
Section 1:
https://github.com/RichardBabcock/csci-468-spring2025-private/blob/main/capstone/portfolio/source.zip (https://github.com/RichardBabcock/csci-468-spring2025-

private/blob/main/capstone/portfolio/source.zip)

Section 2:
Me and my partner started off with bouncing ideas back and forth about how to start this team work section. We decided to start with

We then proceed to create three new tests each my partner decided to take our known tests and combine bits and pieces of them togethe

void forLoopInsideFunctionWorksProperly() {

 assertEquals("1\n2\n3\n", executeProgram("function foo() { for(x in [1, 2, 3]) { print(x) } }\n" +

 "foo()\n"

));

}

public void elseStatementEnsuresOpeningBrace() {

 IfStatement expr = parseStatement("if(x > 10){ print(x) } else } ", false);

 assertNotNull(expr);

 assertTrue(expr.hasErrors());

}

void nestedIfStatementWorksProperly() {

 assertEquals("2\n3\n", executeProgram("if(true){ if(true){ print(2) } else { print(1) } if(true){ print(3) } else { print(1) } }"

}

As you can see they are more complex and expanded the testing of the parser compared to what the given tests were.

Section 3:
The design pattern that was used in my capstone was memoization. It was used in the CatscriptType file starting at line 34 and used i

Section 4:
Catscript Guide

This document is a guide for catscript, to satisfy capstone requirement 4

1. Introduction
Catscript is a simple statically-typed scripting language. It is lightweight and supports basic data structures and control flow Here is an example of Catscript code:

var x = "foo"

print(x)

2. Types
Catscipt contains a small type system that is as follows:

https://github.com/RichardBabcock/csci-468-spring2025-private/blob/main/capstone/portfolio/source.zip

* int - a 32 bit integer

* string - a java-style string

* bool - a boolean value

* list<x> - a list of values with the type 'x'

* null - the null type

* object - any type of value

3. Variables and Assignments
3.1 Variable Statements

var x = 1

3.2 Assignment Statements

x = 2

Types are mandatory upon declaration, but are in local scope if the type is not ambiguous.

4. Control Flow
4.1 For loops

for(x in [1, 2, 3]) {

 var y = x

 print(y)

}

4.2 If Statements

if(true){

 print("true")

} else{

 print("false")

}

5. Functions
5.1 Function Call Statements

function foo() : int{

 var x = 10

 return x

 }

 print(foo())

5.2 Return Statements

function foo(x : int){

 return x

 }

5.3 Print Statements

print("Hello World!")

6. Operators
6.1 Arithmetic:

+, -, *, /

6.2 Comparison:

==, !=, <, <=, >, >=

6.3 Unary:

not, -

String concatenation using + is also allowed.

7. Grammar

catscript_program = { program_statement };

program_statement = statement |

 function_declaration;

statement = for_statement |

 if_statement |

 print_statement |

 variable_statement |

 assignment_statement |

 return_statement |

 function_call_statement;

for_statement = 'for', '(', IDENTIFIER, 'in', expression ')',

 '{', { statement }, '}';

if_statement = 'if', '(', expression, ')', '{',

 { statement },

 '}' ['else', (if_statement | '{', { statement }, '}')];

print_statement = 'print', '(', expression, ')'

variable_statement = 'var', IDENTIFIER,

 [':', type_expression,] '=', expression;

function_call_statement = function_call;

assignment_statement = IDENTIFIER, '=', expression;

function_declaration = 'function', IDENTIFIER, '(', parameter_list, ')' +

 [':' + type_expression], '{', { statement }, '}';

parameter_list = [parameter, {',' parameter }];

parameter = IDENTIFIER [, ':', type_expression];

return_statement = 'return' [, expression];

expression = equality_expression;

equality_expression = comparison_expression { ("!=" | "==") comparison_expression };

comparison_expression = additive_expression { (">" | ">=" | "<" | "<=") additive_expression };

additive_expression = factor_expression { ("+" | "-") factor_expression };

factor_expression = unary_expression { ("/" | "*") unary_expression };

unary_expression = ("not" | "-") unary_expression | primary_expression;

primary_expression = IDENTIFIER | STRING | INTEGER | "true" | "false" | "null"|

 list_literal | function_call | "(", expression, ")"

list_literal = '[', expression, { ',', expression } ']';

function_call = IDENTIFIER, '(', argument_list , ')'

argument_list = [expression , { ',' , expression }]

type_expression = 'int' | 'string' | 'bool' | 'object' | 'list' [, '<' , type_expression, '>']

Section 5:

UML

Section 6:
In this class we wrote our parser using recursive descent, this gave us some insights that we would not have had compared to using a

However, while recursive descent has it’s merits, it also has drawbacks. It doesn’t provide the same level of control over performanc

Section 7:
The life cycle model employed in the Compilers class is Test-Driven Development (TDD). My experience with TDD has significantly benef

