
Catscript Compiler: CSCI - 468 Capstone
Ivan Cline

Matthew Keck
Spring 2024

Program

I have included a link to the zip file containing the Catscript compiler source code here:
source.zip, or within the ”source/src” directory.

Teamwork
For this capstone project, I mainly focused on the implementation of the Catscript

Compiler. This included programming the tokenizer, parser, evaluator, and bytecode compilation
steps in Java. I also ensured that the Catscript compiler passed the unit tests needed to have a
functional compiler, these tests were provided to me in the Compilers class. My partner,
Matthew Keck, provided me with three additional unit tests to ensure that my compiler was
working correctly. The first unit test included checking for valid return coverage in function
definitions, the second unit test ensured that equality expressions were correctly evaluated
when the expressions included in the binary operation were function calls. Finally, the third unit
test ensured that the type inference system for list component types inferred correctly. My
partner also wrote all of the documentation for my Catscript compiler, describing and providing
examples for the unique features and behaviors of the Catscript programming language.
Overall, I value my partner’s contribution to this project.

I would say that we both put a large amount of our time and effort into ensuring quality in
this project. The documentation can be found within this write up in the section labeled
“Technical Document”. My partner’s unit tests can be found below, and can also be found in the
”source\test\java\edu\montana\csci\csci468\demo\PartnerTests.java” file.
/*
The functionDefinitionStatementHasReturnCoverage test verifies that the
function definition statement throws a parse error
(ParseErrorException). When there is not a return statement in every branch of
execution. The first statement
doesn't have a return in either branch of the if statement. The second and
third branches have a return in one branch and not the other.
*/
@Test
public void functionDefinitionStatementHasReturnCoverage() {

assertThrows(ParseErrorException.class, () -> {
FunctionDefinitionStatement expr1 = parseStatement("function x(a : int)

: int {if(a > 10){ } else { }}");
});
assertThrows(ParseErrorException.class, () -> {

FunctionDefinitionStatement expr2 = parseStatement("function x(a : int)
: int {if(a > 10){ return 1 } else { }}");

});
assertThrows(ParseErrorException.class, () -> {

FunctionDefinitionStatement expr3 = parseStatement("function x(a : int)
: int {if(a > 10){ } else { return 2 }}");

}); }

https://drive.google.com/file/d/1S0kY65QE8t8HR0kyGWJFK7NkIb4_OHts/view?usp=drive_link

/*The equalityExpressionWorksWithFunctionCalls test verifies that the equality
expression can return the correct
value if the operators are function calls. The first program asserts that
truthy, a function that returns true, and
falsey, a function that returns false, are unequal. The second program does the
same, except it uses the
not equal to the operator (!=) instead of the equal operator (==).
*/
@Test
public void equalityExpressionWorksWithFunctionCalls(){

assertEquals("false\n", executeProgram(
"function truthy(){\n" +

"return true" +
"}\n" +
"function falsey() : bool {\n" +
"return false" +
"}\n" +
"print(truthy() == falsey())"

));
assertEquals("true\n", executeProgram(

"function truthy() : bool {\n" +
"return true" +
"}\n" +
"function falsey() : bool {\n" +
"return false" +
"}\n" +
"print(truthy() != falsey())"

));
}
/*
The listLiteralOfDifferentTypesIsAssignedObjectType test verifies that the
program assigns the type object to the list
when there are at least two types. The first expression has both integers and a
string in its list.
The second expression has both integers and a boolean in its list. The third
and final expression has both a null object and integers in its list.
*/

@Test
public void listLiteralOfDifferentTypesIsAssignedObjectType(){

ListLiteralExpression expr1 = parseExpression("[1, \"2\", 3]");
ListLiteralExpression expr2 = parseExpression("[1, 2, true]");
ListLiteralExpression expr3 = parseExpression("[null, 2, 3]");

assertEquals("list<object><object>", expr1.getType().toString());
assertEquals("list<object><object>", expr2.getType().toString());
assertEquals("list<object><object>", expr3.getType().toString());}

Design Pattern - Memoization
A valuable design pattern that I chose to implement for this project was the memoization

design pattern. Memoization was utilized in the “CatscriptType” class. The memoization pattern
was used to quickly return the ListType for a Catscript list by looking up the Catscript component
type as a key within a hashmap named “cache”. If that key did not exist, I would add the type as
a key in the hashmap and have it point directly to the correct ListType.

