
CSCI 468 Capstone Document 

By Thomas Wesley Gaylord, Partner: Brandon Chandler 

Section 1: Link to The Source Code 

The source code can be found at https://github.com/ThomasGaylord/csci-468-spring2025-

private/blob/main/capstone/portfolio/source.zip  

Section 2: Teamwork 

For the teamwork section we were instructed to write a version of the documentation 

and three tests for the compiler, then send it to our partner for them to submit our version as 

we submit their version. In the technical writing section is my partner’s version of the 

documentation while the three tests are below. The three tests test the logical negation of 

comparison operators, the comparison of different types, and the comparison of Booleans 

which all pass. The documentation meanwhile lightly explains the workings and purpose of the 

CatScript compiler enough that it should be relatively easy for a new programmer to learn the 

CatScript language.  

@Test 

void logicalNegationOfComparisonWorks() { 

    assertEquals(false, evaluateExpression("not(3 < 5)")); 

} 

 

@Test 

void comparingDifferentTypesReturnsFalse() { 

    assertEquals(false, evaluateExpression("3 == \"3\"")); 

} 

 

@Test 

void boolComparisonsAreCorrect() { 

    assertEquals(true, evaluateExpression("true == true")); 

    assertEquals(false, evaluateExpression("true == false")); 

} 

 

 

 



Section 3: Design Pattern 

The design pattern we used in this project was memoization. Memoization is the process 

of storing previously seen values and reusing them later rather than redoing the process of 

creating or finding that value. A common example of this is when implementing a Fibonacci 

sequence, a sequence where each number is equivalent to the sum of the two previous 

numbers. When implemented with memoization for each current number the two previous 

would already be stored since they had to be calculated already in order to reach the current 

number, therefor the current number could just reference the previous two numbers rather 

than recalculate them. The way we implemented memoization for the project was when getting 

list types. The code, shown below, saves previously seen list types then when the method is run 

and the type matches it gives the saved list type, otherwise it makes a new list type and saves it 

in the HashMap. In all, we used the design pattern called memoization to save resources by 

saving previously seen list types for later use.  

static Map<CatscriptType, CatscriptType> MEMOIZATION_CACHE = new HashMap<>(); 

public static CatscriptType getListType(CatscriptType type) { 

    CatscriptType existingType = MEMOIZATION_CACHE.get(type); 

    if(existingType != null){ 

        return existingType; 

    } else { 

        ListType listType = new ListType(type); 

        MEMOIZATION_CACHE.put(type, listType); 

        return listType; 

    } 

} 

 

 

 

 

 

 

 

 



Section 4: Technical Writing (Code Documentation) 

CatScript Language Overview 

CatScript is a simplified educational programming language modeled after JavaScript, developed 

to help students learn the fundamentals of how compilers and interpreters work. It features a 

dynamically typed system, basic syntax, and enough structure to demonstrate the process of 

parsing, type-checking, and execution. 

CatScript was designed specifically for compiler instruction, which means the language isn’t 

built for large-scale applications, but rather to illustrate key compiler components like 

tokenization, parsing, and AST traversal. Programs written in CatScript can be either interpreted 

or compiled into bytecode, depending on the phase of execution. In this document, we’ll walk 

through the essential parts of the language and what makes it useful as a teaching tool.  

 

Core Language Concepts 

Dynamic Typing 

In CatScript, variables do not require explicit type declarations. Instead, the language uses type 

inference. A variable assigned a number will be treated as an integer, while one assigned text 

will be treated as a string. Booleans, null, and lists are also supported. Although types are 

inferred, type checking is still enforced later in the verification phase to catch incompatible 

operations. 

Example: 

var a = 5      # a is inferred as int 

var b = "cat"  # b is inferred as string 

 

Dynamic typing makes the language easier to write for beginners, but it also means you must be 

careful about the types you are working with. Type mismatches (like trying to multiply a string) 

will result in errors during program verification. 

 

Expressions 

Expressions are components of the language that resolve to a value. They can be used in 

assignments, control flow conditions, function parameters, and more. 



Additive Expression 

Handles both numeric addition and string concatenation. If both operands are numbers, they 

are added. If either is a string, the result is a concatenated string.  

Example: 

print(2 + 3)             # Outputs: 5 

print("Hello" + "World") # Outputs: HelloWorld  

print("Version " + 2)     # Outputs: Version 2 

 

Comparison Expression 

Used for checking the order or magnitude of two numeric expressions. Available comparison 

operators include >, >=, <, and <=, which return a Boolean result.  

