
Montana State University Computer
Science Department

“Catscript” Capstone Portfolio

Compilers 468

Spring 2024

Thompson, Trey

Flinn, Kaitlin

Section 1: Program. The source for my compiler is available in the same directory
as this document.

Section 2: Teamwork.

In this section, Team Member 1 was in charge of coding and Team Member 2 was in
charge of documentation and unit tests. Member 2’s documentation can be found in
section 4, technical documents.

Team Member 2’s Unit Test:

Section 3: Design pattern.

In our implementation, we've integrated the memoization pattern to optimize the
efficiency of retrieving a ListType for a given CatscriptType during variable
initialization, like in the statement "var x : int = [1, 2, 3]". This pattern efficiently
stores previously computed ListType objects in a cache, represented by a HashMap.
In addition, multiple requests for the same CatscriptType can be swiftly retrieved in
the cached result instead of redundantly computing it. This strategic use of
memoization optimizes performance by minimizing function calls, resulting in faster
execution times and an improved algorithm.

Section 4: Technical writing

Team Member 2 Documentation:

Catscript Guide
This document should be used to create a guide for catscript, to satisfy capstone
requirement 4

Introduction

Catscript is a simple scripting langauge. Here is an example:

var x = "foo"
print(x)

Features

Assignment Statement

x = 10

The assignment assigns the integer value 10 to the variable x.

For Loops

for(x in [1, 2, 3]){ print(x) }

This loop will execute three times, each time printing the value x holds at that time. It will first
print 1, then 2, then 3 before terminating

Function Definition Statement

function example_function(int i) {}

The function, example_function, is declared with the keyword function and takes in an
integer.

Function Call Statement

example_function(2)

Now the function, example_function, is being called, passing in the integer 2.

If Statement

if(x > 10){ print(x) } else { print(10) }

These two statements work together to form a conditional sequence. If the integer x is
evaluated larger than 10, the print(x) statement will execute. Otherwise, if x is smaller than
10, print(10) will execute.

Print Statement

print("hello")

The print statement will print the word "hello".

Return Statement

function x() {return}

Here, the return statements ends the execution of the x() function.

Variable Statement

var x : int = 10

X is being declared as type int, with a value of 10 assigned.

Additive Expression

1 + 2
3 - 1

The additive expression evaluates both sides of the
operator, then determines if the expression is addition or subtraction, then evaluates.

Boolean Literal Expression

bool = true

The boolean literal expression holds a value of true or false.

Comparison Expression

3 < 5

The comparison expression evaluates both the left and right hand sides of the operator, then
determines if the sign is greater, less, greater than or equal to, or less than or equal
to. The result is a boolean value of true or false.

Equality Expression

1 == 2 (false)
1 != 2 (true)

The equality expression evaluates both sides of the == operator to determine if they are
equal. The result will be a boolean value of true or false.

Factor Expression

2 * 2
10 / 5

The factor expression evaluates both sides of the operator, then determines if the expression
is multiplication or division, then evaluates.

Function Call Expression

example_function(1)

The function call expression calls a function that already been declared.

Identifier Expressoin

name

The identifier here is the word 'name', which is an identifier since there are no registered
types, expressions or statements that are called 'name'.

Integer Literal Expression

x = 5

An integer literal holds an integer value.

List Literal Expression

list<int> = [1, 2, 3]

A list literal holds a series of numbers. They can be of any literal type, with any number of
variables.

Null Literal Expression

x = null

The null literal expression will hold the value of null, not dissimilar to representing nothing.

Parenthesized Expression

2 * (1 + 2)

Following arithmetic rules, the addition will be evaluated before the multiplication since it is in
parentheses.

String Literal Expression

name = "trey"

The string literal holds a string, or word, value. In this case, the value of trey is held in the
name variable.

Syntax Error Expression

"foo(1, 2",
UNTERMINATED_ARG_LIST

Errors represent mistakes in the code. In this example, there is no closing parentheses to the
parameter list. This is a problem as the parser doesn't know when the end of the parameter
list has been reached.

Unary Expression

true != false (true)
if((not) 5)

The unary expression negates the equality expression. The exclamation point before the
equal represents that terms
must not be equal to be true.

Section 5: UML. No UML was needed or used in this project because the overall
design was pre-determined by the professor so we could focus on parsing.

Below is a Sequence Diagram for the parsing of the Additive Expression, “var x = 2 +
2” in the Catscript language.

The diagram demonstrates the recursive descent of parsing. As you can see, it starts
in a wide scope and starts the program. Then we begin to parse statements within
the program. Our statement is variable so once this is recognized, the parsing of the
expression begins. Once the language recognizes that it is an additive expression, it
forks into 2 different expressions—one for the left-hand side and one for the right-
hand side. As the program returns an integer expression, the recursive ascent
begins to complete the parsing of the program.

Section 6: Design trade-offs.

With the starting code provided at the outset of the project, our team embarked on
enhancing the existing recursive descent algorithm. Recursive descent was a good fit
for our project due to the structure of our grammar. The grammar of Catscript
builds on itself. Recursive descent allows this grammar to transition seamlessly
between statements and expressions. While recursive algorithms are more complex
in terms of Big O notation, this approach allowed us to accurately reflect the
language’s grammar. All in all, building our first complier we were willing to
sacrifice optimization to promote clarity and structure.

Section 7: Software development life cycle model.

For our capstone project, we decided to use the Test-Driven Development (TDD)
approach, which isn't usually popular due to concerns about its flexibility. However,
TDD worked really well for us. When it comes to parsing and evaluating, every detail
counts. TDD helped us execute these processes perfectly, ensuring our language ran
smoothly. Although others worry that TDD can lead to a lot of rewriting and sticking
too strictly to a plan, we found it saved us time and helped us avoid headaches later
on. This is true since we developed parsing before evaluating. If the parsing was not
correct, then our team would have spent hours trying to fix a parsing error in the
evaluation code. By focusing on writing tests before writing the actual code, we
caught problems early and gained a deeper understanding of our project.

	Catscript Guide
	Introduction
	Features
	Assignment Statement
	For Loops
	Function Definition Statement
	Function Call Statement
	If Statement
	Print Statement
	Return Statement
	Variable Statement
	Additive Expression
	Boolean Literal Expression
	Comparison Expression
	Equality Expression
	Factor Expression
	Function Call Expression
	Identifier Expressoin
	Integer Literal Expression
	List Literal Expression
	Null Literal Expression
	Parenthesized Expression
	String Literal Expression
	Syntax Error Expression
	Unary Expression

