
Capstone Portfolio

Aleksandr Means (Team Member 2)

&
Wei You (Team Member 1)

CSCI 468 Spring 2023

Wei You



Section 1: SRC Zip file is attached



Section 2:

Team member 2 contributed three tests and the documentation to our project, while I was
responsible for the implementation. The documentation he provided me with is located in section
4 and the tests he provided me with are located below. The three tests are also located within the
demo folder of the test folder of the project, with the class name of partnerTest, and the provided
documentation can be found in the capstone folder named catscript.md. The estimated time
contribution was about 50% 50% because it took about equal time and effort to get this project
completed successfully and simply because of the ways that we used to complete it.



Section 3:
The memoization pattern in the getListType method of the CatscriptType class in the

compilers project utilizes a HashMap to cache instances of ListType. This approach ensures that
when a ListType is requested for a specific CatscriptType, it is created only once and reused on
subsequent requests, rather than being recreated each time. This method improves efficiency by
reducing the number of object creations and the associated overhead, especially in
performance-critical applications where getListType might be called frequently. Moreover, it
helps in maintaining a smaller memory footprint since identical ListType objects are not
needlessly duplicated. By using memoization, the system can scale better and operate faster as it
avoids the computational cost of repeated instantiation.



Section 4:
This is the documentation of the CatScript program that was provided by Team member

2.



Section 5:
This is the UML diagram for the recursive descent parsing algorithm utilized by the

compiler's parsing project.



Section 6:
When comparing parser generators and recursive descent parsers, the choice often

depends on the specific needs of the language being implemented and the preferences of the
developers. Parser generators, like ANTLR or Yacc, provide a powerful tool for creating parsers
from a high-level description of the grammar. These tools automatically generate the parsing
code based on grammar rules defined in a formal syntax, often BNF (Backus-Naur Form). This
can accelerate development and ensure that the grammar is correctly and consistently
implemented, as changes to the grammar are centrally managed and propagated through the
generated code. For a language like Catscript, which seems to have a structured type system and
potentially complex syntax rules, a parser generator can offer a robust framework to handle
parsing efficiently, minimizing manual coding errors and inconsistencies.

On the other hand, recursive descent parsers are hand-coded and provide the developer
with finer control over the parsing process. This method involves writing functions or methods
that directly implement the grammar rules. Each function typically corresponds to a non-terminal
in the grammar, and these functions call each other recursively to match the input tokens against
the grammar rules. Recursive descent parsers are particularly advantageous when the language
features context-sensitive constructs or when the parsing logic needs to intertwine tightly with
other aspects of the interpreter or compiler, such as type checking and error handling. In the
context of Catscript, if the language demands intricate error reporting or specific handling of its
unique types like CatscriptType and ListType, a recursive descent parser provides the necessary
control to integrate these features seamlessly. Additionally, since recursive descent parsers do not
require external tools, they are preferred for smaller or more experimental languages where
external dependencies are to be minimized.



Section 7:

Test Driven Development (TDD) has been a central strategy in our approach to
developing the capstone project, shaping how we plan, write, and verify our code.
Fundamentally, TDD involves writing tests for specific functionalities before even writing the
code that implements those functionalities. This method promotes a well-organized development
process where requirements are translated into specific test cases, ensuring that all features are
thoroughly planned and tested from the outset. Personally, I have found TDD immensely
beneficial as it compels the team to clarify requirements and establish clear, measurable
objectives for every feature before proceeding with implementation. This upfront investment in
testing helps avoid the common pitfall of feature creep and ensures high coverage and code
quality from early in the project lifecycle.

From a personal perspective, TDD aligns well with my methodical approach to
problem-solving. It allows me to focus intensely on one specific aspect of the system at a time,
ensuring that each piece of functionality is correctly implemented and robust against future
changes before moving on. This approach to building a project not only enhances my sense of
accomplishment but also instills a discipline of continuous verification, which is crucial for
maintaining long-term code health. Moreover, TDD's emphasis on testing first reduces the
likelihood of encountering severe bugs later in the development cycle, which can be both
demoralizing and costly to fix. While TDD can sometimes slow the initial stages of development
as tests are formulated and refined, I find that this is mitigated by the smoother and quicker
integration phases, as well-developed tests pave the way for integrating complex systems more
reliably.