Example: 

print(3 < 5)    # true 

print(10 >= 20) # false 

print(100 <= 100) # true 

 

These are commonly used in loops and conditional logic. 

Equality Expression 

Used to compare two expressions for equality (==) or inequality (!=). Works across different 

types, and results in true or false. 

Example: 

print(4 == 4)       # true 

print("cat" != 3)   # true 

print(null == null) # true 

 

Equality checks help drive decisions in control flow logic. 

Factor Expression 



Supports multiplication (*) and division (/) operations between integers.  

Example: 

print(6 * 2)   # 12 

print(8 / 4)   # 2 

print(9 / 2)   # 4 (CatScript uses integer division) 

 

This expression is evaluated before additive expressions due to operator precedence.  

Function Call Expression 

Allows calling functions within expressions. The return value of the function is used in place. 

This is separate from a function call statement which is used only for side effects.  

Example: 

function double(x : int) : int { return x * 2 } 

print(double(5)) # Outputs: 10 

 

Function call expressions can be chained or nested as part of larger expressions.  

Identifier Expression 

Used to reference previously declared variables. The interpreter or compiler will look up the 

value associated with the identifier at runtime. 

Example: 

var name = "Leo" 

print(name) # Outputs: Leo 

 

If a variable is not declared before usage, an error is raised. 

Parenthesized Expression 

Changes the default order of operations by wrapping expressions in parentheses. This allows for 

explicit control over evaluation. 

Example: 



print(2 + 3 * 4)     # Outputs: 14 

print((2 + 3) * 4)   # Outputs: 20 

 

This expression type ensures more complex calculations can be clearly defined.  

Unary Expression 

Handles negation of numbers (-x) and logical negation of Booleans (not x). Unary expressions 

apply to a single operand. 

Example: 

print(-5)        # -5 

print(not false) # true 

print(not (3 > 5)) # true 

 

Unary expressions add expressive power to conditionals and math.  

Type Literal Expression 

Used in type annotations or generic lists. For example, list<int>  indicates a list containing 

integers. 

Example: 

var nums : list<int> = [1, 2, 3] 

var flags : list<bool> = [true, false] 

 

These are useful when you want to restrict a list to only certain data types.  

 

Statements 

Statements are complete instructions that tell the program to do something. These do not 

directly return values. 

Assignment Statement 

Assigns a value to an existing variable or one declared earlier. The value may be an expression.  



Example: 

var x = 10 

x = x + 5 

 

This updates the variable x to hold a new computed value. 

For Statement 

Iterates through a list and executes a block of code for each item in the list. 

Example: 

for(item in [1, 2, 3]) { 

  print(item) 

} 

 

This is the main looping construct in CatScript. 

Function Call Statement 

Executes a function for its side effects rather than its return value.  

Example: 

function greet() { print("Hello!") } 

greet() 

 

Used when the return value isn’t needed. 

Function Definition Statement 

Defines a new function in the language. A function can take parameters, optionally define their 

types, and return a result. 

Example: 

function square(x : int) : int { 

  return x * x 



} 

 

Functions can encapsulate logic and be reused. 

If Statement 

Performs conditional logic. 

Example: 

if(3 > 2) { 

  print("Yes") 

} else { 

  print("No") 

} 

 

You can nest if statements or chain them with else if. 

Print Statement 

Outputs the result of an expression to the console. 

Example: 

print("Testing output") 

print(10 + 5) 

 

Often used for debugging or user feedback. 

Return Statement 

Returns a value from a function. 

Example: 

function getTen() : int { 

  return 10 

} 



 

A return without a value returns void. 

Variable Statement 

Declares a variable in the current scope. 

Example: 

var word : string 

var count = 5 

 

Variables can be declared with or without initialization. 

 

Language Internals 

Tokenization 

The first phase of the compiler turns raw source code into a sequence of tokens. Tokens are 

strings with assigned types such as INT_LITERAL, IDENTIFIER, KEYWORD, or OPERATOR. This 

process is handled by the CatScriptTokenizer. Tokenization breaks text into meaningful 

components and removes whitespace or comments. 

Parsing 

The CatScriptParser uses recursive descent parsing to convert the token stream into an Abstract 

Syntax Tree (AST). Each node in the AST represents a meaningful piece of the program such as 

an AdditiveExpression or a FunctionCallStatement. Parsing ensures code is syntactically correct 

and structured. 

