CSCI468 Compilers Capstone

Author: Emily Ingbertsen
Partner: Carlee Joppa

May 2024

1 Program

A zip file titled source.zip in this same directory contains all the code pertain-
ing to this program. This program pertained to writing a compiler for own
coding language CatScript. As such, this program required tokenizing, parsing,
evaluation and bytecode creation from written CatScript code.

2 Teamwork

For this capstone project, my primary contribution was writing all the code for
the program and ensuring tests written for this program passed. My contri-
butions in code were writing the tokenizer, parser, evaluations for expressions
and statements, and bytecode. My team member was responsible for writing
the documentation on the CatScript programming language (provided in Sec-
tion 4) as well as writing a series of tests to ensure the final product properly
functioned. I spent roughly 95% of the time on this project as I was responsible
for writing all the code compared. My partner’s 5% of the time contributing to
this project through writing documentation and tests.

The tests they provided are as shown below:

public class PartnerTests extends CatscriptTestBase {
QTest
public void addResultOfFunctions() {
Object program =
executeProgram("function x(a : int, b : int, ¢ : int) : int { " +
"return a + b + ¢ } " +
"function y(a : int, b : int) : int { return a * b } " +
"var z : int = x(1, 2, 3) + y(2, 3)" +
"print(z)");

assertEquals("12\n" , program.toString());

Q@Test
void assignmentStatementWorksInForLoopProperly() {
assertEquals("6\n9\n12\n", compile("var y = 3\n" +
"for(x in [1, 2, 3]) {\n" + " y =y + 3" +
" print(y)\n" +"}\n"));
assertEquals("200\n100\n50\n", compile("var y = 400\n" +
"for(x in [1, 2, 3]) {\n" + " y =y / 2" +
" print(y)\n" + "}\n"));
assertEquals("4\n8\n24\n", compile("var y = 4\n" +
"for(x in [1, 2, 3]) {\n" + " y =7y x x" +
" print(y)\n" + "Nn"));

Q@Test
public void parseExpressionWithParens() {
Statement expr = parseStatement("print(((9 + 3) / 2) / ((10 / 2) - 3))");
assertFalse(expr.hasErrors());
Statement wrong = parseStatement ("print(((9 + 3))", false);
assertNotNull (wrong) ;
assertTrue(wrong.hasErrors());

3 Design Pattern

The main design pattern used for this project was the Memoization pattern.
The memoization design pattern is generally used to speed up computationally
expensive programs by caching values when they are first computed and return-
ing the cached result if requested again. However, for this program I mainly use
this pattern to reduce the amount of repeated objects I am creating by caching
them.

This pattern was used in this program in the CatscriptType class’s getList-
Type function which is used to return a list type given the specified type of the
list. In the case of this program, I use a static hashmap to cache the already
created listType without needing to recreate the same object repeatedly. As
such, if we have not created an object of that listType yet, then a new object
of that listType will be created and then cached to the hashmap. Otherwise,
if we have already created an object of that listType, then it can be retrieved
from the hashmap.

By using the memoization pattern in this way, we greatly reduce the number
of repeated objects we are creating and still maintaining quick and efficient code.

The memoization pattern is shown in the code below:

private static HashMap<CatscriptType,ListType> listTypes = new HashMap<>();
public static CatscriptType getListType(CatscriptType type) {

if (listTypes.get (type) !'= null){
return listTypes.get(type);
} else {
ListType listType = new ListType(type);
listTypes.put(type,listType);
return listType;

4 Technical Writing

The following is the documentation written to describe the CatScript program-
ming language and its features:
Introduction

CatScript is a simple statically-typed scripting language. Syntax-wise, CatScript
is heavily influenced by C style syntax. CatScript is a functional programming
language and as such does not support classes.

This is a guide to the CatScript programming language, and as such will define
all features of the language.

Here is a simple example of CatScript:
var x = "hello"

print (x)

Features

CatScript includes a variety of features including for loops, functions, and if
statements.

Type Literals

The CatScript type system supports int, string, bool, null, object, and list.

Integer Literal

The integer literal can support any 32-bit integer. This means that fractions
and decimals are not supported in Catscript. The type of integer is shorted to
‘int* for use in this language.

Here are some examples of values that are supported:

4
-8
993491

String Literal

CatScript also supports Java-style strings. Strings must be in quotation marks
(77¢). The type name of string literals in CatScript is ‘string’

Here are some examples of strings in CatScript:

"Hello World"
"true"
n 16"

Boolean Literal

Boolean values are always represented by opposite values, but unlike other types,
booleans only have two values. In CatScript, the two values are ‘true‘ and ‘false’,
also shown below. The type name of boolean literals in CatScript is shortened
to ‘bool‘.

