
CSCI468 Compilers
Capstone Portfolio

Spring Semester 2024

Jack Hayward
Garrett Mullings



Section 1: Program

Here is a link to my github repository containing my source code that I
wrote for my csci468 “Catscript” language compiler.

There is a zip file included in my /capstone/portfolio/ directory.



Section 2: Teamwork

We engaged in peer review for this project to satisfy the
teamwork requirement for the capstone. Team Members each wrote
their own compiler, and teammates helped debug and optimize source
code on occasion. Each team member wrote new tests to add to the
provided test suite to double check the functionality of our program in
edge cases and scenarios that may have been overlooked in the
original test suite. Additionally, team members published
documentation for each other's programs, so that the code would be
clear and understandable for anyone who wishes to use our Catscript
language compilers. The teamwork section allowed both team
members to get comfortable with coding collaboratively as well as
thinking out of the box to find possible edge cases or gaps that may
not be accounted for in the tests. Overall the teamwork section helped
prepare us for a career experience.

In terms of what percentage of the work was completed by each
team member, Team member 1 did 95% of the work for his own
portfolio, and Team member 2 did about 5% of the work. This work
was only supplementary and served the purpose of refining this
portfolio. Team member 2 has their own portfolio, in which Team
member 1 contributed about 5% of the total work. Due to the nature of
this exchange, it is only reasonable to conclude that each team
member did equal amounts of work on this project.



Section 3: Design Patterns

The design pattern we chose to implement was the visitor
pattern. The main idea with the visitor design pattern is to separate the
algorithms and methods from the underlying data structure, so that
methods can be added, removed, or changed without having to modify
the data structure. In the Catscript compiler, the main data structure
that we were using was a Parse Tree. The parse tree is very large and
complicated in terms of its code base, and it would be extremely costly
to need to make adjustments to it. We used the visitor pattern in the
evaluation and compilation steps of the compiler, where a Visitor
would walk the parse tree and evaluate, execute, or compile each
node. Using this pattern allowed us to be able to adjust the methods
and implementations for these steps without having to touch our
underlying data structure, the parse tree.



Section 4: Documentation
Here is my documentation for the Catscript language. This link goes to a markdown file where
the formatting is a little neater. Section 5 picks up again on page 13.

Catscript Guide
This document serves as an introductory guide to the catscript programming language.

Introduction

Catscript is a simple scripting language. Here is an example:

var x = "foo"
print(x)

Output:

Foo

Features

For loops

For loops are used to iterate over a known range of values. This can be particularly
helpful to iterate through lists. The following example will iterate through the given list,
and print each value.

for(x in [1, 2, 3]) {
print(x)

}

Output:

1
2
3

https://github.com/jacksmagicshirt/csci-468-spring2024-private/blob/main/capstone/portfolio/CatscriptDocumentation.md


You can also use a for loop to iterate over a pre-existing list:

var nums : list<int> = [1, 2, 3]
for(x in nums) {

print(x)
}

Output:

1
2
3

If Statements

If statements are used to perform an action if some given condition is true. In the
following example, the program checks the value of a variable named x, and if it is less
than 10, it will print the value of x.

var x : int = 7
if(x > 10) {

print(x)
}

Output:

7

Else Statements

We can build on if statements with the else statement:

var x : int = 12
if(x < 10) {

print(x)
} else {

print(10)
}
Else statements will run if the if statement evaluates to false. In this case, if x is 10 or
more the program will print 10.

Output: 10



Print Statements

The print statement is used to output values to the console.

print("Hello World")

Output:

Hello World

Types

Catscript supports the following types:

boolean

Booleans can hold the value True or False.

var falseExample : bool = false
var trueExample : bool = true

In catscript, boolean values are typed in all lower case.

integer

Integers in Catscript are represented in 32 bits and can hold any whole number,

i.e 0, 1, 2 3, etc.

var x : int = 10

string

Catscript supports strings, which can consist of any sequence of ASCII characters.

var str : string = "Hello World"

Object

The object type can hold many different types. It is also the default when no type is
defined.



var obj : Object = "Object"

Object is the default type when no type is defined.

function x(a, b, c) {}

In the above code snippet, catscript will recognize the type of the parameters a, b, and c
as Objects.

list

A list is always assigned to a variable, and follows the standard variable syntax for
catscript. To assign a list to a variable, you must specify the variables type as a list, and
specify the type of values the list will hold:

var x : list<int> = [1, 2, 3]

In catscript, lists cannot contain values of different types.

null

Catscript supports a null type, which represents the absence of a value.

var x = null

Variables

When declaring a variable, catscript supports both implicit typing as well as explicit
typing.

Explicit typing

In the following example, the type is explicitly declared.

var x : int = 10

Implicit typing

In the following example, the type is not explicitly declared, and is instead inferred.

var x = 10



Assignment

Variables can be reassigned after their initial declaration, as long as the type of the new
value is the same as the type of the variable’s previous value.

var x : int = 10
x = 15

Scoping
Catscript uses a static scoping system instead of a dynamic scoping system. This means the
scope is designated off of the position of the variables in the source code instead of the
condition of the runtime stack. Here is an example function that displays the scoping.

var x : int = 10
function func() {

var x : int = 20
print("Inside func: x = " + x)

}
print("Outside func: x = " + x)

Output:

Inside func: x = 20
Outside func: x = 10

Functions

Functions are a core building block of catscript. They consist of a set of statements, can
take 0 or more inputs, and perform a task and/or returns a value.

