
Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

CSCI-468-Capstone

Introduction
Catscript is a strongly typed, compiled programming language. The Catscirpt compiler

has three main computation phases: tokenization, parsing, and completion. Catscript is a
statically scoped language, meaning that local variables declared in loops and functions
precede global variables declared outside of them. The recursive descent algorithm is used to
parse Catscript programs. The target of the compilation phase is Java byte code.

The following document will describe our team's process of creating the Catscript
compiler. The first section, Program, has a link to a zipped source file containing the code for
the Catscript compiler. The second section, Teamwork, describes each team member's
contribution to this project and the estimated time the contributions took. The third section
identifies the design pattern memoization we used in our Catscript compiler.

The fourth section is a technical document that describes two main features of the
Catscript programming language statements and expressions. The fifth section gives a UML
diagram our group made, which describes how our Catscript compiler parses a for statement.
Section six discusses our team's design decisions and the trade-offs involved with our
decisions. The final section describes the model we used to develop our capstone project.

Program
The Catscript compiler source code in the link (Catscript Source Code) was created with

Java SE 22.0.1.

Teamwork
For our capstone project, I created a program that contains all the logic for tokenizing,

parsing, evaluating, and compiling the Catscript programming language we designed in this
class. The actual program can be viewed in the first section of this documentation. My
teammate contributed the documentation in this file and added three tests to the test suit. My
partner's tests are in the code block below this paragraph. The first test ensured that my
compiler does not allow floating point numbers, which is illegal in Catscript. The second test
ensured that my compiler does not enable function definitions to be declared inside another
function definition, as it is not allowed in the Catscript grammar. The third and final test ensured
the program could execute nested unary expressions. My partner estimates that the creation of
this document and the tests took him eight hours to complete. Creating the Catscript compiler
took me an estimated forty hours of programming.

package edu.montana.csci.csci468.demo;

https://drive.google.com/file/d/1rr9htRPJkhH4DlllHsa1dE4SdsMKjSTT/view?usp=sharing

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

import edu.montana.csci.csci468.CatscriptTestBase;

import edu.montana.csci.csci468.parser.ParseErrorException;

import

edu.montana.csci.csci468.parser.statements.FunctionDefinitionStatement;

import edu.montana.csci.csci468.parser.statements.VariableStatement;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

public class PartnerTests extends CatscriptTestBase {

/*

The correctRestrictionsOnIntType test ensures that floats cannot be

parsed for CatScript. CatScript does not allow

for floats to exist at all, so this test also ensures that we cannot

hide floats in lists, and it also ensures that

floats cannot be created through the use of the division operator.

*/

@Test

public void correctRestrictionsOnIntType(){

assertThrows(ParseErrorException.class, () -> {

VariableStatement expr = parseStatement("var x = 1.0");

});

assertThrows(ParseErrorException.class, () -> {

VariableStatement expr = parseStatement("var x: list =

[1.0,2.0]");

});

assertEquals("0\n",executeProgram("var x: int = (0/3)\n"

+"print(x)"));

}

/*

The functionCallInFunctionCall_NoFunctionDefInFunctionDef tests ensure

that function definitions cannot be nested within

other function definitions, as this is NOT allowed in the CatScript

grammar. This test, however, also ensures that you can include

a function call within a function definition, so long as the function

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

you are adding within that function definition is defined

elsewhere.

*/

@Test

public void functionCallInFunctionDef_NoFunctionDefInFunctionDef(){

assertEquals("2\n4\n6\n8\n10\n", executeProgram(

"function printValueTimes2(x : int){\n"+

"print(2*x)}\n"+

"function starter(){\n"+

"for(i in [1,2,3,4,5]){\n"+

"printValueTimes2(i)}}\n"+

"starter()"

));

assertThrows(ParseErrorException.class, () -> {

FunctionDefinitionStatement def = parseStatement(

"function outerDef(){\n" +

" function innerDef() {" +

"return 100 }\n" +

"}\n");

});

}

/*

The nestedUnaryExpressions tests ensure that nested unary operations

using the "-" symbol or the "not" key word are

correctly evaluated, and will continue to negate itself if called

recursively. This test also ensures that the unary

expressions are evaluated concerning their correct precedence in the

grammar, which means they should be evaluated before

all addition, subtraction, multiplication, division, comparison, and

equality operations.

