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Section 1: Source Code 
A zip file of the source code to this project can be found at 
https://github.com/thelitttleman/csci-468-spring2025-private/blob/main/capstone/portfolio 
 
Section 2: Teamwork 
This computer science capstone was all completed by myself excluding the following 
elements of this section. My work time estimate is 30-35 hours. My partner, teammate 2, 
spent roughly three hours creating the CatScript Documentation and extra tests. 
 
CatScript Documentation - Written by Teammate 2 

CatScript is a lightweight statically typed scripting language. Its programs compile to 
Java bytecode and support common features you would expect to be found in modern 
languages: variables, control flow, functions, etc. 

CatScript Lexical Elements: 

● Identifiers: [A-Za-z][A-Za-z0-9]* 

● Integers: any sequences of digits, such as 42, 0, -7 (negative is unary minus) 

● Strings: double‐quoted string, such as "cat"; escape \ supported. 

● Keywords: else, false, function, for, if, in, not, null, print, return, true, var. 

● Syntax: +, -, *, /, <, <=, >, >=, =, ==, !=  

● Punctuation: (, ), {, }, [, ], ,, ., :,  

Types: 

● int: 32-bit integer 

● bool: boolean value (true/false) 

● string: java-style string 

● list<x>: list of values with the type ‘x’ 

● object: any type of value 

● null: the null type 

Type syntax: 

type_expression = 'int | 'bool' | 'string'| 'object'| 'list' [ , '<', type_expression, 
'>' ]; 

https://github.com/thelitttleman/csci-468-spring2025-private/blob/main/capstone/portfolio/


Expressions: 

Expressions compute values and are left-associative except for unary expressions. This 
document displays the types of expressions in a top-down order of precedence. 

Primary expressions can have: 

● Identifier: variable or function name 

● Literals: STRING, INTEGER, boolean (true/false), null 

● List literal: '[', expression,  { ',', expression } ']'; creates a list: [1,2,3] or is empty []. 

● Function call: IDENTIFIER, '(', argument_list , ')'; e.g.  name(arg1, arg2, ...) 
returns a value 

Primary expression syntax: 

primary = IDENTIFIER | INTEGER | STRING | 'true' | 'false' | 'null' | list_literal 
|    function_call | '(' expression ')'; 

Unary expressions can have: 

● not: negates a boolean value 

● -: negates an integer value 

Unary expression syntax: 

 unary = 'not' unary | '-' unary | primary; 

Binary Operators are, from highest to lowest precedence: 

1. *, /                            (factor expression) 

2. +, -                           (additive expression) 

3. <, <=, >, >=           (comparative expression) 

4. ==, !=                      (equality expression) 

Additionally:  

● ‘+’ in (2) will concatenate strings if either left-hand side or right-hand side 
expression is a string 

● Comparisons in (3) return a boolean value 
● Equality operators in (4) can be used with any type.  

Binary operator expressions syntax: 

factor = unary { ('*' | '/') unary }; 



additive = factor { ('+' | '-') factor }; 

comparison = additive { ('<' | '<=' | '>' | '>=') additive }; 

equality = comparison { ('==' | '!=') comparison }; 

 

Statements: 

● for: iterates over some list 

● if: evaluates the expression (boolean) and branches depending on value 

● print: evaluates the expression, converts it to a string, writes the string 

● variable: declares some identifier and initializes it to its expression value 

● assignment: updates existing variable to specified expression 

● return: exits current function, either returning the expression value or ‘nothing’ 
(void) 

● function call: calls a function  

Statement syntax example: 

 for_statement = 'for', '(', IDENTIFIER, 'in', expression ')', '{', { statement }, '}'; 

 if_statement = 'if', '(', expression, ')', '{', { statement }, '}' 

                         [ 'else', ( if_statement | '{', { statement }, '}' ) ]; 

 print_statement = 'print', '(', expression, ')'; 

 variable_statement = 'var', IDENTIFIER, [ ':', type_expression, ] '=', 
expression; 

 assignment_statement = IDENTIFIER, '=', expression; 

 return_statement = 'return', [, expression, ]; 

 function_call_statement = function_call; 

Functions: 

● Parameters: zero or more, can be typed. 

● Return type: specify after :, default is void. 



● Body: is a sequence of statements. Must cover all branches with a return if not of 
void type 

Function syntax example:  

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' + [ ':' + 
type_expression ], '{', { statement }, '}'; 

parameter_list = [ parameter, {',' parameter } ]; 

Additional Testing - Written by Teammate 2 
Teammate 2 created the following three tests to ensure additional functionality. After 
implementing them in the codebase, I learned that the program passed the tests without 
any needed modifications. 
 
