
Instructor: Carson Gross

Class: Compilers – CSCI 468 – Spring 2024

BRIAN SCHUMITZ SENIOR
CAPSTONE DOCUMENT

Schumitz 1

Sec�on 1: Program
There is a ZIP file of my CatScript compiler code called source.zip in the /capstone/por�olio
directory of my CSCI 468 GitHub repository.

Schumitz 2

Sec�on 2: Teamwork
Team Member 1, Primary Contribu�ons:

 As team member 1, my main contribu�on to the project was wri�ng most of the code
for the CatScript compiler. Our professor, Carson Gross, provided us with the infrastructure for
the project. However, we had to code the important parts of the compiler on our own. The main
sec�ons that we had to write a significant amount of code for were Tokenizing, Parsing, and
genera�ng ByteCode.

 Tokenizing, also called scanning or lexical analysis, is the process of breaking text into
individual tokens. This process acts in a loop, and typically involves discarding meaningless
white space and comments. Parsing is the process of using a grammar to turn the stream of
tokens into a parse tree based on a grammar. In our case, CatScript uses Extended Backus-Naur
Form (EBNF) for its grammar. We took the recursive descent algorithm approach for our parser.
Finally, for the back end of the compiler, we generated code in the form of JVM ByteCode.

 My �me spent implemen�ng the code for the CatScript compiler amounted to around
95% of the project work.

Team Member 2, Primary Contribu�ons:

 Team member 2 mainly contributed to the project by wri�ng documenta�on. The
documenta�on came in the form of a CatScript guide. This guide, which can be seen in sec�on
four, acts as a user manual for the CatScript programming language. It provides brief
descrip�ons of CatScript’s type system, features, and expressions along with examples.

Addi�onally, team member 2 created test cases for my compiler. The tests that my
partner wrote, seen below, provided valuable edge cases that tested the proper func�onality of
my parser. The tests pointed out issues in my code that I hadn’t no�ced prior, and I was able to
get them fixed.

Team member 2’s contribu�ons, documenta�on and code tests, amounted to about 5%
of the project work.

Schumitz 3

Compiler tests:

Schumitz 4

Sec�on 3: Design patern
Memoiza�on patern in compiler code:

Design paterns are general solu�ons for common problems in so�ware development.
Every design patern can be thought of like a blueprint that can be customized and
implemented to solve design problems in your code. Paterns are also useful tools because they
provide a common language that helps teams communicate more efficiently and effec�vely.
 In the development of the CatScript compiler, we implemented the memoiza�on
patern, seen above. The memoiza�on patern addresses scenarios where a method is
frequently called with iden�cal inputs that always result in the same outputs. To reduce
inefficiency, we can store given inputs and their associated output into a data structure like a
hash map. By storing these inputs-output pairs, we can check if the method has already been
run on some given input. This way, the method is only ever executed once for some unique
input.

 Specific to the CatScript compiler, we used the memoiza�on patern to op�mize type
access. Without the design patern, each �me the getListType method is called with the same
type, we are unnecessarily crea�ng duplicate listType objects. However, by using the
memoiza�on patern, we were able to remove this inefficiency. Now, each �me the getListType
method is called, we check a cache to see if we already have a listType object associated with
the type given as an argument. If that associa�on already exists in the cache, then we will
return the exis�ng listType object. If that associa�on does not exist, then we will create a new
listType object, add the new associa�on into our cache, and return the new listType object.

Schumitz 5

Sec�on 4: Technical wri�ng

CatScript Guide

Introduction
CatScript is a simple scripting language. Here is an example:

var x = "foo"
print(x)

----[OUTPUT]----
foo

Type System
CatScript is statically typed, with a small type system as follows

• int - a 32 bit integer
• string - a java-style string
• bool - a boolean value
• list - a list of value with the type 'x'
• null - the null type
• object - any type of value

Features

For loop statement

Description:
 The user provides an expression with an unused variable and a list. Inside the For
Loop, the user will put statements to be executed by the For Loop. The For Loop will
iterate through the list and execute all statements inside the loop for each item within
the list in the provided expression.
 This allows for items in a list to be iterated through, so a range of numbers can be
selected for statements to be executed a certain number of times. A list of items the
user wants to use in statements can also be selected for processes.