*/

@Test

public void nestedUnaryExpressions_UnaryExpressionPrecedence(){

assertEquals("-1\n",executeProgram(

"print(--6 + -----1 * --7)"));

assertEquals("true\n",executeProgram(

"print(not not not not not false)"));

assertEquals("true\n", executeProgram(

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

"print(not not false != not not true)"

));

assertEquals("true\n", executeProgram(

"print(--1 != ---1 + 1)"

));

assertEquals("-9\n", executeProgram(

"function returnNegatedPlus1(x : int) : int {\n" +

"return -x + 1" +

"}\n" +

"print(returnNegatedPlus1(" +

"returnNegatedPlus1(" +

"returnNegatedPlus1(10)" +

")))"

));

}

}

Design Pattern
One of the design patterns we used in our Catscript compiler is memoization. The code

for the memoization pattern can be found on line 35 in this file path
csci468\parser\CatscriptType.java, or it can be viewed in the code block below. When creating
our list types, we used the memoization pattern to increase memory efficiency. If we didn't use
the memoization pattern, we could have multiple instances of the same list type; instead, we
store the list type when we create it, and if it already exists, we get it from storage instead of
creating a new list type instance.

static HashMap<CatscriptType, ListType> typeCache = new HashMap<>();

public static CatscriptType getListType(CatscriptType type) {

if (typeCache.containsKey(type)) {

return typeCache.get(type);

} else {

ListType listType = new ListType(type);

typeCache.put(type, listType);

return listType;

}

}

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

Technical Document

CatScript Comments
The CatScript programming language allows users to denote certain pieces of their

written code that are to be ignored by the compiler so that users can leave notes for later that do
not affect the code’s compilation. CatScript comments are denoted by a (//) at the beginning of
the line at which they are to be ignored. If a (//) is in front, the parser will ignore the rest of the
line and treat the comment as whitespace.

var greeting = "hello" //inline comment example

// everything on this line will be treated as a comment :)

print(greeting);

OUTPUT: "hello"

CatScript Print Statement
The CatScript print statement takes a single expression as an argument and displays

that argument from a string buffer to the user. The print statement also appends a newline
character to the end of the string buffer for each argument before displaying it to the program's
user.

print("Hello world")

print(123)

print(true)

print(null)

Below is what the raw output of the above program would look like.

OUTPUT: "Hello world\n123\ntrue\nnull\n"

However, for this documentation, I will deliberately reformat the output of the print
statement to look like the output below. A comma will separate each print statement, and the
outputs will be the actual expressions after evaluation and compilation.

OUTPUT: "Hello world", 123, true, null

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024
CatScript Expressions

Integer Literals
Integer literal expressions, represented by the type “int” in CatScript, refer to discrete

integers that can be used within your code. These expressions refer specifically to the base
representation of a number in CatScript. Integer literal expressions can be used to do
mathematical operations or to exist as numbers.

var x: int = 100

var x = 2

Boolean Literals
Boolean literas in CatScript, represented by the CatScript type (bool), can either be

“true” or “false”. Boolean literal expressions can change control flow within if statements, in
equality and comparison expressions, or just exist as values on their own.

var x: bool = true

var y = false

String Literals
String literals in CatScript, represented by the CatScript type (string), contain a sequence

of characters that can be declared and used again within your program. To denote a string, you
must wrap any character sequence in double quotes, such as in the examples below. CatScript
does also allow string concatenation, though strings are immutable.

var x = "Hello World!"

var y = "!@&#(!@&&$@_)null!@123HELLOWORLD"

List Literals
List literals, represented by the CatScript type (list<component_type>), is a complicated

data structure in CatScript. Lists are iterable collections of CatScript expressions, which we will
call components. The order of the components in the list is maintained when the list is created.

The component type of a list can either be declared directly by a user through a variable
assignment statement, or the type can be inferred. If a CatScript list’s components are all of a
single type, let’s say (int), for example, CatScript will treat that list as a (list<int>) type. However,
if a CatScript list’s components have two different types, such as (int) and (string), CatScript will
treat that as a list of type (list<object>).

Lists can also store other lists within themselves. For example, let’s assume that a list
contains multiple other lists of integers. The type of this list would be (<list<list<int>>), and can
also be determined during runtime. Finally, lists are immutable and are read-only.

