
Gage Nesbit

05/02/2024
CSCI 468
Capstone

Section 1: Program

There has been a .zip file containing all of the source code inserted into this directory.

Section 2: Teamwork
Our team was a group of three people. One of the main ways that our team collaborated

was that we all exchanged Catscript documentation with one another. Team Member 1 created
the documentation for Team Member 2, Team Member 2 made the documentation for Team
Number 3, and Team Member 3 made the documentation for Team Number 1. During this
exchange process, there was a series of iterations to ensure that everyone was producing and
receiving high-quality documentation that accurately describes how Catscript functions.

At the beginning of our involvement in the Catscript development, our instructor Carson
Gross included many tests that would ensure the implementation of each aspect of the
language were correct. Some additional tests were needed to confirm certain specific functions
of the language were working correctly. Tests were created by each member of the group and
exchanged similarly to how our documentation was exchanged. These tests were specifically
designed to be more rigorous than some of the basic tests and were intended to find any
possible errors within another member's code base.

Another key aspect of our collaboration which happened throughout much of the
development this semester was the discussion of high-level ideas and concepts. It was not
uncommon for one group member to clear up any confusion for another group member thus
instilling a higher level of understanding with all members of the group. This culminated in all
three of us producing high-quality code that performs exactly how the Catscript design intended.



Section 3: Design pattern

The design pattern that was used in my capstone project was the memoization
pattern. This can be found within the CatscriptType.java file in the getListType method.
The memoization pattern essentially means to use a cache such that the same
computations are not done multiple times. This is for the efficiency of CPU and memory.
The getListType method previously had taken in a CatscriptType and created a new
instance of a ListType object for every call. After the implementation of memoization,
the method will check if the CatscriptType has a ListType object associated with it in the
cache and return that if it is found. If one is not found then it creates a new instance of
the ListType object, then stores that it in the cache for future use. Then it returns the
new ListType object.



Section 4: Technical writing. Include the
technical document that accompanied
your capstone project.



















Section 5: UML.
What is being parsed in this sequence diagram:

if(x == 10){
print(x)

}

The above UML sequence diagram is a visual representation of a recursive descent
parser. The recursive descent algorithm can be seen by a series of function calls that go deeper
and deeper into the grammar of the parser and then return back up the call stack with the
program being fully parsed. A series of calls first start the parsing process where the if
statement begins to be parsed. During this process, the if keyword and the opening parenthesis
are consumed.

The next section takes care of the parsing of all of the if statements children within the
parse tree. The first of those is the equality expression that too has children expressions of the x
identifier expression and the 10 integer expression. Once the children are parsed the algorithm
climbs back up to the equality expression and completes parsing of it. Then more tokens are
consumed and it's time to parse statements within the body of the if statement. In this case,
there is only one statement. To parse the print statement parseStatement is called and from
there, the print statement parsing begins. Its child the x identifier expression is parsed as a
primary expression. This is where the final unraveling of the call stack happens. There is no
more descending to be done there will be a fully realized parse tree left from the process.



Section 6: Design trade-offs

When designing a programming language many people will choose to use tools
that generate lexers and parsers. In the development of Catscript, we chose to create
our lexer and parser by hand. This was done for a few reasons. One such reason was
that the code generated by these tools is way longer than it needs to be because it's not
written in a way that a human would write it. Another reason is that this generated code
is not human-readable, variable names and functions and many other things are given
complex and vague names not giving a programmer any real sense of how it works.
Additionally, for many of the reasons above this makes generated code really difficult to
modify yourself and it would take more time to learn how the generated code is working
than to write it yourself. You also sacrifice control over how things are lexed and parsed.

The design of Catscript was very intentionally meant to be simple. Behavior was
designed to be local to one space. This means eval, and compilation all happen within
one file for each type of statement or expression. Some may argue that this could be a
drawback as you aren’t treating these as separate concerns. I would disagree in that it
allows for much more readable code where all behavior for a specific class is within that
class.

There were some other design trade-offs made. The design of Catscript’s syntax
was intentionally made to be similar to Java and JavaScript. This was done to open the
door to bytecode compilation and translation. This is because the more similar a
language is to another the easier it is to implement translation and compilation.

Section 7: Software development life
cycle model

In the Catscript development, we used test first, test-driven development. This
allowed us to have our end goal in mind the entire time. With tests being given at the
start we just had to focus on the implementation. It also assisted with clarifying exactly
what we were supposed to accomplish. One area I can see how this cycle could have
harmed our design is that it would make pivoting or modifying the design of the
language more difficult as tests would have to be rewritten. However, considering that



we as students were not in charge of the overall architecture of the project that was not
an issue. The tests were also structured in such a way that as you implement each one
you’re setting yourself up well to complete later tests that you otherwise would have
been unable to.


