
CSCI 468 - Compilers

Spring 2024

Brian Schumitz

Gage Nesbit

Sam Roelofs

Section 1: Program
The code is contained within the source.zip file in this directory.

Section 2: Teamwork
Throughout the semester, each of us has built a compiler for the Catscript coding

language. While the construction of this compiler has been done individually, the
teamwork came in after the compiler had been created.

My team consisted of three members. The bulk of each member’s project was
made for themselves, however, one team member provided added material for other
team members. Team member 1 provided tests and documentation of features of the
language for team member 2. Team member 2 did the same for team member 3, and
team member 3 did the same for team member 1 in turn.

This allowed for the team member receiving the other team member’s work to
verify if their compiler worked the way they wanted it to, as well as work with the team
member providing their documentation to ensure the documentation provided is of the
quality desired.

The Tests I received:

Section 3: Design Pattern

The above method has been written using the memoization design pattern. This
was used to cache types used in lists for future lists. Using this, instead of creating a
new object to be assigned as the type for the list, the compiler checks if the list type
desired has already been used in a list and uses that object. This increases efficiency
when creating lists.

Section 4: Technical Writing
Features:

Catscript Types:

object: The Catscript object type which may hold any values of the types below.

int: The Catscript integer type.

string: The Catscript string type.

bool: The Catscript boolean type

List: The Catscript list type is able to hold values of the type of anyone and only
one of the above. An important note is that within Catscript lists are immutable.

Variable Statement:

A way to initialize variables a value within Catscript. Variables must be given a
value upon initialization. This is done such that a variable can never be null. This
reduces the risk of null pointer exceptions.

Variable statements are not required to be given an explicit type as one can be
inferred by looking at the type of the value on the right of the equals, this type will
become the type of the variable. You can however give an explicit type. It is important to
note that the type of the value that is being assigned to the variable must match the type
of the variable.

Ex:(Inferring the type of int)

Var x =1

Ex:

Var x : int=1

Ex:

Var x : string= “hello world”

Assignment Statement:

A way to assign a new value to a variable within Catscript. The new value to be
assigned must be assignable to the type of the variable. For more information on which
types are assignable to which types, you can look above for documentation on Catscript
types. A complex expression can be used as the assignment value as this will be
interpreted before the value is assigned to the variable.

The validation of types within the assignment statement will occur after the
parsing. This validation is not only critical to ensure type issues don't arise but also
validates that the variable is a valid symbol name and has been initialized.

Ex:

x= 1

Ex:

x = “hello world”

Print Statement:

This is the only way to interact with the output buffer of Catscript. As the only
form of I/O care was taken to make sure that the behavior and performance were baked
right into the language. By giving the print statement we were able to have maximum
control over print.

The print statement does perform and looks like a function though under the
hood its behavior is fixed. A user cannot create a function or variable called print, it is a
reserve word for the Catscript runtime. Doing either will cause a parsing error resulting
in a nonfunctional program.

Ex:

print(1)

Output:

1

For Loops:

Catscript for loops are an easy-to-understand iterative loop. Unlike the C-style
loops in Catscript, you cannot have an incremental value that loops over a specified
range. As one of Catscript’s control flow statements the for loop gives programmers
adds substantial capabilities.

All statements held within the body will be executed during each iteration of the
for loop as determined by the interactive loop variable. The for loop body constitutes all
statements held between the two curly braces. In Catscript a for loop can hold any other
type of statement except a function definition statement.

Ex:

for(var x in [1,2,3]){

print(x)

}

Output:

1

2

3

If statement:

The if statement is another form of control flow statement. Though this unlike a
loop or function invocation is a conditional control flow. The if statement takes a boolean
value as its expression. Once the expression is evaluated if the expression is true the
“true statements” within the if will be executed. If the expression is evaluated to be false
then the statements within the else will be executed if one is present.

An if statement within Catscript may have an else statement, though one is not
required. Unlike other languages, the if statement only has capabilities for one if and
one else. To simulate an else-if case another if statement can be placed in the else,
where that if statement can be thought of like an else-if.

Ex:

if(x==true){

print(true)

}

Ex:

if(x==true){

print(true)

}

else{

print(false)

}

Function definition statement:

This is how functions are defined within Catscript. Much like with the variable
statement functions can either have their type inferred or they can have explicit type
given. Functions can be just like a variable statement of the type object, string, int, or
bool, they are also able to be of the void type where they do not need to return any
value.

