
Teamwork	

When	approaching	this	project,	team	member	1	first	assessed	the	needs	of	the	project	and	wrote	the	first	draft	of	the	code.	Team	member	1	then
gave	this	code	to	team	member	2	who	reviewed	it	and	supplied	team	member	1	with	detailed	documentation	about	the	code.	Once	team
member	1	received	team	member	2’s	documentation,	team	member	1	reviewed	it,	team	member	1	and	team	member	2	discussed	how	to	make	it
better,	and	we	both	suggested	changes	that	would	improve	the	documentation.	Throughout	this	process,	the	ability	to	trade	ideas	and	discuss
changes	was	vital	to	the	improvement	of	the	code.	Overall,	team	member	1	spent	about	70%	of	the	project	time	on	writing,	testing,	and
improving	the	code	while	team	member	2	spent	about	30%	of	the	project	time	creating	documentation	and	reviewing	errors.	

Team	member	2	also	provided	team	member	1	with	tests	to	thoroughly	check	the	major	aspects	of	the	code	team	member	1	had	written.	The	first
test	team	member	2	provided	team	member	1	with	was	meant	to	check	if	variable	assignments	within	functions	work	as	intended.	The	next	test
we	ran	was	to	check	that,	if	the	parameter	had	the	wrong	type,	the	compiler	would	throw	an	error.	The	final	test	we	ran	was	to	make	sure	that
nested	for	loops	within	other	for	loops	execute	properly.	After	running	all	of	these	tests,	team	member	1	was	able	to	find	and	fix	faulty	aspects	of
the	code.	Thanks	to	these	tests,	we	were	able	to	solidify	the	validity	of	our	code.	Team	member	2’s	tests	are	below.	

@Test
void	variablesInsideFunctionsAssignProperly()	{
				assertEquals("10\n",	executeProgram("var	x	=	1\n"	+"function	foo()	{\n"	+
								"x	=	10"	+
								"}\n"+
								"foo()\n"+
								"print(x)"));
}
@Test
void	parametersOfWrongTypeThrowsError()	{
				assertEquals(ErrorType.INCOMPATIBLE_TYPES,	getParseError("var	x	=	\"asdf\"\n"	+"function	foo(y	:	int)	{\n"	+
								"print(y)"	+
								"}\n"+
								"foo(x)\n"));
}
@Test
void	doubleForLoopsExecutes()	{
				assertEquals("3\n9\n",	executeProgram("var	x	=	0\n"	+	"var	y	=	0\n"	+	"function	foo()	{\n"	+
								"for(i	in	[1,	2,	3])	{	x	=	x	+	1\n	"	+
								"for(l	in	[1,	2,	3])	{	y=	y	+	1	}	}"	+
								"}\n"	+
								"foo()\n"	+
								"print(x)\n"	+
								"print(y)\n"));
}

Design	Pattens	Used	

Memoization	is	a	pattern	that	is	useful	no	matter	if	one	is	writing	procedural	or	object	oriented	programming.	This	pattern	uses	a	hash	map	to
store	values	from	expensive	function	calls	and	look	them	up	later.	If	the	function	takes	exponential	time,	the	function	will	only	ever	need	to
calculate	the	value	once.	Once	calculated	the	value	can	be	looked	up	in	constant	time.	These	values	are	only	available	during	runtime,	but	even
so,	it	still	will	save	precious	time.	If	we	were	to	code	this	directly	the	function	would	have	to	calculate	each	value	every	time	we	use	that	value
which	would	take	exponentially	more	time.	

One	such	function	call	within	Catscript	that	is	especially	costly	is	the	getListType	method.	This	can	be	seen	in	the	class	under	src/main/java/edu/
montana/csci/csci468/parser/CatscriptType.java.	Creating	new	list	types	is	an	incredibly	expensive	operation	so	by	using	this	pattern	we	only	ever
have	to	create	them	once.	If	we	were	to	code	this	directly	on	the	other	hand	it	would	take	much	more	time	to	get	these	values.	The	code	involved
for	this	method	has	been	extracted	from	the	source	and	is	shown	below.	