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

var x = [1,2,3,"hello"]

var y = [x,[3,4,5]]

var z: list<int> = [1,2,3,4]

print(y)

OUTPUT: [x,[3,4,5]]

Null Literals
Null literals in CatScript, represented by the CatScript type (null) and the value null,

denote the absence of a CatScript object. The null value is assignable to any other object in
CatScript except void.

var x_1: int = null

var x_2: bool = null

var x_3: string = null

var x_4: list<object> = null

var x_5: object = null

Additive Expressions
An additive expression in CatScript is a binary operation denoted through a (+) or (-)

symbol sandwiched between two expressions for which you would like the operation to be
performed. Additive expressions can perform addition and subtraction on two CatScript integers.
CatScript addition and subtraction has a lower precedence than multiplication and division and
is left associative. Additive expressions will either be evaluated to a CatScript string or integer.

The (+) symbol has another purpose; it can also be used for string concatenation. If you
try to add two strings, concatenation will be applied. If you try to add a string and an integer or
an integer and a string, CatScript will cast the integer to a string and perform concatenation
automatically. Strings and integers are the only types in CatScript that can be utilized in additive
expressions. See the examples below.

// Add and subtract integers

var add_ints = 2+2

var sub_ints = 2-2

print(add_ints)

print(sub_ints)

// String concatenation and casting example

var str_cat_1 = "hello" + " world"

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

var str_cat_2 = "hello" + 1

var str_cat_3 = 1 + "world"

print(str_cat_1)

print(str_cat_2)

print(str_cat_3)

OUTPUT: 4, 0, "hello world", "hello1", "1world"

Factor Expressions
A factor expression in CatScript is a binary operation denoted through a (*) or a (/)

symbol sandwiched between two expressions for which you would like the operation to be
performed. The (*) symbol represents the numeric multiplication operation in CatScript, and the
(/) represents numeric division. Factor expressions will be evaluated using a CatScript integer.

The binary operations associated with factor expressions can only be applied to
CatScript expressions that will evaluate to CatScript type integers. CatScript multiplication and
division operations are left-associative and have higher precedence than addition and
subtraction.

//Simple factor expression example

var x_fact = 4*3

print(x_fact)

//Factor expression, higher precedence than additive expression

var precedence_demo = 10+5*4/10-1

print(precedence_demo)

OUTPUT: 12, 11

Comparison Expressions
A comparison expression in CatScript is a binary operation denoted through the use of a

(<=), a (>=), a (<), or a (>) symbol sandwiched between two expressions for which you
would like the operation to be performed. The (<=) symbol represents “is less than or equal
to,” The (>=) symbol represents “is greater than or equal to,” The (<) symbol represents “is
less than,” and The “>” symbol represents “is greater than.”

The binary operations associated with comparison expressions can only be applied to
CatScript expressions that will evaluate to CatScript type integers. Comparison expressions will
always be evaluated using a boolean. CatScript comparison expressions are left-associative
and have lower precedence than additive expressions.

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

print(100 >= 100)

print(100 <= 100)

print(10 <= 100)

print(10 < 100)

print(10 >= 100)

print(10 > 100)

OUTPUT: true, true, true, false, false

Equality Expressions
An equality expression in CatScript is a binary operation denoted through a (==) or a (

!=) symbol sandwiched between two expressions for which you would like the operation to be
performed. The (==) symbol represents “is equal to,” and the (!=) symbol represents “not
equal to.” The binary operations associated with equality expressions can only be applied to
CatScript expressions that will evaluate to CatScript type integers, booleans, or strings.
However, the equality expression used on strings will check whether the two are the same string
object instances. On the other hand, the equality expression used on integers and booleans will
just check if the values are the same. Equality expressions will always be evaluated to a
boolean. CatScript equality expressions are left-associative and have lower precedence than
comparison expressions.

//Equality expressions for integers

var x = 10

print(x == 10)

print(x != 10)

//Equality expressions for booleans

var y = true

print(y == true)

print(y != true)

OUTPUT: true, false, true, false

Unary Expressions
There are two symbols in CatScript associated with unary expressions: the (-) symbol

and the (not) keyword. Unlike binary expressions, unary expressions require the symbol before
the expression to which you are trying to apply the unary operation. For example, the unary
expression “not true” will evaluate and return the negated boolean value. The (-) operation will
negate any integer expression, returning the negated integer value. CatScript unary expressions
are of higher precedence than factor expressions, additive expressions, comparison
expressions, and equality expressions.

