SAMPLE SOLUTION

CSCI 246, Quiz 3 - Friday, April 1, 2022

Question One. 20 points. Consider the following two python functions:

def f(n):

n is a real number

return 3*n + 7

def g(n):

n is a real number

return n*n-2

(a) 5 points. Find (f °g)(4.0)

(b) 5 points. Find (g °f)(4.0)

(c) 10 points. Write a python function named f_inverse such that $(f \circ f_{inverse})(x) = (f_{inverse} \circ f)(x) = x \text{ for all real numbers } x.$

Question Two. 20 points. Define F: $\mathbb{Z} \to \mathbb{Z}$ by the rule F(n) = 2 - 3n. Is F onto? Prove or give a counterexample.

not noto

$$0 \cdot \frac{2}{5} = n$$

but 3 & A : F is not conto 2

Question Three. 20 points. Let $X = \{a, b, c\}$ and let P(X) be the power set of X. A relation **R** is defined on P(X) as follows: For every $B, C \in P(X)$,

B $\mathbb{R} \subset \longleftrightarrow$ the number of elements of B is less than the number of elements of C.

(a) 5 points. Is **R** reflexive? Explain briefly.

(b) 5 points. Is R symmetric? Explain briefly.

(c) 5 points. Is R transitive? Explain briefly.

Spoints. Is R transitive? Explain offens.

You -
$$\forall A,B, (\in P|X) \text{ if } A \neq B \text{ and } B \neq C$$

That mems $|A| < |B| \text{ and } |B| < |C|$

by transitive? Explain offens.

A P C

(d) 5 points. Is **R** an equivalence relation? Explain briefly.

Question Four. 20 points. Consider the function h: $\mathbf{Q} \to \mathbf{Q}$ that is defined by the rule $h(m/n) = m^2/n$ for integers m and n with $n \neq 0$. Is h well defined? Justify your answer.

$$ho = \frac{1}{2} = \frac{2}{4}$$

$$h(\frac{2}{4}) = \frac{1}{2}$$

$$h(\frac{2}{4}) = \frac{1}{4}$$

$$since h(\frac{1}{2}) \neq h(\frac{2}{4}),$$

$$h is not well defined$$

Question Five. 20 points. Construct an algebraic proof that for all sets A, B and C, $(A-B)-C=A-(B\cup C)$

Cite a property from Theorem 6.2.2 for each step of the proof in the Justification column. Use as many steps as you need.

	Step in Proof	Justification
	(A-B)-C	Starting Point
=	(AnBC)-C	set difference definition
=	(UVE) UCE	11 11
=	An (Bence)	associative proporty
=	Ar (Buc)	De Murgan's Law
=	A = (80C)	set difference defentor