements that can be executed

whenever that function is called. Functions are defined using the function keyword,

followed by the name of the function, the parameter list in parentheses, then an optional

return type, and finally the body of statements within curly braces.

Here is an example of a Catscript function without a return type:

a is less than y

For loops

var list1 : list = ["a", 2, false]
for(x in list) {

print(i)
}

a
2
false

Functions

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 5/14

Output:

To add a return type to your function, use a colon (:) after the parameter list:

Output:

When your function has arguments, you can simply list the parameter names, or you can

declare the type of the parameter as well:

Output:

function foo() {
print("bar");

}
foo()

bar

function foo2() : string {
return "bar"

}
var result = foo2()
print(result)

bar

function foo3(num : int, value) {
var step = "Step " + num + ": " + value
return step

}
var result = foo3(2, "eat a cookie")
print(result)

Step 2: eat a cookie

Return statements

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 6/14

In Catscript, return statements are optional in functions with void return types but required in

functions with non-void return types.

To return from a void function, simply use the return keyword:

To return a value from a function, use the return keyword, followed by the value you wish

to return:

In Catscript, equality expressions are used to determine whether or not the values of two

expressions are equal. They resolve to a boolean (true or false) value.

To return true for equal values and false otherwise, use the == operator:

On the other hand, to return false for equal values and true otherwise, use the != operator:

function foo() {
return

}

function foo() : string {
return "bar"

}

Equality expressions

var a = 1
var b = 1
var c = 0

a == b // evaluates to true
a == c // evaluates to false

var a = 1
var b = 1
var c = 0

a != b // evaluates to false
a != c // evaluates to true

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 7/14

Comparison expressions in Catscript are similar to equality expression in that they compare

two expressions and evaluate to a boolean value.

To determine if an expression is strictly less than or greater than another expression, use the
< or > operator, respectively:

To determine if an expression is less than or equal to, or else greater than or equal to,

another expression, use the <= or the >= operator, respectively:

In Catscript, additive expressions can be used to add and subtract numbers or to

concatentate strings.

When working with numbers, use the + operator to add and the - operator to subtract:

Output:

Comparison expressions

var x = 9
var y = 11

x < y // evaluates to true
x > y // evaluates to false

var m = 7
var n = 7
var o = 8

m <= n // evaluates to true
m <= o // evaluates to true

n >= m // evaluates to true
n >= o // evaluates to false

Additive expressions

print(3 + 6)
print(7 - 3)

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 8/14

When working with strings, Catscript will automatically treat the additive expression as string

concatenation if either the left- or right-hand side expression evaluates to a string:

Output:

Factor expressions in Catscript are used to multiply and divide numbers. Use the * operator

to multiply and the / operator to divide:

Output:

The only unary expressions in Catscript are negations. To negate a boolean expression, use

the not operator, and to negate a number, use the - operator:

9
4

var c = "cake"
print("the " + cake + " is a lie")

the cake is a lie

Factor expressions

print(6 / 3)
print(7 * 3)

2
21

Unary expressions

var x = 5
print(-x)

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 9/14

Output:

In Catscript, primary expressions include identifiers, literals, function calls, and

parenthesized expressions.

Identifiers are the names of variables and functions used in the code, such as in assignment

statements and function calls.

Literals are hard-coded values in the code. These can be strings (enclosed in either single or

double quotes), integers, boolean values (true or false), the null value, or a list literal

(a list of comma-separated values within square brackets). For example:

Function calls consist of a function name followed by the list of arguments in parentheses.

This is how you execute the code within a function definition. Here is an example:

Parenthesized expressions are used to specify operator precedence:

Output:

var y = true
print(not y)

-5
false

Primary expressions

function foo() {
// function body

}
foo() // executes the code in the functio body

var x = 5 + 2 * 2
var y = (5 + 2) * 2

print(x)
print(y)

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 10/14

This is a sequence diagram for parsing "if (true){print(1)}". It displays recursive decent in a

very clear and visual manner. Each time a new statement or expression is created, the parser

uses recursion to travel down the tree until it lands on the correct token type, and in true

recursion form, returns the result all the way back up the tree. This is utilized throughout the

parser for both statements and expressions to create a complete recursive descent parser.

Two of the main methodologies that are used for creating a compiler are recursive
descent and code generation . Despite these both being relatively popular, one clearly
outshines the other. Recursive descent is the algorithm that was chosen for this particular

project, over all the other potential methodologies.

9
14

Section 5: UML.

