Compilers Capstone

MSU CSCI-468

Megan Steinmasel
Spring 2024

Tester: Brianna Clark

Section One: Program

e The complete Compilers Capstone project is located here:
https://github.com/megansteinmasel /csci-468-spring2024-private/tree/main

e The zip file, source.zip, of the final /src directory is located here:
capstone/portfolio/source.zip

Section Two: Teamwork

The Catscript Compiler progresses through various stages: tokenization, pars-
ing, evaluation, bytecode generation, partner testing, and documentation cre-
ation. The development of tokenization, parsing, evaluation, and bytecode gen-
eration was done by the primary developer, Megan Steinmasel. Upon the com-
pletion of these four stages, Brianna Clark initiated partner testing and doc-
umentation creation. Brianna Clark dedicated approximately 15 hours to the
partner testing and documentation creation phases. As the primary developer,
I, Megan Steinmasel, contributed a total of 110 hours to this project. This
brings the total estimated hours of work to be around 125 hours.

e Primary Developer: Megan Steinmasel
— Estimated hours: 110 hours
e Tester: Brianna Clark

— Estimated hours: 15 hours

The partner testing can be found in the PartnerTest.java class. The path to this
class is src/test/java/edu/montana/csci/cscid68/demo/PartnerTest.java. The
three successfully passing tests in this class are parseNestedListLiteral(), paren-
thesizedComparisonMathOperations(), and startAndEndTokensAreValid().

@Test
parseNestedListLiteral() {
ListLiteralExpression expr = parseExpression(
assertEquals(expr.getValues().size())
ListLiteralExpression innerList = (ListLiteralExpression) expr.getValues().get(8)
assertEquatls(innerList.getValues().size())
ListLiteralExpression innerListl = (ListLiteralExpression)((ListLiteralExpression)expr.getValues().get(0)).getValues().get(6)

assertEquals(innerListl.getValues().size())

@Test
parenthesizedComparisonMathOperations() {
assertEquals(evaluateExpression(
assertEquals(evaluateExpression(
assertEquals(evaluateExpression(
assertEquals(evaluateExpression(
assertEquals(evaluateExpression(
assertEquals(evaluateExpression(
assertEquals(evaluateExpression(

@Test
startAndEndTokensAreValid(){
String testString =
List<Token> tokenList = getTokensAsList(testString)

assertEquals(tokenlList. .getLine0ffset())
assertEquals(tokenlList. .getStart())
assertEquals(tokenList. .getEnd())

assertEquals(tokenlList. .getLine0ffset())
assertEquals(tokenList. .getStart())
assertEquals(tokenlList. .getEnd())

assertEquals(tokenList. .getLine0ffset())
assertEquals(tokenlList. .getStart())

assertEquals(tokenList. .getEnd())

assertEquals(tokenlList. .getLine0ffset())
assertEquals(tokenlList. .getStart())
assertEquals(tokenlList. .getEnd())

Section Three: Design Pattern

A crucial design pattern employed within Catscript is Memoization. Memoiza-
tion is a technique used to optimize the performance of functions by caching
the results of expensive function calls and reusing them when the same inputs
occur again.

HashMap<CatscriptType, ListType> HashMap<>()

CatscriptType getlListType(CatscriptType type) {

ListType list_type = .get(type)

(list_type ==) {

list_type = ListType(type)

.put(type, list_type)

list_type

The location of the memorization design pattern is in the getListType method
in the CatscriptType.java class. The path to the CatscriptType.java class is
src/main/java/edu/montana/csci/cscid68 /parser/Catscript Type.java. The mem-
oization design pattern in the getList Type method ensures that for each Catscript-
Type, only one ListType is created. The process unfolds as follows:

1. When the ‘getListType’ function is called with a parameter ‘type’, the func-
tion first checks if the result for that particular ‘type’ is already stored in the
cache.