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

//negate an integer

var x = 1

var x_neg = -1

//negate a boolean

var y = true

var y_neg = not true

print(x_neg)

print(y_neg)

OUTPUT: -1, false

Parenthesized Expressions
The CatScript language allows programmers to deliberately control the precedence and

associativity for which their code is compiled and evaluated. Anything put within parenthesis will
be recognized as having higher precedence than anything else not within parentheses and will
always be evaluated first. If you have multiple expressions within one pair of parentheses, the
same precedence rules of the CatScript language will be applied within.

//Change of precedence example

var x = 9*10-2

var x_paren = 9*(10-2)

var y_paren = (9*10-2)

print(x)

print(x_paren)

print(y_paren)

OUTPUT: 88, 72,88

Identifier Expression
An identifier is a name used to refer to some other data in the program. Identifier names

cannot start with numbers but can be included later in the identifier name.

//Variable assignment statement

//the identifier in this situation is "x1"

var x1: string = "hello";

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024
CatScript Statements

Variable Statement
There are many nuances and specific implementation details about variable assignment

statements in the CatScript programming language. Variable assignment statements will always
begin with the keyword (var) and contain some identifier that will act as the variable's name.
There will always be an (=) symbol and an expression, or value, on the right-hand side to
which the variable will be set.

The location of the variable assignment statement in the program will determine the
scope within which the variable will be accessible and consequently also determine its lifetime.
The variable statement itself allocates memory for the values of the defined variables. The
examples below provide more details about the variable assignment statement.

Initialization of Variables: Inferred and Declared Typing

The programmer can give variables a statically declared type, which may speed up
performance and improve readability in the future. However, this feature is completely optional,
as CatScript supports type inference and static typing for variable assignments.

var x: int = 5

var x_b: boolean = false

var y = 5

Note: If you create a variable and declare that its type be, say something like, (int), you
will face an “incompatible type” error if you ever try to set that variable to anything other than an
expression that evaluates to an (int). This also applies to almost every other CatScript type.
However, regardless of its declared type, every variable can be set to equal null. Please see the
example of an incompatible type error below.

var x: bool = true

x = 10

OUTPUT: "Error, incompatible types"

Initialization of List Variables: Inferred and Declared Typing

Lists can similarly be given a declared type by the programmer, which may speed up
performance and improve readability in the future. This feature is also optional, as the type of
the list and the component type can be determined through type inference as well.

var x: list<int> = [10,20,30]

var y = [10,20,30,40]

Note: If you create a list type variable and declare its component type, you will face an
“incompatible type” error if you try to set it to a list with a different component type. This also

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024
applies to almost every CatScript list type. However, regardless of its declared component type,
every list variable can be set to equal null. Please see the example of an incompatible type error
below.

var x: list<string> = [10,20,30]

print(x)

If the programmer does not declare a list’s component type, the compiler will infer its
component type by observing the types of the expressions in the list itself. Please see the “List
Literal” section under Expressions for details about list component type inference. See an
example below of CatScript list type inference.

var x = [10,"20",30]

var y: list<object> = x

print(y)

OUTPUT: [10,"20",30]

Scope of Variables

The scope of the variables within a variable statement is initially globally scoped. If you
make a variable assignment within a function call or a for loop, though, the scope of that
variable will exist locally within that section of code only. Suppose the variable is reassigned or
called later. In that case, the CatScript compiler will look up the variable name in a local symbol
table before checking the global scope and use the local definition first.

var x = 1

function foo(){

x = 10

print(x)

}

foo()

print(x)

OUTPUT: 10, 1

Note: If you attempt to assign a variable with an identifier that already exists within the
local scope, you will be faced with a “variable already defined” error.

var x: bool = true

var x: bool = false

OUTPUT: "Error, ‘x’ already defined"

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024
Assignment Statement

CatScript assignment statements are used to reassign already declared variables. The
CatScript assignment statement involves using some identifier, which acts as the variable’s
name, an (=), and some valid expression on the right-hand side of the statement. See the
example below. The variable will only be redefined within the local scope in which it is called.

