
CSCI 468 Compilers Capstone
Section 1: the src.zip file can be found at :

Section 2: this is the unfortunate part. I got very busy with getting everything done for all my classes for the past
couple months and forgot I needed to find a partner until this last week before finals, at which point it was too late. So,
instead I just did my partners portion for my own compiler wherein I made 3 tests for my compiler located in "partner
tests" and the documentation I am submitting is my own and not my partners. As the rest of this capstone course was
independent, I am hoping you will not judge me too harshly for my oversight. I feel that my documentation is
adequate for familiarizing a user with the basics of how Catscript works. I went over every expression and statement
possible as well as provided copious examples on what works and what causes an error. As for my 3 tests, I focused on
areas that the normal classwork tests didn't. my tests were mostly on testing incorrect type errors as well as combining
multiple different statements into 1 more realistic function. What I found in doing this is that while my code is
adequate for compiling single statements, it struggles to compile more complex compound statements especially
where if-statements are involved. This is definitely something I would have liked to address if I had the time to make
this a functional compiler for the function. The tests can be seen below:

public class PartnerTests extends CatscriptTestBase{
 @Test
 public void varStatementAssignedToWrongType() {
 //This Test is to determine if the type assignment to the variable results in correct error handling
 assertEquals(ErrorType.INCOMPATIBLE_TYPES, getParseError("var x : int = \"hello\""));
 assertEquals(ErrorType.INCOMPATIBLE_TYPES, getParseError("var x : string = 1"));
 assertEquals(ErrorType.INCOMPATIBLE_TYPES, getParseError("var x : bool = 1"));
 assertEquals(ErrorType.INCOMPATIBLE_TYPES, getParseError("var x : bool = \"true\""));
 }
 //This test verifies that variables work properly in higher and lower scopes
 @Test
 void returnStatementWorks() {
 assertEquals("1\n2\n3\n", executeProgram(
 "function foo(x : int){\n" +
 "print(1)\n" +
 "print(2)\n" +
 "print(3)\n" +
 "}\n" +
 "foo(9)"
));
 assertEquals("11\n", executeProgram(
 "Var output : int = 0\n" +
 "for(y in [1,2,3]){\n" +
 "output = y + x\n" +
 "}\n" +

 "print(output)"
));
 assertEquals("11\n", executeProgram(
 "function foo(x : int) : int {\n" +
 "Var output : int = 0\n" +
 "for(y in [1,2,3]){\n" +
 "output = y + x\n" +
 "}\n" +
 "return output \n" +
 "}\n" +
 "print(foo(9))"
));
 }
//this is a test of the ByteCode generation on more complicated expressions
 @Test
 void printStatementWorksProperly() {
 assertEquals("10\n", compile("print(1 + 2 + 7)"));

 assertEquals("false\n", compile(
 "Var x = true\n" +
 "if(x == true){\n" +
 "print(x)\n" +
 "}"
));
 }
}

Jacob Hargiss
https://github.com/HAjacob/csci-468-spring2024/blob/main/capstone/src.zip

CatScript Language Documentation
The CatScript language is a programming language designed to be similar in structure to JavaScript for use in the CSCI-468 Compilers course at Montana State

University. CatScript is a bare bones Dynamically typed language, meaning the variable types are determined at runtime, not at compile time. This results in a

programming language where types do not have to be specified in code. It is meant to strike a balance between having good readability and good writability. Due to

It's role as an educational tool, it lacks many creature comforts of a normal programming language but allows students to have an easier time building the compiler

for it.

Features:
Expressions:

Additive Expressions:

The additive expression allows the user to program summation and subtraction operations between integer type expressions. As well as adding and subtracting

integers, the additive expression can be used to concatenate string type expressions, including adding an integer to a string value

Examples:

 print(1 + 10)

 Result: 11

 print("ham " + "sandwich")

 Result: "ham sandwich"

 print(1 + " more")

 Result:"1 more"

Unary Expressions:

The Unary Expressions allow the user to get the inverse of a boolean type expression using "not" or the negative of an integer type expression using "-".

Examples:

 print(-(1 + 2))

 Result: -3

 print(not(true))

 Result: false

Comparison Expressions:

Comparison expressions allow the user to compare 2 expressions of integer type with ">", ">=", "<", and "<=". These comparison instructions can only be applied to

integer expressions.

Examples:

 (1 > 2)

 Evaluation: false

 (1 < 2)

 Evaluation: true

 (1 > 1)

 Evaluation: false

 (1 < 1)

 Evaluation: false

 (1 >= 1)

 Evaluation: true

 (1 <= 1)

 Evaluation: true

Equality Expressions:

Comparison expressions allow the user to compare 2 expressions to check if they are equal. If they are of different types, then the expression will return false.