Example:

Schumitz 6

for (var i in [1, 3, 5]) {
 print(i)
}

----[OUTPUT]----
1
3
5

If statement

Description:
 The user provides an equality or comparison expression for the If Statement to
verify. Inside the If Statement, the user will provide statements to be executed by the If
Statement. The If Statement will first check if the expression provided yields true or false.
If the expression is true, the If Statement will execute all statements within the If
Statement. If it does not return true, the If Statement’s body statements will be skipped
over.
 Optional: The user may provide an Else If or Else Statement. Else If Statements are
similar to If Statements, but provide a separate expression for the statement to verify.
Else Statements only require statements inside the Else Statement. If the If Statement’s
expression does not return true, the statements inside the Else If Statement that returns
true, or, if no expression returns true and an Else Statement exists, the body statements
of the Else Statement will be executed.

Example:

if (1 == 1) {
 print(true)
}

if (2 > 3) {
 print(true)
}
else {
 print(false)
}

----[OUTPUT]----
true
false

Print statement

Schumitz 7

Description:
 The user provides an expression, variable, or value inside the Print Statement.
When the Print Statement is executed, if an expression is in the Print Statement, the
return value of the expression will be written for the user to read. If it’s a variable, the
value held by the variable will be written. If it’s a value, the value will be written.

Example:

print("Hello, world!")

----[OUTPUT]----
Hello, world!

Variable statement

Description:
 The user provides a string to be used as the variable’s name and an expression to
be used as the variable’s value. This creates a variable in the memory of the program
and the variable name cannot be used again.
 Optional: The user may provide an explicit type. If an explicit type is given, the
value provided by the user must match the explicit type. If no explicit type is given, the
type will be inferred based on the value provided.

Example:

var number:int = 25
var phrase = "This is a phrase"

Assignment statement

Description:
 These statements can be used to reassign values to already initialized variables. The
statement only requires a new value to replace the variable's old value. The new value
must match the type of the old value, regardless of if an explicit variable was used in the
Variable Statement.

Example:

var x = “Original Value”
x = “New Value”

Schumitz 8

Function definition statement

Description:
 The user provides a name for the function followed by parentheses. Inside the
parentheses, the user may provide zero or more strings to serve as parameters. These
strings will be used as the variable names of the parameters, and the value will be
determined by the Function Call Statement.
 Optional: The user may give the function an explicit type. This is put after the
parentheses and determines what type the function must return. Each parameter may
have an explicit type as well. If the user does not provide a specific type, the type will be
inferred.

Example:

function func1 (param1) {
 print(param1)
}

function func2 (param1 : string) {
 print(param1)
}

function func3 (param1 : string) : string {
 print(param1)
 return param1
}

Return statement

Description:
 The user can use this to have a function return a value for use outside of the
function. The CatScript type of the value being returned must match the explicit type of
the function if one is given.

Example:

function concatenateTwoStrings (str1 : string, str2 : string) : string {
 concatenatedString = str1 + str2
 return concatenatedString
}

Function call statement

Schumitz 9

Description:
 Function Call Statements are used to invoke functions that have already been
defined with a Function Declaration Statement. The user will call the function with the
same number of arguments as parameters the function is expecting. If the function has
a return value, the value can be saved to a variable when the Function Call Statement is
used.

Example:

var x : string = "Hello "
var y : string = "there!"
fullString = concatenateTwoStrings(x, y)
print(fullString)

----[OUTPUT]----
Hello there!

Expressions

Equality expression

Description:
 Checks the equality of two values using the equals (“==”) operator or the not
equals (“!=”) operator. Returns true or false.

Example:

print(true == true)
print(“hello” == “world”)
print(3 != 4)
print(“hello” != “hello”)

----[OUTPUT]----
true
false
true
false

Comparison expression

Description:
 Compares two values using the less than (<), greater than (>), less than or equal to
(<=), and greater than or equal to (>=). Returns true or false. May only be used on int
type.

Schumitz 10

Example:

print(1 < 2)
print(1 > 2)
print(1 <= 1)
print(2 >= 2)
print(1 <= 2)
print(1 >= 2)

----[OUTPUT]----
true
false
true
true
true
false

Additive expression

Description:
 When using the plus (+) operator, if both values are integers, the operator will add
the integers together. If both values are strings, the operator will concatenate the
strings. The minus (-) operator only handles subtraction of two integers.

Example:

print(1+1)
print(“two” + “strings”)
print(1-1)

----[OUTPUT]----
2
twostrings
0

Factor expression

Description:
 The star (*) operator handles multiplication of two integers. The slash (/) operator
handles division of two integers.

Example:

print(2*3)
print(6/3)

Schumitz 11

----[OUTPUT]----
6
2

Unary expression

Description:
 Unary expressions handles negative integer values by using the minus (-) operator
and handles logical negating of boolean values by using the “not” keyword.

