Montana State University

Catscript Capstone Portfolio documentation

Carson Whitfield
Cooper Wollschlager
Compilers - CSCI_468
Spring 2025

Professor- Carson Gross

Section 1: Program
Location:

The location of the source code for the program is found in the folder called
program.zip which is included in this directory. The Catscript compiler was written in Java
and was created in an IDE called IntelliJ by JetBrains. Carson Gross supplied the
development environment.

Section 2: Teamwork
Our team consisted of two members:
e Carson Whitfield

e Cooper Wollschlager

Estimated contribution:

Both team members did equal work on this project, most of which was done with
eachother

Section 3: Design pattern
Introduction: Composite Pattern

Composite Pattern is a structural design pattern that allows individual objects and
groups of objects to be treated uniformly. For example, in the CatScriptParser, it is set to
represent complex expressions as a tree of simpler expressions. Each node in the tree can
be a leaf node, like a number or variable, or a composite node, which is a binary operation
such as addition or a function call. For example, in the parseAdditiveExpression() method,
which is a left-hand side and right-hand side expression that are combined into a new
additive Expression object, which itself is an expression. Because all expressions
implement the same interface or superclass, the parser and interpreter can process both
simple and nested expressions using the same logic. This recursive, tree-like structure
makes it easy to build, evaluate, and manipulate expressions of arbitrary complexity, all
while keeping the codebase clean and extensible.

Where does this pattern occur in the Catscript program

This pattern occurs in Catscriptparser Java class. The file is located in the source
src/main/java/edu/montana/csci/csci468/parser/CatScriptParser.java. Here is an example
of a composite pattern, which is a function called parseAdditiveExpression() as seen in the
figure below.

verator, expression, rightHandS

Section 4: Technical Documentation

Parser:

The CatScriptParser is a recursive descent parser designed to convert CatScript
source code into an abstract syntax tree (AST) composed of Statement and Expression
objects. It begins by tokenizing the input using the CatScriptTokenizer, then attempts to
parse either a single expression or a sequence of program statements. The parser supports
a range of statement types, including function definitions, variable declarations, print,
return, assignment, conditionals like if and for loops. Expressions are parsed concerning
operator precedence, from equality and comparison operations down to additive,
multiplicative, unary, and primary expressions such as literals, identifiers, and function
calls. The parser includes helper methods like require() for enforcing syntax expectations
and reporting errors, and it features specific handling for type annotations and list literals.

Syntax:

The syntax of CatScript is similar to python while using the JVM compiler. The language is
meant to be easy to read while not being super complicated in the back end.

Expressions

Catscript allows a wide range of expressions, allowing equality, comparison, additive,
factor, unary, and primary expressions. These expressions can be used in a multitude of
spots and has the standard syntax that most languages nowadays use.

Syntax Meaning Returned Value

Al=B Not Equal True or False

A== Equal True or False
A>B Greater Than True or False
A>=B Greater Than or Equal True or False
A<B Less Than True or False
A<=B Less Than or Equal True or False
A+B Add Sum of the 2 values
A-B Subtract Difference of the 2 values
A/B Divide Quotient of the 2 values
A*B Mutltiply Product of the 2 values
Not A Inverse True or False
-A Inverse positive to negative or True
to False
Statements

To print out something you can just call “print(x)” with x being what you want to print,
whether it’s a variable, string, or anything else.

To define variables in CatScript you must declare the creation of a variable with “var” and
then you can assign a name and value pair. The whole line would look like var x = “hello”.
This has implicit declaration so there is no need to assign a type to the variable.

With any variables in Catscript, when you instantiate them; whether itis in a method
header or just a declared variable you can choose to follow up the name of the variable
with a colon and then declare the variables type, such as “var x: int=1” declares xas anint
and assigns the value 1 to it.

Function Declaration

To declare a function in CatScript you start the line with function to tell the compiler that
this will be a function declaration. Then the syntax is as follows:

function ‘name’(parameter list) {
statement(s)

}

One thing to note is that the parameter list can be empty or have a lot of variables. And you
may also declare the variables type if needed.

Function Call

After declaring a function, one might want to call on that function to use it. In order to call
functions in CatScript you simply just use the function’s name and parameters, an example
of a function call would be like: “name(parameters)”

Return

CatScript does allow Return statements to get information from functions and their syntax
is simply to say ‘return’ then the information you would like to be returned

While CatScript does not have while loops, it does have if statements and for loops. The
syntax of an if statement also allows for else to be tacked onto the end. And example of an
if else statement is as follows

if (expression) {
statement(s)
} else{
statement(s)
}
And for loops have the syntax as follows:
for (variable in expression){
statement(s)

}

Together with if-else statements and for loops, a majority of needed programs could be
written in CatScript even without having a while loop.

TEST CASES:

Cooper Wollschlager’s Test Cases:

UML

Section 5

Parsing function call "My_Func(3, not true)"

4
= e W A
:
5
¥ .
< i
L i
— i
- | &
g
H |
=| "
HE
8| &
IIIIIIIIIIIIIII T - —T gl
' p _ﬂ N
£ & g g &
] St S £ 4
5 @ g1 8 \
£ & a1 % '
g LEl 2
E— &t Bl 7 H
5! &" S
& £ El
K £l &
£ .
2, & ,
\\\\\\\\\\\\\ vy oy [v
I 'y B ¥ -
,]
L | H
i :
& :
g H
& 3
&1 5.
uy '
5
] H
2 :
=]
5 !
2 '
& 3
:]
1 " 5
g ' E.
b : :
H H &
EL-— L ___ A e
) A N
3 5!
o 21
-]
L i
:
:
,
:
'
— N
— :
:
H
|
il St e ettt -
' '
= 3,
2 e
2 ,
- B :
— E & "
o i
HE :
. 2 "
S = "
= L A
3 & 2
1 @'
I e ¥y __
z
]
&
E
£
-
n
4
&
o

Section 6: Design Tradeoffs

We decided in this class to use recursive descent because it uses an easier to understand
language and can help teach us more about the innerworkings of a compiler compared to
using a generative one which does a lot of the backend for us. The other big reason we used
recursive descent is because that backed the generative compiler creates is a mess thatis
hard to read and understand, or in other words a Blackbox. However, for general use that is
the big positive of generative models, as the creator has to write less code, and therefore
has less they can get incorrect when creating their compiler.

In addition to the above recursive descent is widely used and is even used in some
generative models, so knowing how they work and creating our own recursive descent
parser and compiler lets us learn way more about how they work and get us more familiar
with recursive descent.

Section 7: Software Development Life Cycle Model

We used TDD (Test Driven Development) for our model. The TDD model is a model that
focuses on passing test cases while maintaining all the older test cases so they are still
working. Using this method, the person goes test by test, slowly building up their project
and guaranteeing that the necessary parts work as needed.

This model was easy for both of us easy to work with and led the project along the correct
track to being done. The checkpoints of tests to pass guaranteed that we were ready to
move onto the next step with confidence that the program was working as expected. One
thing that we found annoying with TDD was that sometimes, while coding the current test
case, we would break an old test case and not realize until much later if we forgot to run old
tests as well.