Additionally, they have to be given zero or more parameters. These parameters
can have inferred types or explicit types, you can even mix and match where some
parameters have an explicitly given type and somewhere a type will be inferred. The
body of a function is defined as all the statements bound by the curly braces.

Ex:

function foo(){

print(“foo”)

}

Ex:

function foo(bar) : bool {

print(bar)

return true

}

Ex:

function foo(bar : string) : bool {

print(bar)

return true

}

Function call statement:

This is how functions are invoked within Catscript. This is the third and most
sophisticated version of control flow. Within a function call, a new scope is pushed onto
the symbol table. To invoke a function you need to give the name of the function
followed by a parenthesis and any arguments then the closing parenthesis.

It is critical to note that you must send the proper amount of arguments to the
function or it will cause an error. Additionally, the arguments that are sent must be of the
type specified in the function definition statement if a specified type was given. If a
function returns an expression a function invocation can be nested with any other
statement as per the grammar and treated like any other expression.

Ex:

foo()

Ex:

foo(1, “string”)

Equality expressions:

How two expressions of equality are evaluated. There is an equals operator “==”
and a not equals operator “!=”. These two operators will return true or false. Within
Catscript this can be used with all types.

Ex:

print(2 == 2)

print(false == “string”)

Output:

true

false

Ex:

print(2 != 2)

print(false != “string”)

Output:

false

true

Comparison expression:

This is how values are compared within Catscript. There is a greater than
operator “>”, a greater than or equal operator “>=”, a less than operator “<”, and a less
than or equal to operator “<=”. Comparison expressions can only be used with the int
type.

Ex:

Ex:

print(2 >1)

print(1>2)

Output:

true

false

Ex:

Ex:

print(2 >=2)

print(1>=2)

Output:

true

false

Ex:

print(2 <1)

print(1<2)

Output:

false

true

Ex:

Ex:

print(2 <=2)

print(2<=1)

Output:

true

false

Additive expression:

Within Catscript the “+” operator has two functions. To add integers together as
well as concatenate strings. The types of each operand must match or there will be an
error. The “-” operator deals with subtraction between two integers.

Ex:

print(1+2)

print(“hello”+”world”)

print(3-2)

Output:

3

helloworld

1

Factor expression:

This expression is responsible for multiplication with the “*” operator and division
with the “/” operator between two integers.

Ex:

print(2*3)

print(6/2)

Output:

6

3

Unary expression:

This expression is responsible for inverting boolean values with the “not” reserve
word. To negate an integer value the “-” operator is used.

Ex:

print(not false)

print(- (1))

Output:

true

-1

Section 5: UML

Above is a sequence diagram showing how the compiler would parse:

for(x in [1,2]) {

print(x)

}

Section 6: Design Trade-Offs
The parser of this compiler was made using recursive descent parsing. This is a

type of top-down parsing. We used this instead of the more commonly taught parser
generator approach. A parser generator is given a grammar and creates a parser to
check if a sequence of characters fits in the grammar supplied

Generator parsers involve a lot less written code than recursive descent, and
therefore is a lot easier to get right. However, parser generators come with their own
downsides. The syntax used by parser generators can be obscure and harder to
understand than if the parser was written by hand. Furthermore, recursive descent ties
well into the recursive nature of grammars.

Other types of parser designs are used, but parser generators and recursive
descent were the most prominent for the course, as we used recursive descent in the
course and parser generators are commonly taught in other universities.

Section 7: Software Development Life Cycle Model
This project was done using Test Driven Development. In this case, while writing

each part of the compiler, we had associated tests to ensure each bit of the part we
were working on functioned properly. For example, during the tokenizer, we had tests to
check if the tokens were being split correctly.

This model was very helpful, as it ensured the parts of the compiler worked
correctly. This prevented issues later on where a previous section wasn’t properly
written, causing confusion and errors in different sections relying on previously poorly
written code.

This model also helped with navigating what would otherwise be a very daunting
project. The tests guided what specifically needed to be done for each part, which made
it easier to remember each section of the code that needed to be written. While the tests
are usually written after the code rather than before it, this was something that stuck
and was worth mentioning.