2. If the result is found, the function returns the cached result directly, avoiding
the expensive computation.

3. If the result is not found in the cache, the function computes the result.

4. The computed result is then stored in the cache for future use.

5. Finally, the function returns the computed result.

Section Four: Technical Writing

Catscript Guide

e This section is used to create a guide for Catscript, to satisfy Capstone
Requirement Four.

Introduction

e Catscript is a lightweight and versatile scripting language designed for
simplicity and efficiency. Below, we delve into its key features and syntax
to help you grasp the fundamentals of Catscript programming. The fea-
tures that we will be going over in the Catscript guide cover features such
as additive expressions, comparative expressions, for-loops, if statements,
types, comments, print statements, variable statements, math operations,
comparison, equality, unary expressions, and function definitions.

Features

Additive Expressions

e Additive expressions in Catscript facilitate basic arithmetic operations like
addition (+) and subtraction (-).

e These expressions serve as the building blocks for mathematical compu-
tations and data manipulation tasks.

e Example:

var total = 10 + 5; // Assigns the result of 10 + 5 to
the variable ‘total’

var result = 10 - 5; // Assigns the result of 10 - 5 to
the variable ‘result’

Comparison Expressions

Comparison expressions in Catscript enable comparison operations be-
tween values, yielding boolean results.

These boolean results indicate whether the comparison holds true or false.

Comparison operators encompass less than (<), less than or equal to (<=),
greater than (>), and greater than or equal to (>=).

Example:

var isGreaterThan = (10 > 1); // Assigns ‘true’ to
‘isGreaterThan’

var isLessThan = (1 < 10); // Assigns ‘true’ to ‘isLessThan’

var isGreaterThanOrEqualTo = (10 >= 1); // Assigns ‘true’ to
‘isGreaterThanOrEqualTo’

var isLessThanOrEqualTo = (1 <= 10); // Assigns ‘true’ to
‘isLessThanOrEqualTo’

For-Loops

The for-loop in Catscript offers a convenient method for iterating over
collections or executing code a specified number of times.

This loop structure enhances code readability and efficiency, particularly
when dealing with repetitive tasks or data processing operations.

Catscript’s for-loop syntax closely resembles that of established languages
like Java and Python.

In the provided example, the for-loop traverses and prints each element
within the ‘list’ variable.

Example:

var list = [1, 2, 3, 4];

for (i in 1list) {
print(i);
}

// Prints each element in ‘list’

If Statements

e Catscript’s if statement facilitates conditional execution of code blocks
based on the evaluation of an expression.

e It begins with the ‘if” keyword followed by an expression in parentheses,
evaluating whether the condition is true. If the condition is met, the code
within the following curly braces executes. Optionally, ‘else if’ clauses can
be added, each with its own expression and a corresponding block of code
to execute if its condition evaluates to true. Finally, an ‘else’ clause can
be included to specify a block of code to execute if none of the previous
conditions are met.

e The general layout of the if statement is shown below.

if (expression) {
\\ statement

} else if (expression){
\\ statement

} else{
\\ statement

}

e Example:

var num = 20;

if (num < 25) {
print ("Number is less than 25");
} else {
print ("Number is greater than or equal to 25");

}

// Prints ‘Number is less than 25°

Types

Catscript is a statically typed programming language supporting types
such as integers, strings, booleans, lists, null, and objects.

The Catscript type system is shown below.

int: a 32-bit integer

string: a java-style string

bool: a boolean value

list: a list of values with the type ‘x’

null: the null type

— object: any type of value

Example:

var age: int = 25; // Declares an integer variable ‘age’
with value 25

var name: string = "Alice"; // Declares a string variable
‘name’ with value ‘Alice’

Catscript also has one complex type, the list type. You can declare a list
of a given type with ‘list’.

Example declarations of the list type are shown below.

— list: list of integers
— list <object >: list of objects
— list <list <int >>: a list of lists of integers

Comments
Comments in Catscript aid code clarity and documentation without af-
fecting functionality.

Single-line and multi-line comments are supported.

