

Capstone Portfolio
CSCI468 Compilers - Spring 2024

Hoang Dang

Tester: Jake Ripley

Program

The source code is linked here:

https://github.com/sunchip39/csci-468-spring2024-private/tree/main/capstone/portfolio

Teamwork

The project was divided into five phases: Tokenization, Parsing, Evaluation, Bytecode

Generation, and lastly Partner Testing. Each team member was responsible for

developing their own solution for implementing the Catscript language. Additionally,

they created and ran tests on each other's solutions. This approach ensured that the

codebases created by each team member could withstand the comprehensive testing.

Design Pattern

Memoization was used in the design of the Catscript system. This pattern aimed to

minimize the redundancy of operations within the language’s architecture. Memoization

advocates for the retention of function or process outcomes. For instance, if a function

is frequently invoked, memorization suggests storing the input and corresponding result

so that no redundant processing is executed.

The application of Memoization is exemplified in the ‘getListType()’ method within the

‘CatscriptType’ class, Through this implementation, just a single ‘ListType’ is generated

for ‘CatscriptType’; reducing memory overhead and enhancing runtime efficiency.

The implementation is located at:

https://github.com/sunchip39/csci-468-spring2024-

private/blob/main/src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java

https://github.com/sunchip39/csci-468-spring2024-private/tree/main/capstone/portfolio
https://github.com/sunchip39/csci-468-spring2024-private/blob/main/src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java
https://github.com/sunchip39/csci-468-spring2024-private/blob/main/src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java

Technical Writing

Catscript Documentation

Catscript is a straightforward scripting language with static typing, compiling directly to

JVM bytecode. Below are the core features and syntax of Catscript.

Comments

To annotate Catscript code, use double forward slashes //.

Variables

Declare variable statements using the keyword var.

Types

Explicit typing is used, denoted by a colon : followed by the type. Type is inferred

unless declared.

Supported types include:
• string

• int

• null

• object

• list

• bool

Print Statement

Output to the console using the keyword print.

// example comment

var x = "Hello World!"

var y : int = 10

Unary Expressions

Use the minus symbol - to negate variables:

Use the not keyword to negate booleans:

Equality Operands

Equality can be checked by using the == and != operators.

Comparison Operands

The following comparison operations are supported:

For Statement

print(10) // outputs the number 10.

var int = 5

print(-int) // outputs -5

var boo = true

print(not boo) // outputs false

5 == 1 // evaluates to false

5 != 1 // evaluates to true

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Examples -

5 > 0 // evalutes to true

5 < 0 // evaluates to false

5 >= 0 // evaluates to true

5 <= 0 // evaluates to false

Using the keyword in, a for-loop can be used to iterate over list items.

If-Else Statements

Using the keywords if, else, and if-else allow for conditional logic.

Math Operands

The following basic math operations are supported:

var list =

[1,2,3,4,5] for (i

in list) {

print(i) // prints all items in the list.

}

if (x = 10) {

print("x is equal to 10")

} else if (x < 10) {

print ("x is less than 10)

} else {

print ("x is greater than 10)

}

+ Addition

- Subtraction

* Multiplication

/ Division

Examples -

print(10 + 2) // outputs 12

print(10 - 2) // outputs 8

print(10 * 2) // outputs 20

print(10 / 2) // outputs 5

Function Calls

Use the keyword function followed by the identifier name to define a function.

Return Statements

Use the keyword return to exit a function and if desired return a value to the caller.

Design Trade-Offs

A significant decision in our project was the approach to separation of concerns.

Traditionally, SWE principles advocate for clear separation of different

functionalities. However, we chose to deviate from this to prioritize simplicity and

clarity. Specifically, we tightly coupled evaluation and compilation procedures to

parse tree nodes, bypassing the usual separation of concerns. This decision

enhanced organization and aided in faster development. Additionally, instead of

function foo() {

print("Hello

World!")

}

foo()

x = 1

y = 2

function add(x, y) {

return x + y // evaluates to 3

}

using a parser generator, we chose to implement our own parser using recursive

descent, allowing us to create a parser that mirrors the language’s grammar.

Software Development Life Cycle Model

The Catscript project was developed using the test-driven development

methodology, organizing our software development life cycle around incremental

testing milestones. With each phase – from Tokenization to Parsing, Evaluation,

and Bytecode – we utilized a series of tests to validate milestone completion. This

approach ensured integrity of the language at every step, as successful test

executions indicated progress and readiness for the next phase.

UML

No UML was needed or used for this project because the overall design was pre-

determined by the professor so that we could focus on parsing. Here is a basic class

diagram showing the functionality of parsing expressions and statements.