private	static	final	HashMap<CatscriptType,	ListType>	LIST_TYPE_CACHE	=	new	HashMap<>();

public	static	CatscriptType	getListType(CatscriptType	type)	{
				if(LIST_TYPE_CACHE.containsKey(type))	{
								return	LIST_TYPE_CACHE.get(type);
				}	else	{
								ListType	listType	=	new	ListType(type);
								LIST_TYPE_CACHE.put(type,	listType);

								return	listType;
				}
}

CatScript	Documentation	

General	Information:	CatScript	is	statically	typed	programming	language	with	a	simple	type	system,	that	has	6	types,	int	(32	bit	Integer),	string	(a
set	of	characters),	bool(true/false),	list<x>(a	list	of	type	x),	null,	and	object(any	type	of	value).	The	types	of	all	variables	and	functions	are	known	at
compile	time.	CatScript	has	built-in	functionality	such	as	variables,	variable	assignments,	print	statements,	if	statements,	for	loops,	simple

Ryan Armstrong


Ryan Armstrong




compile	time.	CatScript	has	built-in	functionality	such	as	variables,	variable	assignments,	print	statements,	if	statements,	for	loops,	simple

mathematical	expressions,	comparison	expressions,	equality	expressions,	and	functions.	

Types:	

int	-	This	is	a	32-bit	integer	that	can	store	any	number	between	the	values	2,147,483,647	and	-2,147,483,648.	

bool	-	This	type	is	a	Boolean	value,	and	variables	of	this	type	can	be	set	to	true	or	false.	

list	-	A	list	can	be	used	to	store	a	collection	of	other	types.	But	lists	can	not	be	modified	after	being	created.	

null	-	This	is	just	a	null	value	indicating	the	absence	of	a	value	in	a	variable.	

string	-	This	type	is	a	collection	of	characters	such	as	“random	string”	or	“abc123”.	

object	-	This	type	can	be	assigned	the	other	types.	An	example	would	be	Object	obj	=	“random	value”.	That	Object	obj	now	stores	a	string	value.
You	could	also	say	Object	obj2	=	123.	Object	obj2	stores	an	integer	value	of	123.	Objects	cannot	be	assigned	to	other	types.	You	can	not	do	String
str	=	obj.	

Functionality:	

Variables	–	Variables	can	be	declared	using	either	of	the	following	formats.	First,	you	use	the	keyword	Var	followed	by	the	identifier/name	and
then	an	optional	semicolon	with	a	type	and	then	an	equal	sign	followed	with	the	value	you	want	to	be	assigned	to	the	variable.	

var	x	=	10	Or	var	y	:	list<int>	=	[1,2,3]	

The	first	format	assumes	the	variables	type	based	on	the	value	provided,	the	second	declaration	method	has	an	explicit	type	where	you	tell	it
what	the	type	is.	The	variables	in	cat	script	are	stored	and	can	be	called	later	in	the	same	scope	to	use	the	assigned	value.	

Assignment	–	You	can	also	assign	values	to	variables	using	the	following	format.	

x	=	20	

This	allows	you	to	change	the	value	that	a	given	variable	points	to.	A	couple	of	important	things	to	note	with	assignment	variables	is	that	the	type
of	the	expression	that	you	are	assigning	to	the	variable	needs	to	match	with	the	variable’s	expected	type.	The	variable	also	needs	to	be	declared	in
the	scope	in	which	you	are	assigning	the	value.	

Unary	Expressions	–	Unary	expressions	are	used	to	get	the	inverse	of	whatever	follows.	To	use	a	unary	expression,	you	can	put	a	–	before	a
number	to	get	the	negative	number.	You	can	also	use	the	Not	keyword	to	get	the	inverse	of	a	boolean.	The	Not	can	also	be	used	before	an
expression	of	function	that	produces	a	bool	to	inverse	the	output.	Below	are	a	few	examples	of	unary	expressions.	

-1	or	-4	

not	true	of	not	(10<9)	

Parenthesized	Expressions	–	Parenthesized	expressions	are	used	to	enforce	a	priority	in	the	execution	of	the	stuff	inside	of	the	parentheses.	It
can	be	used	to	enforce	correct	mathematical	execution	or	to	apply	expressions	to	other	expressions	as	shown	below.	

7	*	(8	+	9)	

not	(8<9)	

Factor	Expressions	–	Factor	expressions	are	used	by	using	the	multiplication	symbol	or	the	division	symbol	between	two	integers,	as	shown
below.	