Single-line comments, denoted by //, are perfect for adding brief explana-
tions or notes to specific lines of code. Meanwhile, multiple-line comments,
enclosed within /* */, provide the flexibility to include more extensive de-
scriptions, and comments spanning multiple lines.

We can see how both comment types work below.

Example:
// Single-lined comment

/* Multiple-lined comment */

Print Statements

Catscript’s print statements facilitate outputting data to the console, use-
ful for debugging and interaction.

You can also perform concatenation with print statements as seen below.

Example:
print("Hello World"); // Prints ‘Hello World’

var printNum = 1;
print(printNum); // Prints ‘1’

var printStr = "Student ID: ";

print(printStr + 10345); // Prints ‘Student ID: 10345’ with
concatenation

Variable Statements

The ‘var’ statement in Catscript is used for the declaration of variables.
We are able to do this with multiple types.

Variables can be declared, defined, and then redefined throughout the
Catscript code.

Example:

var greeting = "Hello"; // Declares variable ‘greeting’ with
value ‘Hello’

var x = 30; // Declares variable ‘x’ with value ‘30’

Math Operations

Addition, subtraction, multiplication, and division are all supported by
Catscript.

For these operations we use the +, -, * and / symbols, respectively.

Example:
print(1 + 10); // Prints 11
print(10 - 1); // Prints 9
print(20 / 1); // Prints 20

print(20 * 1); // Prints 20

Equality

Catscript provides operators == and != to assess equality and inequality
between values.

These expressions provide a means for assessing the equivalence of data
elements, aiding in decision-making and logical operations.

Example:
print(10 == 10); // Prints true

print (10 !'= 0); // Prints true

Unary Expressions

Catscript supports unary expressions that can be evaluated, as well as
operators for negating values.

These expressions support the unary minus (-) for numeric values and the
‘not’ keyword for boolean values.

Example:

10

var x 1;

var y = 10;
print(x + y); // Prints 11

print(x + -y); // Prints -9

Function Definitions

Developers can define functions in Catscript using the ‘function’ keyword
followed by the function name and parentheses containing any parameters.

Function definitions in Catscript enable developers to encapsulate reusable
blocks of code, promoting modularity and code organization.

In the example below, the ‘greet’ function is defined to take a single pa-
rameter name and print a personalized greeting message.

The function is then invoked with the argument ‘Alice’, resulting in the
message ‘Hello, Alice!” being printed to the console.

Example:

function greet(name) {
print("Hello, " + name + "!");
}
greet("Alice"); // Invokes the ‘greet’ function with the argument
‘Alice’
Catscript Grammar

Below is the Catscript Grammar, a set of rules and syntax guidelines
utilized to interpret and comprehend the Catscript language.

catscript_program = { program_statement I};

program_statement = statement |
function_declaration;

11

statement = for_statement |
if_statement |
print_statement |
variable_statement |
assignment_statement |
function_call_statement;

for_statement = ’for’, ’(’, IDENTIFIER, ’in’, expression ’)’,
’{>, { statement }, ’}’;

if_statement = ’if’, ’(’, expression, ’)’, ’{’,
{ statement },
’}> [’else’, (if_statement | ’{’, { statement }, ’}’) 1;
print_statement = ’print’, ’(’, expression, ’)’

variable_statement = ’var’, IDENTIFIER,
[?:’, type_expression,] ’=’, expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, ’=’, expression;

function_declaration = ’function’, IDENTIFIER, ’(’, parameter_list, ’)’ +
[’:’ + type_expression 1, "{’, {
function_body_statement }, ’1}’;

function_body_statement = statement |
return_statement;

parameter_list = [parameter, {’,’ parameter }];

parameter = IDENTIFIER [, ’:’, type_expression];

