
Catscript Guide
Introduction
Catscript is a simple scripting langauge. Here is an example:

Features
Expressions
Additive Expression

Operators:

The additive expression illustrates the use of using the + operator to add integers together.
It can also be used to concatenate integers to strings, strings to strings, and strings to null
values
For integers, this also includes the - symbol as well. The subtraction operator subtracts the
right-hand side of the expression from the left-hand side of the expression.

Boolean Literal Expression

var x = "foo"

print(x)

+ Addition
- Subtraction

// addition examples

print(3+4) // 7

print(3+"a") // 3a

print("a"+null) // anull

// subtraction example

print(3-2) // 1

The Boolean literal expression represents the logical boolean datatype. Booleans can be one of
two values: true and false .

Comparison Expression

Operators:

The purpose of these operators is to perform a logical comparison against two expressions.
Comparison expression return a boolean value. If the comparison is correct, it will return true .
If not, then the expression will evaluate to false .

Equality Expression

Operators:

You can check equality from integers to integers, booleans to booleans, and strings to strings.
The expression evaluation will return a boolean value. true will be returned if the equality is
true, otherwise a false will be returned.

var a = true

var b = false

print(a) // true

print(b) // false

< Less Than
> Greater Than
<= Less Than or equal to
>= Greater Than or Equal to

//integer examples

print(2<1) // false

print(2>1) // true

print(2<=1) // false

print(2>=1) // true

== Equal to
!= Not Equal to

Factor Expression

Operators:

The multiplication operator is used to multiply numerical expressions to produce a product.
Similarly, the division operator is used to divide numerical expressions to produce a quotient.

Function Call Expression

Function calls are used to execute an already-defined function. If the function definition has a
return value, the function call will become the returned value once the function is executed.

In the example below, assume foo (which returns an integer) and bar (which returns void) has
already been defined. The code is calling foo that consists of three parameters and assigns the
returned value to the variable x .bar is called with zero parameters and is not assigned to a
variable.

//integer examples

print(1==1) // true

print(1!=1) // false

//boolean examples

print(true!=true) // false

print(false==false) // true

//string examples

print("a"=="a") // true

print("a"=="b") // false

print("a"!="b") // true

* Multiplication
/ Division

print(4*5) // 20

print(20/5) //4

Integer Literal Expression

An integer literal expression describes the use explicit placement of the integer data type.
You can assign literals to a variable, or execute a function with them directly.

List Literal Expression

A list Literal expression describes the use explicit placement of the listType data type.
You can assign literals to a variable, or execute a function with them directly.

Null Literal Expression

A null literal expression describes the use explicit placement of the null data type.
You can assign literals to a variable, or execute a function with them directly.

Parenthesized Expression

var x = foo(1, 2, 3)

bar()

var x = 5

print(x) // 5

print(4) // 4

var x = [1, 2, 3]

print(x) // [1, 2, 3]

print([true, false, false]) // [true, false, false]

print(["a", "b", "c"]) // [a, b, c]

var x = null

print(x)

print(null) // null

Parenthesized expressions set priority on whatever is within the left and right parentheses. This
is useful for grouping and setting precedence over an order of operations.

String Literal Expression

A string literal expression describes the use explicit placement of the string data type.
You can assign literals to a variable, or execute a function with them directly.

Unary Expression

Operators:

The negation operator is used to inverse the logical boolean of an expression. It will evaluate
true booleans as false and false booleans as true . The negative operator is used to flip a
positive number to a negative number, and negative numbers to a positive number.

Statements

print((4+3)*3) // 21

var x = "Testing123"

print(x) // Testing123

print("Hello world!") // Hello world!

not Negation
- Negative

// Negative

print(-5) // -5

//Negation

print(not true) // false

Assignment

The assignment statement is used to update the value of a predefined variable. It is necessary
for the variable type and the new value to be compatible types, an Incompatible types error
will be thrown if they aren't compatible.

For loops

The for-loop assignment is used to iterate over every object within a list. The function will loop
once for every item within the list, then assign it to the temporary variable the user defines.

Function Definition

// Legal:

var x = 3

x = 4 // Assignment aspect, the value of x has been updated to 4

// Illegal:

var x = 3

x = true // ERROR: Incompatible types

// 'letter' is the temporary iterative variable

for(letter in ["a", "b", "c"]){

 print(letter)

}

// 'i' is the temporary iterative variable

var x = [true, false, false]

for(i in x){

 print(i)

}

The function definition statement is how you define new functions that you can call on to
execute. Function definitions do not execute unless called on. If the function does not have an
explicit return type, then the return type will be assigned to VOID , which means the function will
expect no return.

This first example below demonstrates a function with no parameters and no return type.

This function below is called 'myFunction' and it takes two parameters. Since parameter typing
is optional, the first parameter type 'one' is not declared, but the second parameter 'two' is
declared as a string, therefore, a string must be provided to the parameter 'two'.

This function is told to return a string type through the ': string' after the parameters have been
declared. Once a return type is declared, the function must have a return statement.

Function Calling

Function calling is used to call a predefined function. By calling a function and inserting the
parameters (if any), the function will execute the lines of code with the function's body.
Examples using the functions defined above: sayHello() and myFunction() .

Executing function with no parameters and no return:

function sayHello(){

 print("hello!") // function body here

}

function myFunction(one, two:string) : string {

 // body statements below:

 print(one)

 print(two)

 return two

}

//function definition

function sayHello(){

 print("hello!") // function body here

}

Storing function call's return into Variable:

If Statements

If statements are used to execute unique lines of code if and only if the expression within the
parenthesizes is true. If they are not true and there is an else statement after, then the else
statement will execute.

In the code below, true is always true, so the code print(1) will execute, but print(2) will not.

Since the result of 1==x is false (since 1 is not equal to 2), the if statement is false. Therefore,
the lines of code within the if statement will never be reached. The code will carry onto the else
if statement, which is true since x has the value of 2, and 2 is equal to 2. print(4) is

//function call

sayHello() // "Hello!"

// function definition

function myFunction(one, two:string) : string {

 // body statements below:

 print(one)

 print(two)

 return two

}

//storing the result of the function call into variable:

var result = myFunction(15, "my String")

//print output

print(result) // "my String"

if(true){

 print(1) //will execute

} else {

 print(2) //will not execute

}

executed. If the else if statement was also false, then every line of code within the else
statement's body will be executed.

Print Statements

The print statement is used to output an expression's value into the console.

Return Statements

The return statements are used within function definitions to return a specific value from within
the function. The function's return type is defined by the : int after the parameter list is
finished being defined.

var x : int = 2

if(1==x){

 print(1) // Never reached

 print(2) // Never reached

 print(3) // Never reached

} else if(2==x){

 print(4) // 4

} else{

 print(5)

}

print("Printing works") //output: "Printing works"

print(4+5) // output: 9

// function definition that returns the string data type

function myFunction(one, two:string) : int {

 // body statements below:

 print(one)

 print(two)

 return 40

}

//storing the result of the function call into variable:

Variable Statements

Variable statements are used to define a brand new variable. you can define a new variable
with implicit typing with var VARNAME = VALUE , or explicitely define a type with var VARNAME :
DATATYPE = VALUE . Every word in capital letters is a placeholder.

Defining variables implicit typing

Defining variables explicit typing

var result = myFunction(15, "my String")

//resul's value:

print(result) // 40

var a = 4

var b = "hello"

var c = true

var x : int = 4

var y : string = "hello"

var z : boolean = true