Examples:

 (1 == 1)

 Evaluation: true

 (1 != 1)

 Evaluation: false

 (1 == 2)

 Evaluation: false

 (1 != 2)

 Evaluation: true

 ("1" == 1)

 Evaluation: false

 ("1" ! 1)

 Evaluation: true

 ("1" == "1")

 Evaluation: true

 ("ham" == "sandwhich")

 Evaluation: false

 (true == true)

 Evaluation: true

 (true == false)

 Evaluation: false

 (true != false)

 Evaluation: true

 (1 == null)

 Evaluation: false

 (1 != null)

 Evaluation: true

 (null == null)

 Evaluation: true

Factor Expressions:

The Factor Expressions allow the user to multiply and divide 2 integer type expressions. If the left hand side expression is not the same type as the right hand side or

they are not of type integer, it will result in an Incompatible Type Error

Examples:

 print(1 * 2)

 Result: 2

 print(10 / 2)

 Result: 5

 print(10 * "baked beans")

 Result: Incompatible Type Error

Parenthesized Expressions:

Parenthesized expressions allow the user to define order of operations of a complex expression. This enables more complex mathematical equations and other

operations to be preformed correctly without regard to the default evaluation scheme.

Examples:

 (2 * 2 - 2)

 Result: 2

 (2 * (2 - 2))

 Result: 0

Identifier Expressions:

Identifier Expressions define the type of expression,

Examples:

 int:

 Denotes a variable as being of type integer

 string:

 Denotes a variable as being of type string

 bool:

 Denotes a variable as being of type boolean

 object:

 Denotes a variable as being a generic type

 Any type can be passed to a variable of type object

 null:

 Denotes a variable has a missing or unassigned value

 void:

 Denotes a function has no type so no return value be expected

Type Literal Expressions:

These expressions exist to define the type of a function or variable. They include "int", "bool", "list", "null", "object", and "string'

Examples:

 Var x : int

 Result: x can contain any valid integer value

 Var x : string

 Result: x can contain any valid string value

 Var x : bool

 Result: x can contain "true" or "false"

 Var x : null

 Result: x has no type. When a value is assigned, the variable type will be set.

 lists:

 used with an implicit type or an explicit type

 Examples:

 Implicit type:

 Var x = [1, 2, 3, 4]

 Type: list<int>

 Results: x[0] : 1

 x[3] : 4

 Explicit type:

 Var x : list = ["apples", "oranges", "grapes"]

 Type: list<string>

 Results: x[0] : "apples"

 x[2] : "grapes"

 Var x : list<string> = ["apples", "oranges", "grapes"]

 Type: list<string>

 Results: x[0] : "apples"

 x[2] : "grapes"

 Explanation: When defining the explicit type of list, the type of items held

 in the list can also be specified also be specified by including

 a type litteral expression between '<' and '>' characters in the

 form of: list<'type literal'>

Statements:
Variable Definitions:

This statement allows the user to define a new variable of a given name with or without an explicit type reference and assign. The user is able to assign a value to it

at time of definition or leave it unassigned.

Examples:

 Var x : int = 1

 Evaluation: new variable named "x" is set with a type of "int" and the value of 1

 Var x = 1

 Evaluation: new variable named "x" is set with a value of 1 and its type is

 set to the type of that litteral expression used, in this case "int"

 Var x : string

 Evaluation: new variable named "x" of type "string" with no set value

 Var x

 Evaluation: new variable named "x" with no set type and no set value

Variable Assignment:

This statement allows the user to set or change the value of a variable already defined. If the type of the variable is already set then an error will be triggered if the

user tries to set a different type of value to the variable. This statement does not implicitly define a new variable if one does not exist with the given name

Example:

 Var x : int

 x = 10

 Evaluation: assigns the value of 10 to variable named "x"

For Loop:

This statement allows for iteration through a list. The user defines a variable used to hold the current element of the list, starting at element 0. The list then operates

on every statement in it's body until it reaches the last element at which point, it does 1 final execution of the body statements, then exits the loop

Example:

 For (x in ["Apples, "Oranges", "Bannanas"]){

 print(x)

 }

 Result: "Apples"

 "Oranges"

 "Bannanas"

If Statements:

These statements allow for the user to execute specified code if some boolean expression is true. This type of statement only supports boolean expressions, if any

expression is used that does not evaluate to a boolean type an error is triggered.

Example:

 print("first")

 if (true == false){

 print(true)

 {

 print("last")

 Result: "first"

 "last"

 print("first")

 if (true != false){

 print(true)

 {

 print("last")

 Result: "first"

 "true"

 "last"

Print:

The print statement allows the user to specify a specific expression to be outputted to the console. This works with expressions of all types including function calls

Example:

 print (100)

 Result: "100"

 print ("apples")

 Result: "apples"

 print ([1, 2, 3])

 Result: "[1,2,3]"

Function Definitions:

This statement defines a function that can be called later by a function call. The function definition can include input variables with implicit or explicit types. The

function definition can also declare a specific return type

Examples:

 function foo(){

 print(1)

 print(2)

 }

 Result: Creates a functioned named "foo" that takes in no variables and executes all

 statements withing the function declaration when calle.d

 function foo(x){

 print(x)

 }

 foo(7)

 foo("hello")

 Result: Creates a functioned named "foo" that takes in a single cariable named x of

 generic type and executes all statements withing the function declaration when

 called.