Section 6: Design trade-offs

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 11/14

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/UMLSequenceDiagram.png
https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/UMLSequenceDiagram.png

Recursive descent was chosen for an array of reasons, among which are certain perks of the

algorithm and the downfalls of other methods like code generation. Recursive descent

parsing allows for the direct translation of grammar rules into code, resulting in code that

closely mirrors the structure of the grammar. This direct correspondence enhances code

readability and maintainability, as developers can easily trace the logic of the parser back to

the grammar rules. Additionally, this makes it much easier for a user of the language to

understand exactly what is going on under the hood of the program. With code generation,

this task is either extremely difficult, or nearly impossible. Code created by a generator is

very difficult to debug, which is a stark contrast to handwritten code, and that makes

maintenance and creating new functionality an arduous task. Adding new features within the

context of a recursive descent parser is relatively easy, and it will also sharpen the skills of

the developer rather than sharpening their skills with low use case tools. That reality

notwithstanding, the ability to interact with the codebase in a meaningful way is by itself

almost enough reason to choose recursive descent when creating a compiler. That fact,

though, is not the only thing that recursive descent has going for it. A handwritten recursive

descent tokenizer will almost always be substantially shorter than a program created by a

code generator. There is no need for programs to be as complicated as code generators

make them, and the ability to read and understand code because it is handwritten is

invaluable.

For our project in particular, implementing the compiler with this methodology was

immensely helpful. It allowed us to conceptualize the project as a whole while implementing

each individual piece of the puzzle without getting too lost in the details. The algorithm was

specifically helpful while writing the parser. Being able to debug and visually see each

element as it was added not only made the programming fun and fulfilling, but also allowed

us to develop an intricate understanding of the project as we went. This is a beautifully

simple but effective algorithm that can complete the task at hand in a good, clean manner.

Recursive descent was chosen for this project for many reasons, and the reality that it was

implemented by hand means that we have been better equipped for the real world and

solving the problems that we will be met with in a reasonable manner, with reasonable

methodology.

Section 7: Software development life
cycle model

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 12/14

Just as there are multiple different methods for designing a compiler, there are multiple

different ways to go about implementing the actual code for that compiler. For this project

my team used test driven development (TDD). This method can be implemented by writing

test code, or code that you run against your codebase to see if it runs as expected. One

subset of this is what is called test first development. The important distinction is that test

first development is done by writing your tests before any production code is completed. In

this situation, the development process is driven by the tests themselves, as opposed to unit

tests, integration tests, or end to end tests. Test first development is what was used for this

particular project, and although it is unlikely that I will utilize it very often in the future, it was

effective in this particular application.

This method of development was immensely helpful for our team throughout the course of

the project. First and foremost, it helped ensure that the code we wrote was high quality and

would work reliably. Having our tests before the code was written allowed us to have a clear

line of success that outlined how the system was expected to behave. It also helped with

identifying any potential bugs early on in the life cycle of the code. This was especially

important because each new layer of the compiler completely relied on the previous layer;

the parser could not function without the tokenizer. Because of our tests, most of the bugs

that revealed themselves later in the life cycle were not only easy to find with an effective

debugger but were also easy to fix because the code was already fairly robust.

It also helped our team to work on smaller portions of code without getting lost in the large

scope of the project as a whole. The tests broke the codebase into very manageable

portions that were easy to complete correctly and integrate into the project. The code we

wrote was cleaner because we were not overwhelmed with the whole system and was more

maintainable because we could debug in chunks. We also realized that if we were producing

a real product, this method would allow us to continuously integrate the features without

being overly afraid of sizeable issues in the production system.

My conclusion about this method of programming is, clearly, very positive. Despite this, it is

likely that I will utilize TDD methods like integration tests in the future. While in this specific

situation the test first method was very helpful, it seems that grasping the entire scope of a

project in a professional environment would be much more difficult. Without having a more

concrete picture of implementation details, writing tests to effectively demonstrate the

correctness of the code seems overly ambitious. That is not to say that test first

development will never have a place in my personal professional career, nor am I claiming

that it should not be used in other contexts. I simply am claiming that, according to my

current understanding, having at least a rough baseline would be extremely helpful for

creating effective tests.

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 13/14

Overall, TDD was an extremely effective model for this project. We were able to produce high

quality code that was robust enough to facilitate bug fixes that arose from future code with

ease. This model forced us to split up the code into ‘bite sized chunksʼ so that we would not

get lost in the large scale of the project. Using test first development, we found that meeting

the requirements of the project was attainable, and could be achieved with clean, effective,

and well-integrated code. Therefore, we were not forced to combine different portions of the

project utilizing nonconventional methods and sloppy integration. TDD provided a structured

and disciplined approach to this project and created a fitting end to my formal education in

software development (at least for now).

5/9/24, 6:24 PM csci-468-spring2024-private/capstone/Capstone.md at main · Emeth3/csci-468-spring2024-private

https://github.com/Emeth3/csci-468-spring2024-private/blob/main/capstone/Capstone.md 14/14