12

return_statement = ’return’ [, expression];

expression = equality_expression;

equality_expression = comparison_expression
{ ("t=" | "==") comparison_expression };

comparison_expression = additive_expression
L (>] m>=r | " | "<=") additive_expression I};

additive_expression = factor_expression
{ ("+" | "-")factor_expression };

factor_expression = unary_expression
{ ("/" | "+" Junary_expression };

unary_expression = ("not" | "-")
unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true"
| "false" | "null"| list_literal | function_call | "(",
expression, ")"

list_literal = ’[’, expression, { ’,’, expression } ’]’;

function_call IDENTIFIER, ’(’, argument_list , ’)°

argument_list = [expression , { ’,’ , expression }]

type_expression = ’int’ | ’string’ | ’bool’ | ’object’ |
’list’ [, ’<’ , type_expression, ’>’]

13

Conclusion

e Catscript’s simplicity and versatility make it a valuable tool for various
development tasks. By mastering its features and syntax, you can stream-
line your development process and create efficient scripts tailored to your
needs.

Section Five: UML

There was no need for UML in this project since the overall design had been
predetermined by the professor. Given this, I included a sequence diagram that
illustrates the step-by-step process of parsing the expression ‘1 4+ 1’. The parsing
process begins with the high-level task of parseProgram, which initiates the pars-
ing process. Subsequently, the process drills down into specific parsing steps,
including parseExpression, parseEqualityExpression, parseComparisonExpres-
sion, parseAdditiveExpression, parseFactorExpression, parseUnaryExpression,
and parsePrimaryExpression. The diagram then identifies ‘1’ as an integer lit-
eral, ‘4+’ as an additive expression, and ‘1’ as another integer literal. Through
this approach, the parser effectively breaks down the ‘1 4+ 1’ expression into
manageable components.

Sequence Diagram For "1 + 1"

1 1 =) [parenaa) [pomeractormpreson] | I) [reeoers

)l 1) s) e) ometommresen) IC) e

Section Six: Design Trade-Offs

When comparing recursive descent parsers and parser generators, several signif-
icant tradeoffs come into play. Recursive descent parsers, by closely resembling
the grammar they parse, provide exceptional ease of use and debugging capabil-
ities. Their structure mirrors the grammar, making them relatively straightfor-
ward for developers to understand and troubleshoot. Additionally, recursive de-
scent parsers offer considerable flexibility in handling complex grammars. How-
ever, this flexibility may result in inefficiencies when parsing large grammars due

14

to recursion. On the other hand, parser generators excel in optimizing perfor-
mance, making them ideal for efficiently processing extensive datasets. Yet, this
efficiency often comes at the expense of flexibility, as they may struggle to adapt
to the intricacies of complex grammars. Furthermore, error handling in parser
generators can pose challenges, whereas recursive descent parsers empower de-
velopers with direct control over parsing logic, leading to more straightforward
error management. Ultimately, the choice between these approaches depends
on the specific requirements of the parsing task, balancing considerations such
as ease of use, flexibility, performance, and error handling.

Learning recursive descent parsing is straightforward due to its intuitive nature.
The direct mapping of grammar rules to parsing functions simplifies the learn-
ing process, making it easier for students to grasp parsing concepts and apply
them effectively in practice. Therefore, recursive descent is often considered the
best approach for beginners in compiler design due to its simplicity and direct
applicability.

Section Seven: Software Development Life Cycle
Model

Catscript underwent development through a test-driven approach, where progress
was determined by passing various sections of unit tests. The development pro-
cess unfolded in four stages: starting with tokenization, followed by parsing,
evaluation, and bytecode generation. Advancement through these stages de-
pended on successfully completing the associated tests in a sequential manner,
with each stage building upon the achievements of the previous one.

Test-driven development acts like a roadmap for developers, helping them focus
on what needs attention in a project. By setting clear goals with test cases, test-
driven development guides developers to tackle tasks step by step, making them
more manageable, especially in big projects. This development method keeps
teams on track, even when dealing with complex projects, by breaking down
the work into smaller and achievable parts. In essence, test-driven development
streamlines development efforts, ensuring a structured approach that leads to
more successful outcomes.

15