Function Declaration

Function definition consists of the function keyword, a list of parameters, and the
function body. The following code defines a very simple function called HelloWorld,
which takes no parameters and prints the string "Hello, World!".

function HelloWorld() {
print("Hello, World!")

}

Output:

Hello, World!



Functions with parameters

to define a function with a set of inputs, or parameters, add the desired parameters
between the parentheses:

function sum(a, b) {
print(a + b)

}

The above example will print the sum of the parameters a and b when called. If a and b
are strings, they will be concatenated.

We can also require parameters to have a particular type:

function sum (a : int, b : int) {
print(a + b)

}

This will only allow integers as parameters.

Returning a value

If we wish to return a value from a function, we must provide the return type and add a
return statement:

function sum:int(a : int, b : int) {
var total : int = a + b
return total

}
print(sum(1,2))

Output:
3

Now, instead of printing the sum we will return it.



Function Calls

Take the following function:

function sum (a : int, b : int):void {
print(a + b)

}

In order to call this function, we will use its name and any necessary parameters as
shown in the following example.

sum(2, 2)

Output:

4

Math operators

Catscript supports the following four mathematical operators:

Addition

Add two integers together.

print(2+2)

Output:

4

Subtraction

Subtract the second integer from the first.

print(4-2)

Output:

2



Multiplication

Multiply two integers together.

print(2*2)

Output:

4

Division

Divide the first integer by the second integer.

print(4/2)

Output:

2



Section 5: UML
Here are the UML diagrams that I made for Catscript Language

Compiler.

Here is a UML Sequence Diagram which displays the recursive parsing logic for this
example snippet of a Catscript program.

```Catscript
// this function takes an int and calls itself recursively until the input is 0

Function example(input:int):void {
If (input != 0){

example(input-1);
}
print(“Input has been reduced to 0”)

}
```

This shows the recursive nature of the parser, as the parser cascades through
the grammar and trickles back up from the bottom as primary expressions are
evaluated. Eventually, when the exterior recursion from the function is finished,
Statement goes down to print statement to output the string “input has been reduced to
0”. The parser has to go back up the grammar and parse through to get the string from
primary expression, then the parser returns to the top of FunctionDefinitionStatment so
that It can continue to parse the code that might follow this function definition.



Section 6: Design Trade-Offs

The primary design trade off we made during this project was to
hand write a Recursive Descent Parser instead of using a Parser
Generator tool. It is my understanding that typically in academia, tools
that automate parser generation and tokenizer generation are widely
used to streamline the speed at which a compiler is completed.
However, these generator tools can often write code that is very
complicated and frankly difficult to understand. They use randomized
generic variable names and abstract recursion and looping to achieve
a similar effect as a handwritten parser. These tools often end up
implementing a recursive descent pattern at the end of the day
anyways. So even though it may have taken us more time to
handwrite the parser, overall it makes it easier to read and debug, and
resulted in significantly less lines of code than a generated parser.

Choosing to handwrite the parser also gave us a tremendous
academic advantage. Developing this code by hand gave the students
an intimate understanding of the functionality of the parser, and
allowed us to control the readability of our code. By writing it
ourselves, we were forced to use representative and understandable
names for functions and variables, which significantly increased the
overall human digestibility and cognition of the compiler. In other
academic settings, students may construct a compiler using
generative tools, however if they need to make changes or debug this
generated code, it would be immensely difficult to understand. While it
surely took many many more hours to implement the parser using this
method, the students gained a much deeper understanding of the
internals of this system on top of producing a more concise, more
readable final product.



Section 7: Software Development Life Cycle
Model

The software development life cycle model that we used in this
project was Test Driven Development. Luckily for the students, most of
the tests for this project were prepared by our professor. This is a
realistic experience to prepare us for a career as most software
companies will have a separate department for testing. The tests were
comprehensive to cover all tokenizing, parsing, evaluation, and
compilation functionalities that the program would need to successfully
compile programs in the Catscript Language. Overall, there was 152
tests included to check the functionality of the tokenizer, the parser,
the evaluation of expressions, the execution of statements, and the
compilation of functioning java bytecode. As part of the teamwork
portion of this class, we wrote supplemental tests to double check the
functionality of complex scenarios and edge cases.

This development life cycle model was very helpful to our team.
It forced us to make sure that we didn’t leave loose ends or dead code
in our project. It also allowed for us to be able to monitor our
functionality in checkpoints so that we didn’t build new software on top
of dysfunctional or incomplete code. The tests were organized in a
similar fashion to the structure of our parser, and completing the tests
in order alleviated the risk of having issues down the road. Consider
the example where compilation tests are failing due to an error in the
parser implementation instead of an error in the compilation
implementation. This problem would be very difficult to debug, and
then would likely imply a myriad of changes to be made to all the code
that has been written since the bug was introduced. So test driven
development helped us ensure complete functionality of top level
processes before beginning implementation of lower level processes
in the parse tree.