//Initial variable declaration, puts aside memory for the variable’s name

// and value

var x: int = 5

print(x)

// since variable “x” already declared in this scope, we can reassign it to a

// value of the same type

x = 30

print(x)

OUTPUT: 5, 30

Note: As mentioned in the Variable Statement section, once a variable has been
declared using a “var” statement, it can be reassigned so long as it matches its previously
determined CatScript type. If you attempt to assign a variable with an identifier that already
exists within the local scope, you will be faced with a “variable already defined” error.

If Statement
CatScript if statements are used by a programmer to implement control flow in their

CatScript program. The if statement begins with the designated keyword (if) and immediately
requires open parentheses. Within those parentheses will be some expression that will
eventually evaluate to a CatScript-type (bool); this will be the ‘test” of the if statement. Finally,
after closing the test expression with a right parenthesis, you can add statements that will be
evaluated if the test expression evaluates to true. The statements will be found in the curly
braces after your if statement test expression. The else statement block will be evaluated
instead if the if statement test expression is evaluated to false, though it is not required to have
an else statement. See the example below.

function greaterThan0(x){

if(x > 0){

print("Greater than 0")

}else{

print("Less than or equal to 0")

}

print(greaterThan0(0))

print(greaterThan0(1))

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

OUTPUT: "Less than or equal to 0", "Greater than 0"

CatScript does not allow the use of “else if” statements; however, you can achieve a
similar effect by nesting if statements underneath else statements.

function positiveOrNeg(x){

if(x > 0){

print("Positive")

}else{

if(x == 0){

print("Zero")

}else{

print("Negative")

}

}

print(positiveOrNeg(0))

print(positiveOrNeg(1))

print(positiveOrNeg(-1))

OUTPUT: "Zero", "Positive", “Negative”

Function Definition Statement
CatScript function definition statements, similar to variable assignment statements, are

used to declare and describe the behavior of reusable functions and provide them a name.
Function names share the same namespace as variables. Functions can have a declared return
type, or CatScript can infer it. Functions in CatScript can also take an argument list (found within
the parentheses); these argument identifiers will only exist within the function's scope and will
be deleted after invocation. The identifiers in the argument list can be used for computation
within the function body statement and can also be given a declared type, though it is
unnecessary. Finally, functions can use the CatScript return statement to return some value to
wherever the function was initially invoked. If the function definition statement does not have a
return statement within its body, it will simply return CatScript type “void.”

//All valid function definitions

function foo(x,y){

return x

}

function foo_int(x: int, y: int): int{

return x

}

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

function foo_int(x: int, y: int): void{

print(x) }

Return Statement
CatScript return statements can only be found within a function definition statement.

Executing a return statement will cause the current invocation of the function whose definition it
was a part of to cease execution and return a particular expression to wherever the function was
initially called.

function foo(x: int): int{

return x //return x to return statement in foo_2(x)

}

function foo_2(x: int): int{

return foo(x) //return value returned from foo(x)

}

var t = 100

print(foo_2(t))

OUTPUT: 100

Function Call Statement
CatScript function calls can be evaluated as expressions and/or statements. This means

that you can make function calls that return a value (in the case of it being treated as an
expression) or simply produce side effects (in the case of it being treated as a statement). All
CatScript function names share the same namespace as variables and are all declared in the
global scope. CatsScript function calls can take an argument list to perform operations, with the
argument list, function name, and function behavior all being defined within the function
definition statement.

//Function definition statement

function add_oneHundred(x){

return x + 100;

}

//Function call expression

var y = add_oneHundred(1)

print(y)

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

OUTPUT: 101

For Loop Statement
The CatScript for loop is the only iteration tool in the language. The start of a for loop is denoted
by the keyword (for), a set of parentheses containing an identifier, the keyword (in) and an
iterable object (CatScript list), and finally, a set of curly braces optionally containing executable
statements. The identifier used within the set of parentheses will be the value that updates the
current element of the iterable and will be used in the statement execution within the curly
braces. The identifier is also declared locally within the for loop, meaning that once the for loop
is finished, the identifier name can be declared elsewhere in the program.