10	*	7	OR	90/10	

The	first	example	would	result	in	70	or	10	multiplied	by	7	and	the	second	example	would	result	in	9	or	90	divided	by	10.	

Identifier	Expression	–	Identifier	expressions	represent	the	names	assigned	to	variables	or	functions	that	are	declared	in	a	program.	Below	is	an
example	where	variableName	is	the	identifier.	

var	variableName	:	string	=	“var”	

Additive	Expression	–	Additive	expressions	use	the	addition	and	subtraction	sign.	The	addition	symbol	can	be	used	to	add	two	integers	together
or	can	also	be	used	to	concatenate	a	string	to	another	value.	Below	is	an	example	of	mathematical	addition	usage	

9	+	8	

This	would	result	in	a	value	of	17,	you	can	also	use	the	addition	operator	to	concatenate	a	string	to	another	value	as	shown	below.	

“string	“	+	123	

This	would	result	in	the	String	value	of	“string	123”.	The	subtraction	operator	is	only	use	to	subtract	the	second	integer	from	the	first	as	shown
below.	

17	–	9	

This	would	result	in	the	integer	8.	



Print	Statements	–	In	Catscript	you	can	print	values	out	to	the	console	using	print.	This	built-in	functionality	allows	you	to	print	out	the	string
value	of	what	is	in	the	parentheses	following	the	print	keyword.	Below	are	a	couple	of	examples	of	the	use	of	print	in	catscript.	

print(1)	

print(“this	string	value”)	

Comparisons	Expressions	–	In	CatScript	there	is	built	in	comparison	and	equality	tools	that	evaluates	to	true	or	false	depending	on	the	values
used.	Using	comparison	expressions	allows	two	integers	to	be	compared	and	produce	a	boolean	result.	Built	in	comparisons	are	greater	than,
less	than,	less	than	or	equal	to	and	greater	than	or	equal	to.	Shown	below	is	how	to	use	each	comparison.	

Greater	Than	-	8	>	9	-	Evaluates	to	true	

Less	Than	-	9	<	8	-	Evaluates	to	false	

Greater	Than	or	Equal	to	-	8	>=	9	-	Evaluates	to	false	

Less	Than	or	Equal	to	-	8	<=	9	-	Evaluates	to	true	

Equality	Expressions	–	For	equality	expressions,	you	can	compare	values	of	different	or	the	same	type	to	check	if	two	values	are	equal	or	not
equal.	Shown	below	is	how	to	use	equals	and	not	equals.	

Equal	-	8	==	true	-	Evaluates	to	false	

Not	Equal	-	8	!=	9	-	Evaluates	to	true	

If	Statements	–	CatScript	has	built-in	if	statements	which	allows	you	to	have	conditional	execution.	You	provide	an	expression	that	will	be
evaluated	as	true	or	false.	If	the	expression	evaluates	to	true,	then	the	Statements	within	the	if	are	executed	other	wise	they	are	not	executed.	The
implementation	of	the	if	is	shown	below.	

if(x	=	10){statements}	

After	an	if	statement	you	can	optionally	use	an	else	which	will	execute	the	statements	in	the	else	if	the	expression	evaluates	to	false.	The
implementation	of	if-else	is	shown	below.	

if(x	==	10){statements}	

else{statements}	

For	Loops	–	Built	in	for	loops	allow	you	to	iterate	over	every	value	in	a	list	and	execute	a	set	of	statements	for	every	value	in	a	list.	When	using	a
for	loop	there	is	a	temporary	variable	that	while	in	the	for	loop	you	can	use	that	variable	to	access	the	current	value	from	the	list,	in	the	example
provided	the	x	points	to	the	current	value	in	the	list.	The	example	below	shows	how	to	use	a	for	loop.	

for(x	in	[1,2,3])	{	statements	}	

Something	to	note	with	for	loops	is	while	in	for	loop	you	have	access	to	the	variables	that	are	available	in	the	scope	where	the	for	was	used,	but
within	a	for	loop	you	can	declare	a	new	variable	that	can	only	be	used	within	that	loop	and	the	new	variable	will	not	be	usable	outside	of	the	loop.	