This allowed for a constant time assignment and “creation” of ListTypes if the component
type had already been added as a key to the “cache” hashmap. Catscript allows recursive list
types, for instance, a list containing a list of integers would be a ListType “list<list<int>>”. When
we constantly have to infer the type of these lists and instantiate new ListType objects, it can get
computationally taxing, this is a notable benefit of utilizing the memoization design pattern. See
my implementation of the memoization pattern below.

Technical Document
Catscript Documentation

The Catscript scripting language supports two main syntax features, statements and
expressions, to perform computations. The statements group includes if, for loop, print, variable,
function definition, and assignment statements. The expressions group includes equality,
comparison, additive, factor, and unary expressions. The documentation below describes,
explains, and gives examples of the statements and expressions in Catscript.

Statements

For Loop Statement

Catscript has only one iteration tool that allows the user to iterate over all list elements.
In the example below, x represents the reference to the current component of the list for that
iteration. Variables declared inside the for loop are considered first before checking if there is a
global variable of that name. In other words, for loops have a local scope.

for(x in [1, 2, 3]){

print(x)

}

If Statement
Catscript supports only two kinds of control flow: if statements and else statements.

There are no else if statements or switch statements in the Catscript language. The expression
that controls the flow of logic in the if statement must be an expression that produces a true or
false value. Therefore, the only expressions that can be used are equality, comparison, and
boolean expressions.

if(x > 10){

print(x)

}

if(x > 10){

print(x)

} else {

print(10)

}

Print Statement
The print statement allows users to output the contents of an expression to the terminal.

print(x)

Variable Statement
Variable statements allow the user to allocate memory for a specific type. Catscript is a

strongly typed language; however, the variable statement supports type inference, meaning the
user can declare the variable type or let the compiler determine the type. Catscript supports five
types for assigning the variable statement: int, string, boolean, object, and list. Examples of
each assignment can be seen below. Because Catscript is statically typed, the variable's name,
once declared, is reserved and can't be used in the same scope for other variables in that
scope.

var x = "foo"

var x : list<int> = [1, 2, 3]

var x : object = null

var x : string = "hello world"

var x : bool = true

Assignment Statement
The assignment statement in Catscript allows allocated memory to be assigned new

values. Because Catscript is strongly typed, the assignment must be the same type as the
declared variable; more information is available in the variable statement.

x = null

Function Definition Statement and Return Statement
The function definition statement allows the user to jump to chunks of code and return to

where the function was called. Functions are also typed based on what the function returns. If
no return is used, the function return type is considered void. A return must be declared on
every branch of computation unless the function's return type is void. All variables declared in
the function are locally scoped and will be referenced first before variables in the global scope.
The return statement is used in function definitions by using the keyword (return) followed by
nothing to return null or an expression. Return statements must return the same type as the
function.

function x() {

print(1)

}

function x(a, b, c) {

print(a)

print(b)

print(c)

}

function x() : int {

return 10

}

function x(a : object, b : int, c : bool) {

print(a)

print(b)

print(c)

}

Expressions

Equality Expressions

The equality expression is evaluated as true or false depending on whether its two
operands are equal or not equal. The equality expression has two operators, equals (==) and
not equals (!=). The equality expression must have two operands. The types the operands are
allowed to be an int, boolean, string, and null. If the two operands are integers or booleans, the
expression checks whether the values of the integers are equal or not. If the type of the
operands are not both integers or booleans, the equality expression tests whether or not they
are the same object. The equality expression doesn't test if two strings are the same.

1 == 1

output: true

1 != 1

output: false

true == true

output: true

null == null

output: true

true != null

output: true

true != 1

output: true

Comparison Expressions
The comparison expression evaluates two integer operands as true or false depending

on one of four operators used. The four available operators are less than (<), greater than (>),
less than or equal to (<=), and greater than or equal to (>=).

1 >= 1

output: true

1 > 1

output: false

1 <= 1

output: true

1 < 1

output: false

Additive Expressions
An additive expression can be evaluated as one of two different values. Two integers

produce the first value as the difference or addition of the two integer literals. The second value
is made by two types that are not integers, and the value will be the concatenation of them to a
string. Examples of this can be seen below. An additive expression is left associative; the last
example shows this property. The operators available to the additive expression are the addition
sign (+) and the subtraction sign (-). The plus (+) operator must be used to concatenate strings.

1 - 1

output: 0

1 + 1

output: 2

1 + "a"

output: "1a"

"a" + 1

output: "a1"

null + "a"

output: "nulla"

"a" + null

output: "anull"

1 - 2 - 1

output: -2

Factor Expressions
The factor expression evaluates two integers as the product or quotient of the two

integer literals. The two operators are (*), which corresponds to multiplication, and (/), which
corresponds to division. Factor expressions, like additive expressions, are left-associative.