Here are some examples of boolean values in CatScript:

true
false

Null Literal

Like in other programming languages, null is a type that be assigned to any-
thing. This literal also has no value and often takes the role of a placeholder.

null
var x = null

Object Literal

The object literal can be assigned any type of value. While CatScript does
type inference, there are some instances where elements are assigned type ‘ob-
ject' automatically, such in the case that parameters don’t have a specified type
in the function declaration.

Here are some examples of valid values for objects:

"Hello World"
true
16

List Literal

Components of lists can be of any type, including another list. Lists that are
made up of multiple component types are automatically lists of objects.

Here are some valid CatScript example lists:

var a = ["hello", "world"]
var b : list = [1, false, [4, 2]]
var ¢ : list<bool> = [true, false]

Variable statement

Variables can be assigned by using the keyword var, followed by a variable
name. CatScript does type inference, so types can be excluded or included, as
seen in the examples below.

The example list ‘z* shown below will have a component type of object.

var x = "Hello World"
var y = 3
var z = [1, true, "hello"]

To include a type, use a colon and the type in between the variable name and
‘=‘. Lists with an explicit type of list can also choose to specify the explicit
type of the component. Lists that specify the component type must do so with

‘listjtype;, with any Catscript type, after the colon.

var a : bool = false
var b : list = [1, false]
var ¢ : list<bool> = [true, false]

Operators

Unary Operators
In Catscript there are two unary operators ‘-‘ and ‘not‘. The operator ‘-* can
be used to negate ints, while ‘not‘ can be used to negate booleans.

var x = -19
var z = not true

Equality Operators

To determine whether two elements are equal, the ‘==* operator can be used,
which will return true if they are in fact equal. The ‘!=‘ operator can be use
find whether two elements are not equal. The equality operators can be used to
find equality of all types.

var x = 19
if (x 1= 19){

print (x)

}

else if(x == 19){
x =5

}

Comparison Operators

()

The operators for comparison are as follows: ;¢ (greater than), ‘i (less than),
‘.=" (greater than or equal to), ‘{=‘ (less than or equal to). Unlike some of the

other operators, comparison operators can only be used with int types.

var x = 19

if (x > 191
print (x)

}

else if(x <= 19){
x =5

}

For Loop

For loops can be used to iterate over a list.

For loops must start with the keyword ‘for* followed by parens containing a
python style ”variable ‘in‘ list” syntax shown below. The iteration variable
used inside the for loop (‘x‘ in the example below) will be first be assigned the
value of the first element in the list. Once the body statements of the for loop
are executed, the process will repeat with the second value in the list assigned
to the iteration variable and so on through the list.

Unlike some languages (Java and others) curly brackets must be used to in-
dicate the beginning and end of the for loop, like is shown in the example
below.

for(x in [1, 2, 31) {
print(x)
}

If Statement

If statements can be used to choose whether to execute certain statements based
on some condition.

In CatScript, if statements can optionally include else if and else conditions,
as shown below. Else conditions are executed only executed when the if and
else if statements are false. For if and else if, the conditional must be in paren-
theses after ‘if* and before the curly brackets.

Like for loops, if statements also must include curly brackets to start and end
the body statements.

var x = 10

if(x > 10) {
print (x)

}

else if(x == 10) {
x =2

}

else {
x =7

}

Additive expressions

In CatScript, addition and subtraction can be done using the usual operators
(‘+¢ and ‘¢ respectively), and the ‘4 operator can also be used to do string
concatenation. For subtraction, the only int types can be used, and for addition,
only string and int types can be used. If a string and int are added, the result
will be a string (the int will automatically be cast to a string).

var x = 19 - 2
var y x + 12;

print("x is " + x)

Factor expressions

Multiplication in CatScript can be done using the ‘“** operator, and division can
be done using the ‘/ operator.
In CatScript, multiplication and division can only be done with int types.

var x = 10 * 2
var y = x / 4

Print Statement

Print statements in CatScript start with the keyword ‘print‘ followed by paren-
theses. Whatever is inside the parentheses is outputted to the console. Con-
catenation can be done inside the print statement using the ‘+° operator.

print("Hello World!")

Assignment Statement

Once variables are declared, they can be assigned to a different value; however
this value must be a type that is assignable. This means that if a variable was
initially declared as a string, it cannot be assigned ‘false‘, which is a bool type,
later.