Functions	–	Functions	must	be	declared	and	then	called.	In	CatScript	a	function	declaration	must	start	with	the	function	keyword	and	then	be
followed	by	what	you	want	to	name	the	function.	After	the	name,	there	must	be	a	set	of	parentheses	where	you	put	all	of	the	needed	argument
declarations.	After	the	parentheses	there	is	the	option	to	put	a	semicolon	followed	by	a	return	type,	if	you	put	a	return	type	here	the	function
must	have	a	return	statement	to	return	something	of	the	specified	type.	Then	there	are	the	brackets	that	will	contain	all	of	the	statements/
functionality	for	the	function.	Below	is	an	example	of	a	function	declaration.	

function	foo(x)	{	print	x	}	

Similar	to	in	for	loop,	while	inside	of	a	function	you	can	use	variables	that	are	declared	in	the	same	scope	as	the	function,	while	also	being	able	to
declare	new	variables	within	the	function	that	will	be	unusable	after	the	function	finishes	execution.	So	if	you	want	to	keep	values	calculated	in	a
function	they	should	be	returned.	

Function	Calls	–	To	call	a	function	you	need	to	use	the	function	name	followed	by	parentheses	that	contain	the	values	that	you	want	to	pass	into
the	function.	It	is	important	to	note	that	the	values	you	put	in	the	parentheses	must	match	the	order	and	type,	if	specified,	of	arguments	that	are
in	the	function	declaration.	This	is	useful	for	running	the	same	code	on	multiple	different	values	and	avoids	having	multiple	instances	of	the	same
code.	Below	is	a	function	call	for	the	function	declared	above.	

foo(“this	is	the	value”)	

Return	Statements:	Return	statements	are	used	at	the	end	of	a	function	to	end	the	function	and	return	a	value	if	specified.	If	a	function	does	not
have	a	return	parameter	specified,	a	return	can	still	be	used	in	an	if	to	end	the	function	and	not	finish	the	rest	of	the	statements.	A	return	is	also
used	to	specify	what	value	to	return	if	the	function	has	a	return	type	specified	in	the	declaration.	Below	is	an	example	of	a	function	with	a	return.	

Declaration:	function	foo(x)	:	string	{	return	“this	is	“	+	x	}	

Function	Call	:	string	str	=	foo(“a	sentence.”)	

The	function	call	sets	str	to	be	“this	is	a	sentence”	because	the	function	returned	the	string	that	was	concatenated.	



UML	

This	diagram	shows	the	expressions	in	a	recursive	descent	compiler.	Recursive	descent	follows	the	idea	that	everything	is	connected	recursively.
Each	expression	comes	from	expression	and	is	connected	to	each	other	and	ultimately	leads	back	to	expression.	In	this	way	no	matter	if	it’s	an
additive_expression	or	even	a	unary_expression	every	expression	is	in	one	tree.	At	the	root	node	of	the	tree	there	will	always	be	the	operator
performed	first.	At	each	leaf	node	there	will	be	either	an	identifier,	string,	integer,	true,	false,	list_literal,	or	function_call.	These	are	the	operands.
In	all	the	parent	nodes	there	will	be	other	operators.	This	also	means	that	the	order	in	which	expressions	are	calculated	is	enforced	by	how	far
down	in	the	tree	they	are.	Recursive	descent	ultimately	creates	a	tree	of	values	where	the	operators	near	the	top	of	the	tree	are	least	important,
calculated	first,	and	the	operators	at	the	bottom	are	most	important,	calculated	last.	If	a	parenthesized	expression	is	used	the	parenthesized
expressions	will	always	be	done	first	so	the	expression	used	within	it	will	be	moved	higher	up	in	the	tree.	

In	this	diagram	identifier,	string,	integer,	true,	false,	null,	list	literal,	and	function	call	are	all	potential	operands	for	operators.	Even	though	it’s
possible	to	parse	a	list	literal	in	an	additive	expression,	in	such	a	case	we	would	have	an	error.	This	leads	us	to	a	problem	that	is	common	within
recursive	descent	algorithms.	When	a	recursive	descent	algorithm	finds	an	error	it	will	often	just	keep	reporting	new	errors	until	the	end	of	the
file,	even	if	they	don’t	exist.	This	shortcoming	can	be	fixed	pretty	easily,	but	it	brings	into	perspective	another	interesting	side	effect	of	every
expression	being	connected.	