 Output:

 "7"

 "hello"

 Explanation: Because x is a generic type, it will be defined at runtime, so when foo(7)

 is called, that instance of the function defines x as type int and when

 foo("hello") is called that instance of the function defines x as type

 string.

 function foo(x : int){

 print(x)

 }

 foo(7)

 foo("hello")

 Result: Creates a functioned named "foo" that takes in a single variable named x of

 generic type and executes all statements withing the function declaration when

 called.

 Output:

 "7"

 Error: Incompatible Types

 Explanation: Because x is specified as being of type int, it is expecting the value

 taken in from the function call to be of type int, thus this creates an

 error since strings cannot be implicitly parsed to integers in catscript.

 function foo(a, b, c){

 print(a)

 print(b)

 print(c)

 }

 foo(1, 2, "apples)

 Result: Creates a functioned named "foo" that takes in a single cariable named x of

 generic type and executes all statements withing the function declaration when

 called.

 Output:

 "1"

 "2"

 "apples"

 Explanation: The function definition statements can declare multiple input values.

 function foo() : void {

 print(1)

 }

 Result: Creates a functioned named "foo" with the return type of void that takes in no

 variables and executes all statements withing the function declaration when

 called. Since the return type is void, there cannot be any retrun statements in

 the function.

 function foo() : int {

 return 1

 }

 Result: Creates a functioned named "foo" with the return type of int that takes in no

 variables and executes all statements withing the function declaration when

 called. Since the return type is int, there must be a retrun statements in the

 function that returns a value of type int, otherwise there will be an

 Incompatible types error

Return:

This statement is used to send the resulting value of a function to the function call that triggered it to run. The return type can be explicitly specified at function

definition. An error will result if the value being returned does not match the type of the function.

Example:

 function foo(){

 return 10

 }

 print(foo())

 print(foo() - 1)

 Result:

 "10"

 "9"

 function foo() : string{

 return 10

 }

 print(foo())

 Result:

 Error: Incompatible Types

Function Calls:
Function calls can behave as both statements and expressions. when used on their own, they are treated as statements, when used in conjunction with other

expressions they are treated like expressions. When used like "foo()" on their own they are statements, when used like "Var x = foo()" they are handled as

expressions.

Examples:

 foo()

 Result: executes function "foo" with no input

 foo(7)

 Result: executes function "foo" with the input of integer 7

 foo([1, 2, 3])

 Result: executes function "foo" with the input of list [1, 2, 3]

 foo(1, 2, 3)

 Result: executes function "foo" with the inputs of 1, 2, and 3 coresponding to 3

 different input variables of the function

 Var x = foo()

 Result: executes function "foo" with no input and assigns the value of what ever the

 function returns to variable x

Section3: For this part, we were instructed to all use the same design pattern, that being memoization.
memoization works by storing variables already created so they dont have to be created again when needed. This saves
on system resources and compute time. It is definitely a better method than just duplicating variables every time we
call a function. when implementing this feature, I accomplished this by establishing a hashmap, then if the variable
didn't exist already, I would create one and add it to the hash-map. Otherwise my function would just call a get
operation on the hash-map to get the variable I need.

Section 4: Not Applicable

Section 5:

Here I have the UML Diagram for my function definition statement parser function.
It works by first being called by the program statement, then it checkes the tokenList
for a "function" identifier and for a functionCall token (I added this to the tokenizer
to make things easier), if it sees one, then it goes on to evaluate the tokenlist as
containing a function definition. If it doesnt see one, it checks for every other
statement possible. at the end of this recursion chain, the parseFunctionDefinition
method returns its statement to the parseProgramStatement function.

Section 6: for this Course, we were given the design for a Recursive-Descent parser. However, a
parser generator could have also been used for this same task. Parser Generators work as a tool that
analyzes rules for a language model using a context free grammer and uses that to parse out the code.
While parser generators are an easier to use method, Recursive-descent offers the ability to look ahead
into the list of tokens while parsing. As well, Recursive descent also offers the ability to alter the
parsing at the base level to tweak how different sequences are interpretted. parser generators will not
do this, so any small changes require changing the grammer of the language. This makes Recursive
Descent more flexible in it's aproach to parsing

Section 7: For this class, we used Test Driven Design. In this aproach, tests are formed to put the
program through it's passes to make sure it can pass a base level of functionality. We used sepcifically,
the test first variety of this methodology. This means that the first step was to build code that passed
the tests. I am not a fan of this design method. It is too easy to pass tests based on a fluke result or miss
a neccisarry part of the functionality and end up building the rest of the code on a bad foundation.
This reults in alot of having to go back and make repairs on code that is not compatible with the next
phase of tests. As an Example, during our last round of tests, I had 3 tests that I couldnt get to work.
my code that compiled the bytecode was correct, but 2 steps earlier I had an oversight in my parser
that caused parse errors during these tests. As a result, to fix the problem I would have had to almost
entirely rebuilt the code that parses my function definitions. In my opinion, there are better ways to
start the process of building a new piece of software. For example, I think a better approach would be
to start with a UML Diagram and build a foundation on that structure before integrating testing more
near the end.

	Blank Page
	Blank Page
	Blank Page

