
CSCI 468, Compilers
Spring 2024

Edward Aldeen, Sam Bierens



Section 1: Program
Source code attached in /capstone/portfolio/source.zip directory.

Section 2: Teamwork
Team member #1 implemented all code in the source according to the tests in

/src/test/java/edu/montana/csci/csci468/. This took team member #1 16 weeks. Team member
#2 created three additional parser tests to help test the code and created the technical
documentation. This took team member #2 one week. These tests are in
/src/test/java/edu/montana/csci/csci468/parser/PartnerTest.java. Team member #1 did 95%
of the work.

Section 3: Design Pattern
The design pattern utilized in the source code was memoization. This can be seen in

/src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java, in the getListType()
method.

37 private static Map<CatscriptType, CatscriptType> listTypeCache = new HashMap<>();
38 public static CatscriptType getListType(CatscriptType type) {
39 if (listTypeCache.containsKey(type)) {
40 return listTypeCache.get(type);
41 } else {
42 ListType listType = new ListType(type);
43 listTypeCache.put(type, listType);
44 return listType;
45 }
46 }

This pattern was used to optimize the speed at which the type of a list is determined. This allows
us to increase efficiency of the compiler and it optimizes storage. Since getting the type of a list
is inefficient, memoization will save processing power and allow time and effort to be redirected
to other, more inefficient, methods and functions.



Section 4: Technical Writing
Team member #2 wrote the technical documentation, which can be found in

/capstone/portfolio/CatscriptDocumentation.md

Section 5: UML

The for loop sequence diagram in this UML diagram represents the flow of control and
interactions involved when executing a for loop in CatScript. The sequence begins when a for
statement is encountered in the CatScript program. The program moves to the expression
component, where the condition for the for loop is evaluated. This involves evaluating the
expressions within the for loop, starting from expression and recursively descending through the
grammar.

When the condition specified in the expression evaluates to true, the program moves to
the block of statements enclosed within the for loop statement. This represents the execution of
the statements inside the loop body. Within the loop body, there can be recursive calls to other
statements, such as another for statement or any other type of statement. This recursion allows
for the execution of multiple statements within the loop body. This continues until the loop
condition evaluates to false, the program exits the loop, and the sequence for the for loop ends.

This UML diagram removes a significant amount of the potential expression calls within
the program, but it makes the sequence diagram unreadable thus only the crucial statement,
expression, and recursive calls are left in.

Section 6: Design trade-offs
In Catscript, the parser was implemented using recursive descent parsing rather than a

parser generator. This is because recursive descent parsing provides us with greater control over
the parsing process. The parsing logic can easily be adjusted to suit the specific needs and



features of Catscript. This allows the parser, and in turn the compiler, to follow the grammar
almost exactly. This results in the compiler code that is significantly more legible compared to a
parser generator, as each parsing function corresponds directly to a rule in the grammar. Another
important reason to use recursive descent parsing over a dedicated parser generator is that a
complete implementation of a parser generator in the given time is not feasible and unnecessary.
Catscript is a simple language with relatively simple grammar, and to use a parser generator for it
would be overkill. Thus recursive descent was used as its simplicity offered competitive
performance while remaining straightforward to implement and debug.

Section 7: Software development life cycle
model

The model used to develop and test our capstone was test driven development. This
model was crucial in making the compiler function as it gave clear cut requirements of what
functions must compile correctly, and how they should function. Due to the numerous tests for
each function, the tokenizer, the parser, and the bytecode generator, it was easy to determine
whether or not each section functioned as it should. These tests also helped catch any regression
or side effects due to changing the code. For example a method when changed in the bytecode
checkpoint, failed a separate test in the parser, which the tests caught, saving a large amount of
time. Test driven development also helps with step by step implementation as instead of writing a
hundred lines of untested code, implementation is done test by test. This forces a focus on
building on each success, and debugging on each regression or failure. The demerits of the test
driven development methodology is that should there not be a test for a function or it not be
thorough enough, that function can easily be implemented poorly or not at all causing issues that
fail to show up properly when debugging. An example of this would be the function related
methods in the parser and the bytecode checkpoints, as they lacked thorough tests, or lacked any
tests at all. This caused strife as these methods were required for a good majority of the
remaining tests, without having dedicated tests for themselves. Overall, if I could use test driven
development again, I would, as it is a very simplistic, yet thorough approach to implementing
something as complicated as a compiler.