Design	Tradeoffs	

In	the	world	of	compilers	there	are	two	major	contenders,	recursive	descent	and	code	generators.	Recursive	descent	is	both	easier	to	write	and
easier	to	debug.	In	recursive	descent	everything	is	connected	to	each	other	recursively.	Expressions	can	be	chained	together	and	statements	can
be	passed	to	each	other	with	no	extra	code	written	because	of	its	recursive	nature.	Another	benefit	to	recursive	descent	is	that	it	is	used	in	the
professional	world.	Because	of	its	recursive	nature,	recursive	descent	is	also	often	a	lot	simpler	than	code	generators.	This	is	one	of	the	arguably
easiest	ways	to	write	a	parser	by	hand.	This	is	because	when	writing	a	recursive	descent	parser	we	have	control	of	how	every	token	is	used.	

Code	generators	on	the	other	hand,	require	regular	language	to	be	written.	Regular	languages	often	have	cryptic	syntaxes	and	the	same	symbols
often	have	different	meanings.	Another	downside	to	code	generators,	is	the	code	produced	is	often	very	messy.	This	appears	in	the	form	of	very
deeply	nested	if	statements	and	cryptic	variable	names.	Another	reason	parser	generators	are	often	not	a	very	good	idea	is	that	code	that	is
generated	should	not	be	edited.	This	is	because	if	the	code	is	regenerated	the	changes	will	be	overwritten	and	all	that	work	will	be	lost.	One
reason	that	parser	generators	are	popular	is	regular	languages	are	very	concise	and	can	be	written	very	fast.	The	regular	language	file	written	is
also	often	a	lot	smaller	with	the	downside	of	the	compiler	being	a	lot	more	lines.	In	this	way	a	compiler	can	be	written	in	a	vastly	shorter	amount
of	time	if	you	know	regular	languages	very	well.	This	is	most	likely	the	reason	parser	generators	are	popular	among	academics.	

Therefore,	it’s	a	question	of	whether	we	want	to	write	a	clean	compiler	by	hand	from	the	ground	up,	or	learn	how	regular	languages	work	and
generate	one	ourselves.	That	decision	is	one	that	should	be	left	up	to	the	compiler	writer.	But,	whichever	path	we	take	in	the	end,	we	have	learned
something	useful.	We	will	end	up	with	a	compiler	in	the	end	that	compiles	a	language	that	we	made	up.	That	is,	in	my	opinion,	one	of	the	most
amazing	parts	about	coding.	

Software	Development	Cycle	

Test	driven	development	is	a	technique	that	involves	creating	tests	for	different	areas	of	the	program.	When	running	tests,	the	first	result	one
receives	will	either	be	a	pass	or	fail.	Most	of	the	time	the	test	will	initially	fail,	but	once	the	problem	is	fixed,	the	test	can	be	rerun	and	will	update
the	result.	If	everything	has	been	fixed	correctly,	this	test	will	pass	with	no	problems.	In	this	way	each	aspect	in	the	code	can	be	tested	individually
with	a	specific	error	message	for	each	aspect.	

In	Catscript	we	used	a	large	number	of	tests	to	check	the	functionality	and	validity	of	our	project.	These	tests	ranged	from	parsing	tests	to
execution	tests	and	even	to	bytecode	tests.	The	amount	and	variety	of	tests	does	a	good	job	of	showing	just	how	versatile	and	powerful	test
driven	development	can	be.	As	you	can	imagine,	the	implementation	of	this	development	strategy	was	an	essential	aspect	when	it	came	to
debugging	the	code	for	our	project.	

Without	utilizing	test	driven	development,	the	process	of	developing	this	project	would	have	been	much	more	difficult.	If	we	hadn’t	utilized	this
development	system,	we	would	have	spent	many	unnecessary	hours	going	back	to	our	code	and	trying	to	find	and	fix	all	of	the	problems.	The
tests	also	helped	our	team	to	have	an	efficient	and	streamlined	direction	for	our	communication	when	it	came	to	the	problems	within	the	code.	If
a	different	development	method	had	been	used,	we	don’t	believe	our	time	and	energy	would	have	been	used	as	effectively.