3 * 4

output: 12

12 / 4

output: 3

1 / 2

output: 0

24 / 2 * 2

output: 24

Unary Expressions
Unary expression evaluates two different values, depending on the operand type. When

the operand is an integer, the value produced is the reverse of the operand's sign. When the
operand is a boolean, a true value is evaluated to be false, and a false value is evaluated to be
true. The operator for integer types is the minus sign (-), and the keyword (not) is used for
boolean types.

not true

output: false

-1

output: -1

Function Call Expressions
The function call expression allows the user to refer to the function definition statement

by passing values for each of the definition's arguments and receiving a value that is the result
of the computation performed in the function definition statement.

foo(1, 2, 3)

Parenthesized Expressions
The parenthesized expression allows a user to increase the precedence of other

expressions. The example below shows that we add precedence to the additive expression,
which usually has lower precedence than the factor expression. The operators for
parenthesized expressions are opening and closing parentheses.

(5+10)*2

output: 30

Identifier Expression
The identifier expression allows the user to reference allocated memory with a variable

name. The variable name must be a word that starts with a letter of the alphabet or an
underscore followed by zero to many letters or numbers. The identifier expression is used for
names in many other Catscript statements, such as function definition, function argument,
function call, variable, for loop, and assignment. Wherever we need to reference, a name-value
pair identifier expression is used. The code block below gives an example of the identifier
expression being used in a print statement.

var x : list<int> = [1, 2, 3]

print(x)

output: [1, 2, 3]

Integer Literal Expression
Integer literal expressions are Catscripts representation of integers. The number

characters one through nine and the minus sign are used to represent the class of both negative
and positive integers. The example below shows a variable statement storing a positive integer
and negative integer. Integer literal expressions can be the operands for many expressions such
as equality, comparison, additive, factor, unary, and parenthesized. Integer literal expressions
are often the values that are stored by a list literal expression, variable statements, and

assignment statements. Integer literals are given the int typing according to the Catscript type
system.

var x : int = 12984

var x : int = -490460

String Literal Expression
String literal expressions are Catscripts representation of strings. String literal

expressions can be declared using opening and closing quotations; the example below shows a
string being stored with a variable statement. The characters allowed in the quotes are any
character in the alphabet, any symbol, and any integer. String literal expressions are operands
for the additive expression and the equality expression. They can also be stored in a list literal
expression, variable statements, and assignment statements. The string literals are given the
string type with the string keyword according to the Catscript type system.

var x : string = “hello world”

Null Literal Expression
Null Literal Expressions are Conscripts representation of a nothing value. Null literal

expressions are operands for the additive expression and equality expression. They can also be
stored in a list literal expression, variable statements, and assignment statements. The null
literals are given the type null using the null keyword according to the Catscript type system

var x : object = null

List Literal Expressions
List literal expressions are one of two ways a user can allocate memory in Catscript, the

other being variable statements. The list literal expression can take any type in Catscript. The
list component type is converted to an object if there are different types in the list. This makes
the type of the list literal expression covariant on its component types. The list's literal
expression cannot be written to. Once the list is declared, it is effectively immutable. The
examples below show ways of storing the list literal with the variable statement. The list literal
type is declared with the list keyword.

var listOfList : list<list<int>> = [[1, 2],[1, 2],[1, 2, 3]]

var listOfString : list<string> = [“hello world”, “goodbye

world”]

var listOfObject : list<object> = [null, “hello”, 3, true,

[1, 2, 3]]

Boolean Literal Expressions
Boolean literal expressions consist of two keywords: true and false. As you would

expect, the boolean literal expression evaluates the true keyword to a true value and the false
keyword to a false value. The boolean literal expression only has operands, no operators. The
type of the boolean literal is declared with the bool keyword.

var trueBoolean : bool = true

var trueBoolean : bool = false

UML - Sequence Diagram
The sequence diagram that I included in this project will allow someone to visualize the

recursive nature of a recursive descent parser. I showcased how the compiler would parse the
already tokenized statement “if(20>10){print(x)}”, so that we may build a parse tree for
evaluation. I have three diagrams below. Directly below is the Parse “if(20>10){print(20)}”
sequence diagram, which shows the entire process of parsing the if statement. Within the Parse
“if(20>10){print(20)}” sequence diagram, there are references to other diagrams denoted by the
REF tag; these referenced sequence diagrams can be found within this section as well. I added
references to other diagrams to make the Parse “if(20>10){print(20)}” sequence diagram more
aesthetically pleasing. Think of these REF sequence diagrams as zoomed in portions of my
sequence diagram that had to be moved elsewhere in this document.