Verification (Static Analysis) 

After parsing, the tree is validated. The verifier walks through the AST and checks for semantic 

errors, such as using undeclared variables, invalid type operations, or mismatched return types 

in functions. This is an essential step to catch mistakes before running the program. 

Evaluation (Interpreter Mode) 

Each AST node has an evaluate() method. In interpreter mode, the AST is executed directly in 

memory. Values are computed on the fly, and runtime environments manage scopes, function 

calls, and data types. This method of execution is good for testing and debugging. 



Bytecode Compilation (JVM Mode) 

For more advanced use, CatScript supports bytecode generation. Each AST node can generate 

JVM-compatible instructions using the ASM library. These instructions can be written into 

.class files and executed using a standard Java Virtual Machine. 

Example: 

var x = 2 + 2 

 

Compiles into bytecode resembling: 

ICONST_2 

ICONST_2 

IADD 

ISTORE_1 

 

This compilation process teaches students how real-world compilers like java works. 

 

Error Handling 

CatScript includes a basic error reporting system. During tokenization and parsing, syntax errors 

are caught. During verification, semantic issues are flagged. At runtime, undefined variables, 

invalid operations, and null dereferencing are all captured and reported with line number 

information to aid debugging. 

Errors are designed to be student-friendly and descriptive. 

 

Summary 

CatScript is not just a language; it’s a learning platform. Its simplified syntax, combined with a 

complete compilation and execution pipeline, makes it ideal for educational settings. Students 

can: 

• Learn recursive descent parsing 

• Build and walk ASTs 



• Implement interpreters and compilers 

• Understand scoping and type inference 

• Generate real bytecode 

• Debug using meaningful error messages 

By writing or modifying CatScript, learners gain deep insight into how programming languages 

function, both in theory and in practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Section 5: UML 

Here I have a sequence diagram for my functionCallExpression() when it is parsing a 

function call for some function called multiply taking the integer arguments 5 and 3. The parser 

first goes down the chain of parse expressions until it recognizes it’s a function call expression. 

The parser then proceeds to parse the individual arguments. It calls parseExpression() to begin 

parsing the first argument, which is the integer 5. This triggers a series of functions, including 

parseEqualityExpression(), parseComparisonExpression(), and so on, until it reaches 

parsePrimaryExpression(), where it identifies 5 as an integer literal. It then creates and returns 

an IntegerLiteralExpression("5"). Similarly, the parser then moves to parse the second 

argument, 3, following the same chain of function calls and ultimately creating an 

IntegerLiteralExpression("3"). Once both arguments have been parsed, the parser constructs a 

FunctionCallExpression("multiply", [IntegerLiteralExpression("5"), 

IntegerLiteralExpression("3")]). This expression is then returned back through the chain of  

functions, resulting in the function call multiply(5, 3) being parsed correctly.  

Note: The picture doesn’t show up well in the document so I added it to the portfolio folder 

with my source code.

 

 

 

 

 

 



Section 6: Design Trade-offs 

For this course we made a recursive-descent parser, but a parser generator could have 

done the same job. Parser generators take the rules of a language in a manner similar to a 

regular expression, then parse the code using those rules. In order to more thoroughly teach us 

the individual parts of a parser and give us the perspective of a more profession compiler 

programmer we made a recursive-descent parser by hand instead. While a parser generator is 

faster and more efficient to use, our personally made recursive-descent parser is more human-

understandable, more easily modifiable, and uses fewer total lines of code compared to its 

equivalent parser generated code. Ultimately we made a recursive-descent parser in order to 

learn how to make a parser as well as to make the resultant parser much more modifiable 

compared to what a parser generator would make.  

 

Section 7: Software Development Model 

 For this course we used a Test Driven Development (TDD) model. A TDD model is a 

software development model designed such that each section of a project can be implemented 

sequentially. We did this starting with tests for the parser itself that we had to build code to 

pass, then we had to pass tests for expressions, then statements, then validation, and finally 

bytecode. This resulted in more and more functionality coming together as we developed the 

code more, but it also resulted in bugs coming up in later sections that were due to our code in 

previous sections, causing confusion when trying to identify the problem. An example of this is 

not properly implementing ListLiteral functionality in the earlier stages resulting in a test in the 

later stages not passing. Overall, the TDD model that we used was good for sequentially building 

up functionality, but it also caused significant roadblocks to arise if we didn’t properly 

implement our code in the early stages of testing.  

 

 

  


