
Joseph Knappenberger Senior Portfolio - Spring 2024
Joseph Knappenberger
Partner: Victoria White

Section 1: Program
Please see the attached source.zip for my code

Section 2: Teamwork
There was approximately a 95%/5% spilt between myself and partner 2 on my project. I wrote the
tokenizer, parser, evaluation, and bytecode generation. Partner 2 wrote documentation and several tests.
Working together, we were able to further our understanding of the project and collaboratively learn more
than we would have on our own.

Section 3: Design Pattern
I used memoization for the getListType method in CatscriptType. I did this because the method can
generate multiple identical listTypes for each type. This duplication is unnecessary, and by using a
hashmap this redundancy can be removed.

Section 4: Technical Writing

Catscript Documentation
Provided by Victoria White

Introduction
Catscript is a simple scripting language. Here is what it looks like:

Table of Contents
Statements

var x = "Hello World!"
print(x)

1
2

Features
Catscript replicates the fundamentals of most programming languages: statements and expressions.
Statements control the flow of the code including the actions the code executes. Expressions evaluate to a
single value. Function declaration statements are separate from Statements as they are made up of
various other components that are not as streamlined as Statements.

Statements
For Loop Statement
A for loop is declared by using the word “for” and following it with a set of parentheses that contain an
identifier (the word “in”) as well as an expression. The expression is anything that reveals a list of values,
such as a list literal or a function call that returns a list of some sort. The for loop is executed as a
sequence of statements contained within curly braces for each of the items in the list that is created by the
expression. It is unique in a sense that an identifier does not need to be declared before. A sample of how
to use a for loop is shown below.

For Loop Statement
If Statement

Print Statement
Variable Statement

Assignment Statement

Function Call Statement
Function Declaration

Function Body
Parameter List

Return Statement
Expressions
Equality Expression

Comparison Expression
Additive Expression

Factor Expression

Unary Expression
Primary Expression

List Literal Expression

Function Call Expression
Argument List Expression

Type Expression

for(x in [1,2,3]){1

If statement
An if statement is declared using the keyword “if” followed by a set of parentheses containing a boolean
expression. If the expression ends up being true then the statements contained within the braces that
follow the if statement will be executed. Likewise, an else clause could be included if desired that contain
statements to be executed if the statement results in a false value.

Print Statement
A print statement is used to write a value to the output. Declared using the word “print” and followed by
parentheses containing an expression to be printed. The expression can be a variable, a string, or a value,
anything within quotations, or the result of an expression.

Variable Statement
A variable statement is used when declaring and assigning variables with an initial value. We declare using
the keyword “var” followed by an identifier, which is an optional type annotation, an equal sign, and an
expression. The expression can either be the result of an expression, a function call that returns a value, or
a literal value.

print(x)
}

//prints 1 2 3

2
3
4
5

var a = 3
if(a==5){

print("a is 5")
}else{

print("a is not 5)
}

// This prints "a is not 5"

1
2
3
4
5
6
7
8

var x = 3
print(x) //prints 3

1
2

function f(x):int{
return x*x

}

var a : int = f(3)
var b = true
var c = not(b)

print(a) //9
print(b) //true
print(c) //false

1
2
3
4
5
6
7
8
9
10
11

Assignment Statement
An assignment statement is used when the value that was previously declared needs to be changed. The
syntax consists of an identifier and an equal sign as well as an expression. An example of this is below:

Function Call Statement
A function call statement is used when invoking a function to execute its code. It consists of a function
name, and a set of parentheses containing any arguments passed to the function.

Function Declaration
Function declaration is used when defining a reusable piece of code that can be called multiple times from
various areas of the program. The keyword function is first used and then followed with the name of the
function as well as a set of parentheses containing any parameters if the function is defined with them. The
body is then wrapped in curly braces. This brings us to the next topic: the three kinds of statements used
by function declaration statements within Catscript.

Function Body

The function body is where the actual logic of the function is defined. It contains only valid Catscript
statements such as control structures, function calls, and variable declarations. The function body is
defined by the curly braces mentioned above.

var a = 3
print(a) //3
a=6
print(a) //6

1
2
3
4

var arg1 = 3
var arg2 = true
var result = functionName(arg1,arg2,3)

1
2
3

function functionName(arg1:int,arg2:boolean,arg3):int{
if(arg2){

return arg1+arg3
}else{

return arg1-arg3
}

}

1
2
3
4
5
6
7

{
if(arg2){

return arg1+arg3
}else{

return arg1-arg3
}

}

1
2
3
4
5
6
7

Parameter List

The parameter list is a comma-separated list that defines the parameters that the function accepts. Each
parameter consists of a name and an option type annotation. If there is no type annotation provided then
Catscript will try to guess the type from the value that is passed when the function is called.

Return Statement

A function can return a value using return. If the function ends up returning a value, then the return type
has to be specific to that of the function declaration. The statement is used to exit a function early at times
and also to return a value.

