Emma Marie Veldhuis

Montana State University- May 2024
Gianforte School of Computing
Senior Capstone CSCI 468 Compilers
Partner: Jordy Hexom

Section 1: Program

The entire project source code can be found on GitHub:
https://github.com/emmav316/csci-468-spring2024-private/tree/main/src

Section 2: Teamwork

On our team, we each wrote documentation for one partner's project and also created 3
new test cases for their code. This allowed our group to further test and identify any areas for
improvement enhancing the functionality of our codebase. I wrote the parser for this project
(95%) and my team members provided documentation and tests (5%). Since our group consisted
of three members, we each provided the documentation and test cases for one member. Partner 1
provided for Partner 2 who provided for Partner 3 who provided for Partner 1.

Section 3: Design pattern

One of the design patterns that was used in this project was memorization. Memoization
is the technique of saving the results of a function call so that they can be accessed by identical
calls. By saving the results of such function calls, the program does not need to spend time and
computation power to compute these results again, instead, it can pull these results from storage.
This means that the pattern eliminates redundant operations that would cause a worse time
complexity. This storage is often set up in a HashMap due to their get and put methods.
HashMaps also allow parameter values which is perfect for saving arguments to a function call in
addition to the return value. When a memoized function receives a call, it checks to see if that
specific call exists in the map. If it does, it will return that value, and if not, it will complete the
calculations and save the result in the HashMap. In this project, memoization was implemented
in the getListType function shown below.

static final ConcurrentHashMap<CatscriptType, ListType> LIST_TYPE_CACHE = new ConcurrentHashMap<>();

public static CatscriptType getListType(CatscriptType type) {
return LIST_TYPE_CACHE.computeIfAbsent(type, ListType::new);

}

https://github.com/emmav316/csci-468-spring2024-private/tree/main/src

Section 4: Technical Documentation

Introduction

CatScript is a simple scripting language that supports a variety of features including variables, loops,
conditional statements, functions, and data types. This document aims to provide a comprehensive guide

to CatScript, analyzing its grammar and functionalities.
Example:

var x = "foo"
print(x)

Language Features

For Loops
For loops in Catscript require the reserved word ‘for’ followed by an identifier variable, the reserved

word ‘in’, and the expression to be iterated over, all enclosed in parentheses. For loops, iterate over a

sequence, such as a list, and execute a statement for each element in the iteration.

Example:

var 1st = [1, 2, 3]
for (i in 1lst) {
print(i)

Print Statements
Print statements in Catscript are implemented using the reserved word 'print' followed by the content to be

printed enclosed in parentheses. This content can be a string literal, variable value, or even the result of an

expression.

Example:

var x = "hello catscript!"

print(x)
If Statements
If statements in Catscript start with the reserved word ‘if” followed by the condition to be evaluated,
enclosed in parentheses. If the condition is true, the statement within the curly braces { } following the if
statement is executed. Optionally, the reserved word ‘else’ can be added to execute an additional if

statement or an ending statement when the condition is false.

Example:

var x = 10

var y =5

if (x >y) {
print(x)

} else {
print(y)

}

Parenthesized Expressions

In the CatScript, parenthesis are utilized to specify the evaluation order of expressions, overriding default
precedence rules. Parentheses explicitly indicate expression precedence, allowing control over expression
evaluation. This feature is included in the primary expression grammar, as demonstrated in the language

syntax example below.
Example:

var sum = (10 + 5) * 2

CatScript Grammar

The CatScript programming language utilizes a formal grammar to define its syntax rules. This document
outlines the structure of CatScript programs through a context-free grammar representation. Each section
describes different elements of the grammar, including program structure, statements, expressions, and

declarations.

Statements
Program Structure

A CatScript program consists of one or more program statements enclosed within curly braces {}.

catscript _program = { program_statement };

Program Statements

Program statements in CatScript can be either regular statements or function declarations.

program_statement = statement | function declaration;

Statements
CatScript supports various types of statements, including loops, conditionals, print statements, variable

declarations, assignments, function calls, and more.

statement = for_statement |
if statement |
print_statement |
variable_statement |
assignment_statement |
function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',
{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',
{ statement },
"}' ['else', (if_statement | '{', { statement }, '}') 1;

print_statement = 'print', '(', expression, ')’

variable_statement = 'var', IDENTIFIER,

[':", type_expression,] '=', expression;

function_call statement = function_call;

Additive Expression
Additive expressions in CatScript are used to perform addition and subtraction operations on numeric
values. These expressions are composed of factor expressions combined with addition or subtraction

operators.

additive_expression = factor_expression { ("+" | "-") factor_expression };

Comparison Expression

Comparison expressions in CatScript are used to compare values and determine relationships between
them. These expressions evaluate to boolean (true or false) based on the result of the comparison.
Catscript supports various comparison operators for comparing numeric and string values.