Example:

print(not true)
print(-1)

----[OUTPUT]----
false
-1

List literal expression

Description:
 List literal expressions are used for creating lists of a certain type, and are
immutable in CatScript. List expressions can be assigned to variables, or they can be
declared inline in for-loop statements. Lists can be mutli-dimensional.

Example:

var list1 = [23, 52, 11]
var list2 = ["these", "are", "strings"]
var list3 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

for (var i in [1, 2, 3]) {
 print(i)
}

----[OUTPUT]----
1
2
3

Schumitz 12

Sec�on 5: UML
Throughout the process of developing the CatScript compiler, we used UML models to

create visual diagrams of what the execu�on process should look like at run�me. We mainly
used sequence diagrams, as we found that class diagrams simply showed the hierarchical
structure of the compiler. Unfortunately, seeing the hierarchical structure was not prac�cally
useful for us as before beginning the implementa�on process, we already knew what the
structure of the compiler looked like. On the other hand, sequence diagrams provided useful
visuals of what the order of method calls throughout the compiler should look like at run�me.
Sequence diagrams also proved to be effec�ve displays of the recursive descent algorithm.
 The UML sequence diagram shown below shows the flow of execu�on of the following
variable statement in CatScript: var x : int = 20 + (40 / 8). In the diagram, we can see
the recursive nature of the program. First, the code execution traverses all the way down the
parse tree representing the grammar. Next the code builds back up from the bottom of the
parse tree, eventually providing a complete variable assignment statement.

CatScript sequence diagram:

Schumitz 13

Sec�on 6: Design trade-offs
 During our development of the CatScript compiler, a major design decision was whether
to implement parsing using recursive descent or a parser generator, as these represent the two
primary approaches to building parsers. Recursive descent is a method that works excep�onally
well for Extended Backus-Naur Form (EBNF) grammars as the algorithm mirrors the recursive
nature of such grammars. At run�me, the recursive descent algorithm traverses the parse tree
recursively, which results in the efficient parsing of complex statements and expressions. In
contrast, parser generators are tools that automate parser code genera�on based on a provided
grammar. Parser generators are nice in that they offer convenience, but they o�en result in
complex, less readable output.

Each method has dis�nct pros and cons. Recursive descent is favorable for its elegance,
clarity, and readable code. However, its implementa�on can be �me-consuming, and it may
result in slower parsing performance compared to parser generators. On the other hand, parser
generators are nice because they streamline the parser development process and produce
highly op�mized code. Unfortunately, they can also generate parser implementa�ons that are
difficult to comprehend.

Ul�mately, we opted to implement recursive descent parsing for several reasons. This
approach aligns seamlessly with EBNF-style grammars, which are inherently recursive. The
resul�ng parser code is logical, straigh�orward, and easier to grasp compared to code
generated by parser generators. Lastly, recursive descent is widely employed across industry for
compiler development, further highligh�ng its prac�cality and effec�veness.

Schumitz 14

Sec�on 7: So�ware development life cycle model
 The So�ware Development Lifecycle (SDLC) is the process that development teams
follow in order to design and build so�ware products. Common steps that SDLCs include are
planning, designing, implemen�ng, tes�ng, deploying, and maintaining. There are many SDLC
models such as Waterfall, DevOps, and Agile. Every SDLC model has its pros and cons, and each
model takes a slightly different approach from the other. Another SDLC model is Test Driven
Development, which is what we used for this project.

 Test Driven Development (TDD) is a so�ware development prac�ce where the focus is
placed on designing unit tests before implemen�ng any code. The scope of the TDD lifecycle is
different from other SDLC models in that it tests code in small chunks rather than running tests
against so�ware systems as a whole. TDD aims to uncover bugs in code as early as possible,
which makes the process of debugging and fixing them significantly easier. The TDD process is
also itera�ve. Code is developed, tested, and refined in small chunks un�l all unit tests are
passed. This decreases the likelihood of redundant code and results in more resilient so�ware
systems.

 My experience developing the compiler using a TDD approach was the most enjoyable
out of any SDLC I have had experience with. The preexis�ng test requirements that we needed
to meet provided clear and concise development goals. The goals also translated perfectly into
the process of wri�ng accurate, non-redundant code throughout the compiler. Lastly, having
concrete development goals to aim for, based upon the knowledge we gained throughout the
semester, not only made the process clearer, but it was also quite enjoyable.

	CatScript Guide
	Introduction
	Type System
	Features
	For loop statement
	If statement
	Print statement
	Variable statement
	Assignment statement
	Function definition statement
	Return statement
	Function call statement

	Expressions
	Equality expression
	Comparison expression
	Additive expression
	Factor expression
	Unary expression
	List literal expression