Because lists are immutable in CatScript, lists elements cannot be changed
using assignment statements.

var x = 8
x = 10

var y = "hello"
y = "goodbye"

Function Declaration

Functions in Catscript must start with the keyword ‘function‘, followed by the
name of the function. Any parameters to the function must be specified inside
the parens. The type of parameters can be added or omitted as shown below
in the second example. If omitted, the type of the parameter will automatically
be assigned as object. Like the for loop and if statement, curly braces must be
used to denote the start and end of the body statements of the function.

function cost(a : int, b : int) : int {
return a + b

}

function printB(a : int, b) : int {
print (b)
return a

Function Call Statement

In order to call functions in CatScript, the function name used in the func-
tion definition must be used. This should be followed by parentheses containing
parameters to the function separated by commas. If a function does not take
any parameters, the function name should be followed by empty parentheses.
When functions have a return value, it will be returned to where the function
was called, like in the example below, where the return value of the cost function
will be assigned to ‘x‘.

var x = cost(3, 4)
Return Statement

The return type can be specified following the parens with a colon and the
type. If no return type is specified, the automatic return type will be void. In
this case either an empty return statement can be used (shown in the first func-
tion), or the return statement can be omitted completely. Return statements
can only be used inside of functions, and will produce an error anywhere else.

function printA(a : int) {
print(a)
return

}

If a return type is specified in the function declaration, a value with that type
must be returned. This can be done with a return statement as the last line of
the function, or if different return statements based on a condition are desired,
return statements may be used in if statements. This option requires that all
conditions have a return statement, shown below.

function evaluate(a : int) : int {
if(a > 5){
print(a)
return a
} else {
return a + 2

3

5 UML

The UML diagram found in this same directory represents the process of parsing
the following snipet of CatScript code:

if(1 < 5){ print("Hello World") }

The diagram highlights the aspect of recursive descent present in the imple-
mentation of the parser as we can visualize the recursive calls to other functions
within the parser until the correct function parses the code.

The parsing begins by parsing a statement from which it calls the function
parselfStatement. From there, the function parses the conditional expression
which follows recursive descent by calling the parseExpression function until it
reaches the parsePrimaryExpression function. It then recursively goes back up
the call stack where it parses the less than symbol and calls parseComparison
expression. It then proceeds to once again recursively call down to parsePri-
maryExpression for the second integer of the comparison expression. Once the
comparison expression is parsed, it is returned to the if statement object where
it then proceeds to parse the body statements by calling parseStatement. This
function calls down to parsePrintStatement which then calls parseExpression
to recursively call down to parsePrimaryExpression which returns the string
literal object. Once the printStatement is done parsing, it returns back to the
if statement object.From there, the if statement object is recursively returned
back up the call chain.

10

>
IntegerLteralExpression
ntegertiteralEpression

IntegertteralExpression
i ntegerLiteralExpression |

| IntegertteralExpression
i {ntegertiteralexpression |

>
IntegertteralExpression
<mtegertiteralBxpression

—
StringLiteralExpression
< Srnguteralbrpression

StringLiteralExpression
< SirnguteralExpression

StringLiteralExpression

PrintStatement

fstatement

fstatement

fstatement

6 Design Trade-Offs

In this project, I decided to use a recursive descent parser rather than using a
parser generator for the design of the parser.A parser generator generates code
automatically given grammar specified from the programmer.A recursive de-
scent parser is handwritten by the programmer and focuses on using recursion
to recursively parse tokens while also backtracking when tokens do not match
until there are none left and the program has been completely parsed. However,
instead of a parser generator, I decided to use a recursive descent parser instead
for my design.

The trade-off here is that a parser generator is less handwritten code compared
to the recursive descent parser which is completely written by hand. Addition-
ally, there is much less infrastructure to verify the integrity of in the parser
generator in comparison. However, I prioritized the control recursive descent
parsers allow the programmer as well as the readability as parser generators of-
ten require terse code and obscure syntax. Additionally, parser generators can
be incredibly difficult to debug and recursive descent parsers allow for a clean
infrastructure to clearly follow along with while debugging.

11

7 Software Development Life Cycle Model

The model I used to develop this project was Test Driven Development. Test
Driven Development is an approach in which the developer write tests for the
code before writing the code. These tests are meant to reflect the desired be-
havior expected from the code after being written. Following the writing of the
tests comes the writing of the code to meet the desired behavior the test expects.
Once complete, the test can be run to see if the code meets the requirements of
the test. If not, then the developer must return to the writing stage to ensure
the test passes. For our project, the tests were both written by the instructor
as well as my partner.

The benefit of using Test Driven Development in this project is that it pro-
vides an immediate feedback loop during the coding phase and allows for faster
awareness on the correctness of the code written. Additionally, it allows the de-
velopers to consider and write out the requirements of the code before writing
it.

12