Expressions
Equality Expression
Equality expressions are used to compare the two values and determine whether or not they are
equivalent. Within Catscript, the double == is used to identify whether two values are equal and the classic
!= is used to check if the two values are not equal. Equality expressions evaluate to boolean values and
are frequently used as the expression in if statements.

Comparison Expression
Comparison expressions are used to compare two values and determine whether one is greater, less, or
equal to each other. They evaluate to a boolean value and are used in conjunction with if statements (not
all the time but more than often). In Catscript, there are various comparison operators as outlined below:

(arg1:int,arg2:boolean,arg3)1

return arg1+arg3

- or -

return arg1-arg3

1
2
3
4
5

var a = 10
print(a==7) //false
print(a!=7) //true

1
2
3

> Greater than

< Less than
>= Greater than or equal to

<= Less than or equal to

Additive Expressions
When evaluating arithmetic operations on numeric values, additive expressions are used. In Catscript, the
addition operator is (+) which is used to add values whereas the subtraction operator (-) is used to
subtract one value from another.

Factor Expression
A factor expression in Catscript is an expression that involves multiplication or division of two or more
operands. The order of operations applies to the factor expression as is any other mathematical expression
in the universe. Multiplication/division are performed before addition/subtraction, which makes it important
to use parentheses when needed in order to ensure the correct output matches the desired mathematical
expression that is attempting to take place.

Unary Expression
A unary expression within this language is an expression that only operates within a single operand. The
unary operator can either be not or -. The not operator is specific to logical negation on a boolean value.
When this is applied to said values, it returns the opposite of the boolean value. The - does this same
approach but to numeric values.

Primary Expression
A primary expression in Catscript is the simplest form of expression and can take on several forms
including being an identifier, a literal, a function call, or even a parenthesized expression.

print(3>1) //true
print(3<1) //false
print(2>=2) //true
print(3<=2) //false

1
2
3
4

var a = 3
var b = 5
print(a+b) //8
print(b-a) //2

1
2
3
4

var a = 3
var b = 5
print(a*b) //15
print((2*b)/a) //3 (Division in catscript is integer division)

1
2
3
4

var a = 3
var b = true
print(-a) //-3
print(not(b)) //false

1
2
3
4

//Example of primary expression include
3

1
2

List Literal Expression
In Catscript, a list is a collection of ordered values and a list literal is a way to define a list to be a specific
set of values. List literals enclosed with square brackets and each element is separated by a comma.

Function Call Expression
A function call expression is used when a function is being called and we are passing arguments to it. It is
composed of a function name, followed by parentheses and contains the arguments that are passed to the
function. The arguments can be expressions that end up evaluating the expected data types that are
specific in the functions parameter list. Because the function call expression is an expression, it evaluates
to a value.

Argument List Expression
An argument list expression within Catscript is used when passing one or more arguments to a function.
There are 0 or more expressions separated by commas and enclosed within parentheses. In the above
example, (3,2,a) is an argument list expression

Type Expressions
Variables have types that determine the kind of value that they can hold. While CatScript is statistically
typed this results in the variable type being known at compile time and not being able to be changed during
the program execution. Type expressions have been used various times within the screenshots of my test.
They are used in function declarations, variable statements, and parameters lists. The CatScript type
system is small and consists of these types:

-12
true
null
(4)
"Hello"
func1(3)
a
b

3
4
5
6
7
8
9
10

var a = [true,false,true]1

var a = 7
func1(3,2,a)

1
2

int

string

bool

list

null

object

Section 5- UML

The sequence diagram above depicts the parsing of the statement print(1+1) . At the top level, you can
see the flow of parsing the statement, and from there the expression parsing and additiveExpression
parsing sections are further separated. In this diagram, you can see how nested methods allow for the
recursive descent parsing that catscript relies on.

Section 6 - Design Trade-Offs
One of the major tradeoffs made in the design of Catscript was the choice not to use a parser generator.
Parser generators allow for easier generation of a parser and are often used in compilers classes, but they
do not easily allow for some of the more complicated behavior that we implemented in the language, and
by building a recursive descent parser ourself, we learned a lot more about how compilers actually work.
Given that catscript is a toy language designed for teaching about compilers, the choice to implement a
parser from scratch seems to make the most sense to me, and I believe that is why Dr. Gross chose this
route.

Section 7: Software Development Lifecycle Model
For this project, we used test driven development. In this process, we had a pre-defined set of tests that we
needed to build code to pass. This particular approach worked particularly well for this class, as the tests
provided clear, modular, and achievable miniature goals that we could develop towards. Given the
complexity of the task, I believe that this was the right approach and that we benefited significantly from
having clear goals from the outset.

In the real world, test-first development may not always be the right approach, as requirements and
architecture change through the development process. Test driven development is useful though when
tests are built to verify and find problems in code once the basics of a project have already been created.
Testing is helpful in managing large projects where multiple people need to build code that works reliably
together, and it helps avoid errors caused by unintended and unknown side effects that come from
developers accidentally changing the behavior of code that other code depends on.