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive_expression

1

Equality Expression

Equality expressions in CatScript compare two values for equality or inequality (e.g. numeric and string
values). These expressions evaluate to a boolean (true or false) based on whether the comparison holds
true or not.

equality expression = comparison_expression { ("!=" "==") comparison_expression

s

Factor Expression
Factor expressions in CatScript can include unary expressions combined with multiplication or division

operations.

factor_expression = unary_expression { ("/" | "*") unary_expression };

Unary Expression
Unary expressions in CatScript consist of unary operators applied to primary expressions. These operators

include negation (-) and logical negation (not).

unary_expression = "not" " unary_expression rimary_expression;
y_ y_ y_ 5

Primary Expression
Primary expressions in CatScript represent the most basic elements of expressions. They can include
identifiers, string literals, numeric literals, boolean literals, null literals, list literals, function calls, and

parenthesized expressions.

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|
list_literal | function_call | "(", expression, ")"

Type Expression

Type expressions in CatScript specify the data type of a variable, parameter, or return value. They can

include primitive types such as integers, strings, and booleans, as well as generic types such as lists.
type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [,
type_expression, '>']

<y

Section 5: UML

This UML diagram above illustrates the overall architecture of the parser, which is
designed using a recursive descent approach, where each class handles a specific grammar rule
and calls other classes to parse sub-expressions or sub-statements. The diagram shows a series of
classes, each responsible for parsing a specific part of the language's syntax. The classes are
organized in a hierarchical structure, with the "ParseProgram" class at the top, followed by
"ParseProgramStatement", "ParseStatement", and "ParsePrintStatement". The classes
"ParseExpression", "ParseEqualityExpression", "ParseComparativeExpression",
"ParseAdditiveExpression", "ParseFactorExpression", "ParseUnaryExpression", and
"ParsePrimaryExpression" are responsible for parsing different types of expressions within the
language. This UML diagram provides a visual representation of the parser's class structure,
making it easier to understand the organization and relationships between different components
of the parsing process.

Section 6: Design trade-offs

As a core component of this project, we opted to construct the parser by hand. This
choice was driven by our desire to gain an understanding of the intricacies of the grammar
through the recursive descent parsing approach. By using recursive descent, we deconstructed
the grammar into smaller, more manageable units, facilitating a deeper comprehension of its
intricate workings. This not only made the parsing process more accessible but also unveiled
details that might have been missed had we relied solely on automated tools. The crafting of the

parser proved to be an exercise in problem-solving, as we navigated the challenges posed by the
grammar's complexities. Each step contributed to the honing of our analytical and critical
thinking abilities, fostering a growth mindset that will undoubtedly serve us well in future
endeavors.

Beyond the benefits of understanding the grammar, our decision to construct the parser
manually has provided an appreciation for the intricacies of language processing and translating
abstract rules into executable code. This experience has not only deepened our comprehension of
the subject matter but has also instilled a sense of accomplishment and confidence in our ability
to tackle complex challenges through perseverance and a willingness to embrace unconventional
approaches.

Section 7: Software development life cycle model

Throughout the course of this project, I have embraced the Test-Driven Development
(TDD) model, a methodical approach that utilizes predefined tests to outline the desired code
functionality and guide the development process. This strategy has proven invaluable, as it has
enabled me to identify and address potential issues or bugs early on, mitigating the risk of
compounding errors and ensuring a more robust and reliable codebase.

The TDD model has been instrumental in defining the explicit requirements necessary for
the successful completion of the compiler project. By breaking down these requirements into
testable units, we have been able to make incremental progress, systematically tackling each
aspect of the project with a clear roadmap and measurable milestones. This iterative approach
has not only fostered a sense of accomplishment with every successfully passed test but has also
provided us with a structured framework for continuous improvement and refinement.

As an advocate of TDD, I have witnessed firsthand the profound impact it has had on our
development workflow. The satisfaction derived from witnessing each test case transition from a
state of failure to success is truly rewarding, instilling a sense of pride and motivation that
propels us forward. Moreover, the comprehensive nature of the TDD process has afforded me a
deep understanding of the software development lifecycle, from conceptualization to
implementation and testing.