Parse “if(20>10){print(20)}”

REF: parseComparisonExpression

REF: parseInteger(x)

Design Trade Offs - Recursive Descent vs a Parser Generator
The main design trade-off that was considered during the creation of the Catscript

compiler was whether I should use a recursive descent parser or a parser generator. Parser
generators are essentially code generators. They are somewhat related to transpilation, as they
typically take some lexical grammar in the form of a regular expression or grammar in the form
of EBNF as an input, and output a generated tokenizer and parser for your described language.
The parser generator that we talked about in the Compilers class was the ANTLR, or “Another
Tool For Language Generation” parser generator.

To complete the first step of parsing, which would be lexing, this parser generator tool
takes, as input, a .g file, which is where you would specify your language’s syntax. ANTLR
would then provide you with a generated Java file named “org.example.TLexer.class” that
would act as your compiler’s tokenizer or lexer. Creating the Catscript tokenizer without a parser
generator was a lot more of an involved process, as it involved writing the entire tokenizer by
hand in Java. This process took time, however, I believe that in contrast to using the ANTLR
parser generator, I was given the freedom to tokenize Catscript however I would like with almost
no restrictions. Also, the handwritten tokenizer was far easier to debug. A very real issue with
the ANTLR parser generator, and parser generators in general, is that the code they generate is
incredibly unreadable and almost impossible to debug. The tokenizer I wrote by hand may have
lacked some level of optimization that the ANTLR parser generator possessed, but it was well
worth it to understand and have control of every step in the Catscript tokenization process.

Creating a generated parser with a parser generator was very similar to creating a
generated lexer. The finished generated parser would be the tool that generates and validates a
parse tree for evaluation given an input of tokens from the tokenizer, or lexer. The parser
generator tool would once again take, as input, a file with a list of EBNF rules to describe your
language’s grammar. It would then output a Java file named “org.example.TParser.class“ that
would be capable of lexing and parsing text files using your described grammar rules. Creating
the Catscript parser without a parser generator involved implementing the recursive descent
algorithm by hand.

The recursive descent algorithm for parsing is very intuitive and understandable while
also being incredibly flexible and expressive. Handwriting the recursive descent parser in Java
provided me with a rich understanding of the recursive nature of programming languages. It also
provided me with the freedom to describe my grammar in whichever way I wanted and was still
readable enough to debug and make further additions to. While using a parser generator is
arguably a much quicker process, the intuitiveness and readability of my handwritten recursive
descent parser likely saved me the time I took to write it through the ease of debugging alone.
Using a parser generator also likely produces a more well-optimized parser, but those runtime
gains do not tip the scales enough in favor of parser generators. Implementing the recursive
descent algorithm by hand for Catscript has its many drawbacks as well, but when compared to
a parser generator, utilizing recursive descent was undoubtedly the correct choice.

Software Development Lifecycle- Test-Driven Development
The Catscript compiler project's software development lifecycle was directly inspired by

Test-Driven Development (TDD). Test-driven development involves fulfilling a large set of
predetermined tests within a test suite as a way to track progress and add new features. If I
were to continue this project, the addition of new features would also be driven by new tests,
systematically adding more test cases to my test suite, while ensuring that the tests in the initial
suite still work once the new feature has been fully implemented.

Using this software development lifecycle allowed me to verify that none of my changes
or additions to the Catscript compiler were breaking other features I had coded before, and gave
a satisfying measurement for tracking the production progress of my program. It also made
debugging my code far easier, as I knew exactly what features in my code were failing, and
could easily set breakpoints to hunt down the error in my code for that particular issue.

The tests in my test suite were provided to me in the Compilers class, and three of the
tests in the test suite were provided to me by my partner. Writing tests that adequately cover all
possible edge cases in my Compiler is likely not possible. However, this initial set of tests and
the tests provided by my partner were adequate to create a fully functional Compiler that can
handle typical use cases. This gives me a great product to start from, expand on, and share with
the public if I so wish. Furthermore, utilizing the test-driven software development lifecycle
inadvertently provided me with a huge suite of tests, and to some extent, documentation for
others who would like to work on it including myself. Test-driven development worked very well
for this particular project, and I am excited to use this framework in future projects going
forward.