// Iterable object

var iterable: list<int> =[1,2,3,4,5]

for(i in iterable){

print(i) //for each integer in iterable, print the integer

}

//variable name “i” is now available to be declared because we exited the

// for loop

var i = true

print(i)

OUTPUT: 1, 2, 3, 4, 5, true

Sequence Diagram
Below is a sequence diagram that graphically describes how the parser we created

parses a for loop. As with parsing all Catscript programs, the first function called is
parseProgram. The parseProgram function then calls parseProgramStatement, which the intern
calls parseForStatement. Once the parseForStatement function has been called, the first step is
to check if the current token is the keyword (for). If it is, we continue parsing. If not, we return
null, and the parsing moves on and tries to match different statements. Next, we check if the
next token is an opening parenthesis. If the next token is not an opening parenthesis, we add an
error to the ForStatement class. The next step is to parse an Identifier expression we can use in
the for loop's body to retrieve the list element for that current loop iteration. To do this, we go
through a series of function calls that parse an expression, culminating in matching an identifier
expression, which is then returned to the parseForStatement function. Next, we check if the next
token is the (in) keyword; if not, we add an error to the for statement. Next, we go through the
same process of parsing an expression. However, the expression that will be returned to the for
statement is a literal list expression. The following two steps check if the subsequent tokens are
closing parentheses and an opening brace. If they are missing, we add an error to the for
statement. Next, we enter a loop that performs the parseStatement function for every iteration.

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024
The parseStatement function then calls the other statement parsing functions until one doesn't
return null. There are seven statement types that the parseStatement function can match: for
loop statements, if statements, variable statements, assignment statements, function call
statements, and return statements. The loop exits when the next token is a closing brace (}) or
there are no more tokens. After leaving the loop, we check if the current token is the closing
brace (}), and if it's not, we add a parse error to the for statement class. We then return the
parsed for statement object to the parseProgram function.

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024

Design Trade-Offs
As mentioned in the introduction of this document, we decided to use the recursive

decent algorithm to parse our programs and produce a parse tree. Instead of recursive decent,
we could have used a parser generator to parse the programs. This section will discuss our
reasoning for using recursive descent instead of a parser generator and walk through decisions
made in constructing the recursive descent algorithm.

The main advantage of recursive descent over parser generators is control. Because
recursive descent required creating the functions for each rule in the Catscript grammar, we had
more control over how the programs were parsed. However, this strength is also one of the
drawbacks of using recursive descent, which is that it requires writing a lot more code that gets
into the nitty-gritty of splitting up text and creating a parse tree.

On the other hand, parser generators like YACC (Yet Another Compiler Compiler) or
ANTLR (ANother Tool for Language Recognition) would have allowed us to abstract much of the

Matthew Keck, Ivan Cline
CSCI-468
5/3/2024
process of parsing by allowing us to input the Catscript grammar directly into the parser
generator, which would produce the code for the parsing stage. While this would have allowed
us to write much less code, it would have removed the control we had with the recursive decent
algorithm. The loss of power would prevent us from modifying the parsing logic. Another
drawback of parser generators is the generated code could be less readable and more
challenging to understand and debug. Because we used recursive descent, our team had
visceral knowledge of how the parser parses Catscript programs. Another advantage of using
parser generators is they are highly optimized and quickly generate code that parses even the
most extensive grammar quickly and accurately.

In summary, using the recursive decent algorithm made parsing Catscript programs
more transparent. It gives us greater control and is well suited for parsing a small,
straightforward grammar like Catscript. On the other hand, a parser generator would have been
better suited for a more complex grammar that would take longer to program by hand. A parser
generator would also guarantee the parsing phase's performance and correctness. However,
because Catscript is a simple programming language, optimizing performance was not the most
pressing concern.

Software development life cycle model
Test-first development was The software development approach we used to build the

Catscript compiler. Test-first development is a software development approach requiring
developers to create a test suit before writing the corresponding code. Our professor developed
a test suit for the Catscript compiler, which included 148 tests for all four compilation phases:
tokenizing, parsing, evaluation, and bytecode generation. However, as mentioned in the
teamwork section of this document, my partner implemented and added three new tests to the
provided test suit. Test first development was an excellent choice for developing Catscript
because the method ensures the code meets the desired functionality. Having a test suit before
creating code also helped us maintain the code functionality as the project evolved. Because
the test suit was persistent, any changes could be run against the tests we had previously
passed, which would tell us if our changes had created bugs in the compiler. One of the
drawbacks of test-first development is that the code developed could be structured to fit the test
requirements, which could cause us to neglect aspects not covered in the test suit. Test-first
development was an excellent choice for this project and helped us create an efficient and
correct Catscript compiler.