@Test 
public void parseDoubleParenthesizedExpressionWorks() { 
   ParenthesizedExpression outer = parseExpression("((1))", false); 
   assertTrue(outer instanceof ParenthesizedExpression); 
 
   // first () is another parenthesized 
   Expression middle = outer.getExpression(); 
   assertTrue(middle instanceof ParenthesizedExpression); 
 
   // nested inside is the integer literal 1 
   Expression innerMost = ((ParenthesizedExpression) middle).getExpression(); 
   assertTrue(innerMost instanceof IntegerLiteralExpression); 
   assertEquals(1, ((IntegerLiteralExpression) innerMost).getValue()); 
} 
 
@Test 
public void parseNestedListLiteralExpressionWorks() { 
   ListLiteralExpression expr = parseExpression("[[1],[2]]"); 
   assertEquals(2, expr.getValues().size()); 
   assertTrue(expr.getValues().get(0) instanceof ListLiteralExpression); 
   assertTrue(expr.getValues().get(1) instanceof ListLiteralExpression); 
} 
 
@Test 
public void parseMultiStringConcatenationExpressionWorks() { 
   AdditiveExpression expr = parseExpression("\"foo\" + \"bar\" + \"again\"", 
false); 
   assertTrue(expr.isAdd()); 
   assertTrue(expr.getLeftHandSide() instanceof AdditiveExpression); 
   assertTrue(expr.getRightHandSide() instanceof StringLiteralExpression); 
} 

 



Section 3: Design Pattern 
Although there were most likely multiple design patterns used in the overall structure of 
classes in the CatScript codebase, one design pattern that was used entirely inside of a 
class was the memoization pattern. This pattern is designed to speed up the execution 
of potentially high-cost functions by caching already-computed results, and storing them 
in such a way that retrieving those results is faster than executing the function again. In 
the implementation, the memoization pattern was used to cache ListType objects in an 
effort to conserve both space and running time. Without the pattern, a new ListType 
object would be created every time a new list was created in code. The implementation 
uses a hashmap as the storing data structure, which has a constant lookup time. In 
addition, if two lists of the same component type are created, then only one ListType 
object will be used for both. Below is the code that implements the memoization pattern. 
This code segment can be found in 
  
src/main/java/edu/montana/csci/csci468/parser/CatscriptType.java 
 
static Map<CatscriptType, CatscriptType> MEMOIZATION_CACHE = new HashMap<>(); 
public static CatscriptType getListType(CatscriptType type) { 
   CatscriptType existingType = MEMOIZATION_CACHE.get(type); 
   if(existingType != null) { 
       return existingType; 
   } 
   else { 
       ListType listType = new ListType(type); 
       MEMOIZATION_CACHE.put(type, listType); 
       return listType; 
   } 
} 
 

Section 5: UML Diagram 
If we consider the following code segment in CatScript. 

 
 
Then the corresponding sequence diagram looks as follows. 



 
 
Catscript starts all program executions by either parsing a single expression, or a 
collection of statements. In this case it is a statement. Due to the explicitly typed 
variables in the function declaration statement, the parser requires three type literals to 
be returned to it. After, the body of the function parses. The only statement in the 
function is a return statement, but it has an additive expression connected to it. This is 
where the recursive descent process is clearest. All levels of the parser are not shown 
for brevity but the parser checks for equality and comparison expressions before 
figuring out that it is an additive expression. The additive expression resolves the two 
identifiers on either side, as well as the “+” operator. The expression gets sent back to 
the return statement which in turn gets sent back to the function declaration statement, 
ending the parsing. 
 
Section 6: Design Trade-Offs 
The largest design trade-off made throughout this project was the decision to write a 
recursive descent parser by hand instead of using a parser generator. This decision was 
made for multiple reasons. Typically, parser generators create a parser and tokenizer 
that is constrained by the wanted language specification. They are known to create 
much simpler and more optimized code than what humans tend to make on their own, 
but this comes with the cost of readability. Output from parser generators can be 
extremely unintuitive and without proper documentation for the language, general users 
would be left to figure out the semantics on their own. Input to these generators also 



uses heavy syntax and can require a lot of time to learn, but the end user is not affected 
by it. Ultimately, recursive descent parsers require much more work to implement, but It 
was worth the effort. The codebase structure much more closely resembles the 
grammar that CatScript is based upon, making it easy to use. The structure of the final 
product is clean and follows typical object-oriented design principles. The actual 
recursive descent parser is all contained within one class, but each main function of the 
compiler is isolated from the others and there is not an overuse or underuse of any part 
of the codebase. 
 
Section 7: Software Development Life-Cycle Model 
While most of the software development was pre-planned as part of the compilers class, 
test driven development was used to ensure functionality of the codebase. Test driven 
development was probably the best choice, as the grammar that the CatScript language 
is based on has an already-defined structure. This meant that the tests could be created 
easily and be easily understandable to the implementers. The highest degree of 
abstraction needed for the tests were for those that tested faulty code. The codebase 
uses an error system that allows for each parse element to have errors attached to it if 
needed, as well as an ErrorType class that acts as a dictionary for the possible errors a 
user could make. This allowed for much easier debugging of code. Debugging was 
almost as important as the tests that were used. The IDE used while implementing the 
system allowed for step-by-step execution through all tests to find problems in code 
much quicker. The largest hindrance that test driven development brought was the 
overall lack of tests. Some checkpoints of the project had more in-depth testing than 
others, so sometimes a problem in a previous checkpoint would go undetected, and 
changes to code were necessary even after that portion was considered “done”. This 
then affected the schedule of the following checkpoints.  
 


